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The contribution of variance to utility functions
Abstract

In looking at the properties of the probability distribution of the remurn on an economic
investment, economists often measure the dispersion of the distribution by its variance, o*. They
then go on to value the investment as a mean-variance trade-off, u — fo” for some (arbitrarily
chosen) constant S, which is usually greater than 0. This mean-variance trade-off underpins the
Capital Asset Pricing Model (CAPM), which we present briefly below, as well as many economic
valuation models.

We show below that this mﬁmﬁg-variance: valuation can lead to situations where two distributions X
and Y can satisfy forall ¢ Pr(X <c¢)2 Pr(¥Y <c) , ie., that Y stochastically dominates X, but
give v(X)=puy- ,8@% > py — ﬁag =p(¥).

Furthermore, ¥ can be taken to be such that Pr(¥ <0) =0 but v(¥) =~ oco. Hence, we can
conclude an inherent limitation in mean-variance trade-off models.

We then go on to show that if we are to value a distribution, X, by a mean-dispersion trade-off

where our dispersion is given by j Fx(x).1x— ux!” dx , then the only sensible value for r is 1.

]
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The contribution of variance to utility functions

Abstract

In looking at the properties of the probability distribution of the return on an economic
investment, economists often measure the dispersion of the distribution by its variance, o°. They
then go on to value the investment as a mean-variance trade-off, y — fo” for some (arbitrarily
chosen) constant S, which is usually greater than 0. This mean-variance trade-off underpins the
Capital Asset Pricing Model (CAPM), which we present briefly below, as well as many economic
valuation models.

We show below that this mean-variance valuation can lead to situations where two distributions X

and Y can satisfy for all ¢ Pr(X <c) = Pr(Y <¢) , ie, that Y stochastically dominates X, but
. # 2

give v(X)=uy —-ﬁcr_% > py — oy =v(Y).

Furthermore, ¥ can be taken to be such that Pr(Y <0)=0 but v(¥) =-occ. Hence, we can
conclude an inherent limitation in mean-variance trade-off models.

We then go on to show that if we are to value a distribution, X, by a mean-dispersion trade-off

where our dispersion is given by J fy(x).lx — ux!” dx , then the only sensible value for r is 1.

a3

Lemma 1: Let £ < ; be arbitrarily small.
Let X be defined so that fy(x) =exp{-1.((x~1)/e)*}, and
let ¥ be defined so that Pr(¥ £2)=0and  fy(y) =8y fory>2.

Then gy = 1. oy =&, gy =4, oy = oo,

Ye PriX<ce)yz Pr(iY <c¢) , ie., Y stochastically dominates X. but
v(X)=1-fe*>-co=4- foo=v(Y).

Lemma 1 above accents the shortcomings of mean-variance modelling.

Lemma 2 below takes this result a bit further, telling us that if we measure dispersion using the
expected value of any power r > 1 of the expected distance from the mean then the model will
still be inappropriate.

Lemma 2: Let r>1, and let ¥ be defined so that Pr(¥Y<2)=0 and
=2 fory=2.

Then uy = 2r/(r — 1), oy = co and, although y is always positive, v(}¥) =~ co.



We have established the problems of using a power r > 1.
Lemma 3 predictably tells us that r < 1 also has problems.

Lemma 3: Letr<1, Fm;ym;_.emd frO=2y2 for y22.

fe] £
Then, for all constants ¢, }: Sy ly—el” dy is finite, but gy = j Jyr(¥). ¥ dy = eo.
¢ <

b=

Lemma 4 serves the purpose of helping us derive Lemma 5.

Lemma 4: If ¢ is a real number such that either E(Y1Y = ¢) is finite or E(¥IY :’é ¢) 1s finite, then

[ o) ly=el dy = EQIY 2 0). Pr(Y 2 ¢) = EQIY S ). Pr(¥ <)

Lemma 5: If Ve J' Sr(¥).ly—cldy exists and is finite, then uy exists and is finite.

Proof (of Lemma 5):

If the premise conditions hold, then it follows from Lemma 4 that E(¥I¥ = ¢). P(Y 2 ¢) and
E(YY < ¢). P(Y £ ¢) both exist and are finite. It then follows that

E(YIY 2 ¢). Pr(Y 2 ¢} + E(YIY < ¢). Pr(¥ < ¢) exists and is finite.

This equals gy. Q.E.D.

Lemmas 4 and 5 tell us that, unless E(Y1Y 2 ¢) = o0 and E(YIY £ ¢) = - oo for every point ¢ in
the distribution, then using the absclute deviation to measure dispersion works perfectly in the
sense that in this case, the mean is finite if and only if the dispersion is finite.

We thus conclude that if we value a distribution, X, by a mean-dispersion trade-off where our
dispersion is given by
”’T‘%wggk shauld & ey bhak vhe

&3%% semzible vemes are v,

f Fx(x).1x = ux!" dx, then the only sensible value for 7 is 1. (Unforkprarely, vhe edibors prinke & an
oo mar igv dvm& o B tm qﬁ“ Yt ??*fr = }

‘We also recall from Lemmas 1 and 2 that, with r > 1, it is possible to have a distribution with
finite mean but infinite dispersion; and that it is thus pesszbie to have two distributions X and ¥
such that Ve Pr(X <c) 2 Pr(¥ <¢) but V(X) = uy - ,Ba*x >—oo=py~ foo=wl} for any
g>0.

With r = 1, this situation cannot occur, as we see from our main theorem, Theorem 6.



Theorem 6:

Suppose j fx(x)dx=1 and j Fr(y) dv = 1 and that Ve j Fr(x) dx 2 j Fy(¥) dy.

Letting dy = j; fy()dy = pyldy and dy = J. Fx(x)dx— pxl dx,
== o

then gy 2 puy and dy € 2(uy — uyx) + dy.

Proof (of Theorem 6):

r | oMy , | ® o d
dy =2 | fr(y)uy =) dy since 37 T () (p-y) dy = \ T (40 y-p 3 d
y Jﬁfym{w ¥ & nee 000 Rl (pyoy) dy D P4-r0dy

i
iy
<2 j Fx(xXuy — x) dx by the inequality V¢ applied for ¢ = uy

Hy Hy #y
=20y ~ux). | D dx+2 [ 0 (ux-0de +2 [ e (g -2 dx
e g My

<2py—uy)+dy QED.

Note: In case one tries to justify using the variance to measure the dispersion by the arguing that
most distributions either are or approximate being normal, let us observe the following:

T L3 s oo o2 .
. _fx”,g 208 dx =g~ and — J».ixg;“g o de=4] = 5.
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Using the mean absolute difference to measure the dispersion of a normal distribution gives us a
constant multiplied by the standard deviation.

Now, the Capital Asset Pricing Model CAPM (see, e.g. Oxelheim and Wihlborg, 1987, pp20-29),
 states that if Ry is the retun on a zero-variance (risk-free) investment, E[R m] is the expected
return on a balanced market portfolio and E[R;] is the expected return on commodity j, then



B; = cov(R;, Ryp)loyy = ol onm

= E((xj— p)xm = LY E((xps = i)

=(E(x;xy) = }i{;#,&:ﬁfg{{ﬁw . %M}EE
\ ,

We have already shown that the assumption that distributions can be valued using a mean-
variance trade-off, an assumption upon which CAPM depends, is flawed.

Let f(Ry)=3.03.22%Rypos Ryyz2 Pr(Ry<2)=0
and let f(R;)=2.02.2*%/R;® R;22 Pr(R;j<2)=0.

Then yy < pt; < oo and dig < oo, but cov(R ;, Ry) = oo.
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