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Abstract. Mixture modelling concerns the unsupervised discovery of
clusters within data. Most current clustering algorithms assume that
variables within classes are uncorrelated. We present a method for pro-
ducing and evaluating models which account for inter-attribute correla-
tion within classes with a single Gaussian linear factor. The method used
is Minimum Message Length (MML), an invariant, information-theoretic
Bayesian hypothesis evaluation criterion. Our work extends and unifies
that of Wallace and Boulton (1968) and Wallace and Freeman (1992),
concerned respectively with MML mixture modelling and MML single
factor analysis. Results on simulated data are comparable to those of
Wallace and Freeman (1992), outperforming Maximum Likelihood. We
include an application of mixture modelling with single factors on spec-
tral data from the Infrared Astronomical Satellite. Our model shows
fewer unnecessary classes than that produced by AutoClass (Goebel et.
al. 1989) due to the use of factors in modelling correlation.

Keywords: Minimum Message Length, MML, Statistical and Machine Learn-
ing, Noise Handling, Induction in KDD.

1 Introduction

This paper introduces a method for inferring models of data based on the com-
bination of two kinds of model frameworks: mixture models [13,16, 14, 18] and
factor models 7,20, 15]. Mixture modelling, variously also known as a form of
clustering, intrinsic classification, and numerical taxonomy, is the modelling of a
statistical distribution by a mixture of other distributions, known as components
or classes. Mixture modelling is prone to overfitting since the best fit to any body
of data, in terms of maximum likelihood, is typically achieved by having many
classes, each fitting a small number things '. The Minimum Message Length
(MML) principle, presented by Wallace and Boulton [16], is a Bayesian method

! where a ‘thing’ is a datum of observed attribute values
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which penalises overly complex hypotheses, and for this reason it has been used
for the evaluation of mixture model hypotheses [16,14,18)2.

Factor analysis concerns the modelling of inter-attribute correlation by the
assertion of the existence of some attribute of things which was not measured, but
which has an effect on the attributes that were observed. The MML estimator
for factors [20,15] produces results that are superior on average to maximum
likelihood estimators.

Real-world data often exhibits correlation structure which is well suited to
modelling by a mixture of distributions with factors. We have developed an MML
method for the estimation of the parameters and structure of this class of models.
We present an analysis of the results of this estimator on simulated data and on
spectral data from the Infrared Astronomical Satellite (IRAS) [12], which shows
the value of the inclusion of factors in mixture modelling. Spectral data contains
a large amount of correlation, much of which corresponds to the variation in
strength of continuous parameters of sources, such as their temperature or the
abundance of certain ions and molecules. This kind of variation may be handled
by mixture models (Goebel et. al. [6] have published such a model for the IRAS
data), but we believe it is better modelled by mixtures of factors, resulting in a
much reduced number of classes. '

2 Parameter Estimation by Minimum Message Length

The minimum message length (MML) principle as stated by Wallace and Boul-
ton [16] asserts that the “best” hypothesis about data is that which minimizes
the Iength of a two part message conveying the hypothesis and encoding the
data given this hypothesis. Elementary information theory results tell us that
an event of probability p may be encoded in —log, p bits. Therefore, assum-
ing a prior distribution on hypotheses, we may encode our hypothesis H in
length —log, Pr(H) bits, or —log, Pr(H) nits, a unit of convenience since we
are often taking the logarithm of exponentials of base e. Given the hypothesis,
which somehow conveys a probability distribution for the data.(by, for exam-
ple, encoding the mean and standard deviation for a Normal distribution), the
data are encoded in — log Pr(D|H) nits. Hence, the entire message is conveyed in
—log Pr(H)—log Pr(D|H) = — log Pr(H). Pr(D|H) nits, and the MML estimate
minimizes this quantity, or equivalently, maximizes Pr(H). Pr(D|H). By Bayes’
rule this corresponds to maximizing Pr(D). Pr(H|D), and since Pr(D) is inde-
pendént of H, the MML estimate therefore maximizes the Bayesian posterior
probability Pr(H|D).

Unlike the usual Bayesian method of maximizing the posterior density, MML
works with probability masses by recognizing that all data is necessarily mea-
sured to a finite precision, and that point estimates should also be recorded to a
finite precision. Thus the precision of all distribution parameters, as well as their
expected values under quantization are estimated. The precision of distribution

? More information regarding mixture modelling with MML and other methods is
available at http://wew.cs.monash.edu.au/~dld/mixture.modelling.page.html.
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parameters is determined as a trade-off between the cost of encoding with extra
precision, and the cost of encoding the data with a sub-optimal hypothesis due
to rounding. For continuous-valued parameters, with the optimum quantizing
volume (to a second order quadratic Taylor expansion approximation), the hy-

pothesis is encoded in — log 7%% nits, where h(z) is the prior density at the
D

D-dimensional parameter vector estimate z, kp is the optimal D-dimensional
lattice constant and F'(z) is the determinant of the matrix of expected second
partial derivatives of the negative log-likelihood with respect to the elements of
z (known as the Fisher information). Given the hypothesis z encoded to this
precision, the second part of the message incurs an overhead due to rounding of
the parameters of D/2 nits, giving a length of —log Pr(D|z) + D/2. The MML
estimate of z is that which minimizes the length of this two part message. Un-
like the Bayesian maximum a posteriori estimate which maximizes the posterior
density, the MML estimator is invariant under re-parameterisation. For a more
detailed treatment see [19] or [17]. For estimators of the parameters of specific
probability distributions, see [18].

3 Mixture Modelling by Minimum Message Length

3.1 Fundamentals

The original application of MML by Wallace and Boulton [16] was in mixture
modelling. Recall that MML involves the evaluation of the length of a hypo-
thetical message describing a hypothesis and encoding the data based on this
hypothesis. For mixture models, we assume a message composed of the following
parts:

la. The number of components. (All numbers are considered equally likely a
priori, although this could easily be modified.)

1b. The relative abundance of each component. (Creating names or labels for
each component of length — log, of the relative abundance, via a Huffman code,

gives us a way of referring to components later when, e.g., we wish to say which
component a particular data thing belongs to.)

lc. For each component, the distribution parameters of the component

1d. For each thing, the component to which it is estimated to belong. (This
can be done using the Huffman code referred to in 1b above.)

2. The attribute values of each thing in turn, encoded using parameters of
the hypothesis.

Given an assignment of things to classes, this message format allows the
independent estimation of the distribution parameters of each class and the
relative abundances of each class to minimize parts la-c of the message. Likewise,
given distribution parameters and relative abundances, it allows the independent
assignment of each thing to a class to minimize parts 1d and 2 of the message.



99

3.2 Snob and the EM Algorithm “Adjust Cycle”

The Snob [16, 14, 18] program for MML mixture modelling uses a version of
the Expectation Minimization (EM) algorithm [10] to find a model with locally
minimum message length. Given some initial number of classes and assignment
of things to classes, the first step is to estimate the distribution parameters which
minimize the length of the parts of the hypothesis and the data which pertain
to each attribute of each class. Given these estimates for the parameters of each
class, the second step is to re-assign things to classes in a manner which minimizes
the combined length of parts 1d and 2. These two steps are repeated until the
message length has reached convergence, at which point a local minimum of
message length must have been found.

The topology of the mixture model is evolved by considering at each step
of iteration the effect of either promoting the iterated sub-classes of a class, or
combining two classes into one, and performing the alteration if it would decrease
the message length.

3.3 Partial Assignment

Part 1d of the message described in the previous section implicitly restricts us to
hypotheses, H, which assert with 100% definiteness which component each thing
belongs to. Given that the population that we might encounter could consist of
two different but highly over-lapping distributions, forcing us to state definitely
which component each thing belongs to is bound to cause us to mis-classify
outliers from one distribution as belonging to another. In the case of two over-
lapping (but distinguishable) 1-dimensional Normal distributions, this would
cause us to over-estimate the difference in the component means and under-
estimate the component standard deviations. Since what we seek is a message
which enables us to encode the attribute values of each thing as concisely as
possible, we note that a shorter message can be obtained by a probabilistic (or
partial) assignment of things to components. The reason for this is that[14, p77]
if p(J,z),7 = 1,...,J, is the probability of component j generating datum =z,
then the total assignment of z to its best component results in a message length
of —log(max; p(j, z)) to encode x whereas, letting P(z) = >_; P(J, ), a partial
assignment of z having probability p(j, z)/P(z) of being in component j results
in a shorter message length of — log(P(z)) to encode z. As shown in [14, p77],
this shorter length is achievable by a message which asserts definite membership
of each thing by use of a special coding trick.

4 Single Factor Analysis by Minimum Message Length

Classification is a way of modelling inter-attribute correlation. Whilst mixtures
of uncorrelated multivariate distributions are able to model any form of inter-
attribute correlation, they do so at a cost if the correlation does not arise due
to actual homogeneous unknown sub-populations in the things to be modelled.
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Typically in real-world data we might expect to find correlation structure
of a continuous kind rather than just the disjoint style of mixture models. One
way of modelling this is to hypothesize the existence of some continuous-valued
attribute of things, which was not measured, and which represents a common
“factor” affecting the attribute values that were measured. Hence, the attribute
values of a thing, ®,, where z,; € R are modelled by

Tnk = Bk + UnQk + OkTnk (1)

and v, and rn; are independently distributed from N(0,1) for 1 < n < N and
1 < k < K, where N is the number of things and K is the number of attributes
per thing. The r,; term represents the usual model of uncorrelated Gaussian
variance, whilst v,a; models the effect of the common factor: v, is the factor
score of thing n and aj is the factor load for attribute k. Thus the effect of the
factor on the value of attribute k of thing n is characterised by the factor score
ar with which it affects the kth attribute values of all things, and the factor load
v, with which all the attribute values of thing n are affected by the factor.

One example of modelling by factors is the concept of the Intelligence Quo-
tient (IQ). IQs by definition are Normally distributed among the world’s popu-
lation (or, at least, among the people who have had IQ tests!) with a standard
mean and variance. A person’s IQ is estimated from their results on one or more
IQ tests, for it is assumed that intelligence is a monotonic function of score on
such tests. In terms of factors, a person’s IQ is the factor score, and the factor
loads embody what each intelligence test tells us about 1Q, whilst the person’s’
results at different tests would comprise their attributes. A high factor score
would indicate high IQ, and one would expect that people with high 1Q would
perform well on most intelligence tests. A large positive factor load would indi-
cate a test which is highly sensitive to intelligence in terms of the variation in
its results, whilst a zero factor load would indicate a test which produces results
that are totally uncorrelated to the intelligence of the person taking it.

For this kind of data, a mixture model must become overly complex in order
to achieve a good fit — the usual result is that for each true class in the data
(there may be just one), a mixture model produces several components in order
to cover it fully. This effect is illustrated in figure 1, which depicts some two-
dimensional data generated with a single class containing a very strong factor
(lal/|le| = 5), and the probability density assigned to the data space by the
MML mixture model of this data. The mean of the data appears around the
middle of the plane, with a factor load vector of the same sign and (as plotted)
equal magnitude in both attributes, as evidenced by the spread of data along
the diagonal. The sign of a is arbitrary, but assuming a; and as are positive,
data points toward the upper right side of the plane would have large positive
factor scores. Note that the optimal mixture model of this data produced three
classes dotted along the factor to account for the correlation, where clearly there
is only one intrinsic population in the data. This process of assigning multiple
classes to account for continuous variation is similar to the way some human-
designed classification schemes cope with correlation: a number of sub-classes
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Attribute 2

Attribute 1

Fig.1l. Pseudo-randomly generated data with a strong Gaussian factor. The point
s (which are on the z = 0 plane) show the data points, whilst the surface shows

the probability density over attribute values, assigned by the MML mixture of three
Gaussian classes. :

are produced for every real class, with each sub-class (e.g. low, medium, high)
spanning a certain range of data corresponding to different strengths of the
factor (factor scores). Since we are interested in inferring something about the
true class structure of the data (which in this case means only a single class, not
three), it is better to model linear correlation directly.

An MML estimator for single factor models of the form in equation 1 was
developed by Wallace and Freeman [20]. This estimator allows simultaneous es-
timation of the factor loads and scores, unlike maximum likelihood estimators,
which cannot do so in a consistent manner. In addition, where there was evi-
dence for a common factor this estimator is more accurate than the Maximum
Likelihood estimators, and where there is insufficient evidence for a factor, the
uncorrelated multivariate Gaussian model is reverted to by virtue of its smaller

message length. Wallace [15] has also derived an MML estimator for models
involving multiple factors.

5 MML Mixture Modelling with Single Factors

It is the nature of many mixture modelling applications that the data would be
well modelled by a set of classes with the presence of factors with each class, or
perhaps, shared across classes. We have developed a method for MML estimation
of such a model.

Recall the mixture model message format described in section 3.1. The
amendment of this format to allow factor models is conceptually simple: for
part 1lc we first encode the distribution parameters of any attributes not to be
modelled as Gaussian (for example, discrete values [16], angles [17], non-negative
reals). We then specify whether or not the remaining attributes are modelled
with a factor. If the two choices are equally likely a priori, this specification is of
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constant message length and may be ignored for the purposes of model discrim-
ination within this framework. If a factor is not used, the means and standard
deviations are encoded as usual, otherwise the factor parameters, consisting of
the means, standard deviations, loads and scores, are encoded. Other parts of
the message remain in the same format as before.

5.1 Modifications for Mixture Models Incorporating Factors

The search strategy used by Snob and described in section 3.1 works on the
assumption that step two of the adjust cycle (section 3.2), the re-assignment of
things to classes, will not affect the length of parts la-1c of the message. This
appears not to be strictly true since in order to be able to send the second part
of the message in a length equal to the negative log likelihood plus the small
constant rounding costs (section 2), the estimates must be the MML estimates,
encoded to the correct precision. Just as in section 2 it was assumed that the
hypothesis cost varies little with the rounding of estimates, here it is assumed
that the length of the hypothesis is a slowly varying function of the data and
thus that any corrections that ought to be made to allow costing of the second
part of the message as described, would have negligible effect on the length of
parts la-1c. However, a small change in the number of things to be modelled by
a factor (as occurs in step two of the adjust cycle) results in a large change in
the cost of the hypothesis, as there will be a different (possibly larger or smaller)
set of factor scores to encode.

When re-assigning a thing to a different class, we must do so based on a
knowledge of not only how this will affect the length of parts 1d and 2 of the
message, but seemingly also on how this will affect the length of the new part lc
which must arise as a result of re-assignment. Mainly, we must take into account
the difference between the cost of describing the factor score of this thing in its
new class compared to its old class, which may be large, especially if one of the
classes is not modelled with a factor, meaning no factor score need be specified.
If this cost is not properly taken into account, the message length can actually
increase over successive iterations of the adjust cycle.

The Fisher information matrix for factor models is not diagenal in the el-
ements involving the factor scores, which means that in transformation of the
parameter space to allow optimal independently quantised coding [19], the fac-
tor scores are not separable from some other parameters. This means that we
cannot simply attribute a single cost for the specification of a factor score, for
use in re-assignment as described above. Recall from section 3.2 that step two
of the adjust cycle for mixtures of uncorrelated distributions, re-assignment of
things to classes in a manner which minimizes the lengths of parts 1d and 2 (and
now, 1¢) may by done optimally by considering the class assignment of each thing
independently from that of every other thing. This is not true for mixtures of fac-
tors, because of the impossibility of apportioning the class-assignment-dependent
parts of 1c (the specification of factor scores) to the culprit things. As a result of
this, it seems the only way to perform step 2 of the adjust cycle optimally whilst
taking into account the effects re-assignment has on the length of part lc is to
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find an overall assignment of all things to classes at once which minimizes the
new lengths of parts lc, 1d and 2, given that all estimates in lc are to remain
the same, apart from the factor scores.

As a result of these implications of the factor model, optimal re-assignment
in step 2 of the adjust cycle appears to become an infeasible combinatorial search
problem of exponential complexity, as compared to the usual Snob adjust cycle
with its independent assignment of things in linear time. Considering the in-
tractability of such a search, we have devised an iterative hill-climbing scheme.
This scheme assigns one thing at a time by considering the effect the assignment
would have on parts 1¢, 1d and 2. This process is applied repetitively to random
things, meaning that the assignment of things is continually updated in random
order (to avoid bias), until a locally minimal assignment is found. For all mod-
erate to large datasets this process becomes too slow and instead each thing is
re-assigned only once, which is equivalent to considering what effect the assign-
ment would have if the thing was the only thing whose assignment changes. This
is not optimal except when the Snob adjust cycle has converged, but in practice
it appears to always reduce the message length.

5.2 Partial Assignment with Factors

The method of re-assignment described in the previous section assumes total
assignment, however it is desirable to use partial assignment to produce a con-
sistent estimator (see section 3.3). The coding trick for partial assignment does
not appear to be compatible with the scheme described in the previous section,
for it requires that we be able to cost, or estimate the cost, of the parts of 1c, 1d
and 2 that are attributable to each thing. In the previous section we calculated
only the overall change in cost of 1c for a simultaneous assignment of all things
to classes.

As noted in section 5.1, there appears to be no way of separating the costs
of individual factor scores from the other factor parameters, and hence there is
no way to distribute the cost as this scheme would require. Wallace [15] uses
a polar representation for the factor score vectors in models involving multiple
factors, which may allow independent coding.

5.3 Relationship to Previous Work

Hinton et. al [8] present an interesting method for fitting mixtures of single fac-
tors, based on a type of neural network called an “autoencoder” [9]. The network
attempts to duplicate the input data at its output. A model is fitted essentially
by minimizing the description length of a two-part message consisting of the
factor scores and the differences between the input and output. Since 1t ignores
the cost of all other parameters (e.g. the distribution parameters of each class,
which should penalize mixtures of too many components), and encodes the out-
put errors according to a fixed, empirical prior, this method appears equivalent
to Maximum Likelihood, marginalized over factor scores [20] and assuming a
prior value for . Maximum Likelihood is known to over-fit in problems where
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the number of parameters to be estimated grows rapidly [11,5, 20, 15], in fact it
is the conjecture of Dowe [4] that no non-Bayesian method can be always invari-
ant and statistically consistent while providing internally consistent parameter
estimates. As a result of the reliance on Maximum likelihood, we suspect that

simulation results would demonstrate over-fitting in the method of Hinton et.
al.

6 Tests and IRAS LRS Spectral Classification Results

As a first step we have implemented mixture models with a single factor per
class using total assignment, as described in section 5.1. The search process was
based on that of Snob, with the addition of new heuristics for formation of initial

models and sub-classes?.

6.1 Tests and Results on Simulated Data

We generated data based on the parameters used by Wallace and Freeman [20].
There were three trials of 1000 data sets of 200 observations per dataset, with
five attributes per observation. Each data set consisted of 100 observations from
a class with means u; all equal to 4 and 100 observations from a class with means
ux all zero. All standard deviations o were unity , and all factor load vectors
a were parallel to (2,3,4,5,6). In all data in each of the three trials, the load
vector lengths |a| were 1.5, 1.25 and 1.0 respectively, representing strong, weak,
and barely detectable factors. These classes are moderately well separated, their
variances in the fifth attribute being approximately 2 in the case of |a| = 1.5.
The means of various statistics and their standard errors are presented in table
1. In all cases the MML model had class structure very close to the true values;
tabulated results for classes 1 and 2 refer to the estimated classes corresponding
to true classes with means of 4 and 0 respectively. These results only apply to
classes of datasets where MML preferred a factor model to the uncorrelated
model.

With one exception, noted below, the results of the factor analysis concur
with those of Wallace and Freeman [20], in terms of the mean squared length
of &, B (where Bx = ax/ox), and the factor load error vector @ — a, and the
mean of the square of the sine of the angle between the true and estimated
load vectors. As noted in Wallace and Freeman [20], these results outperform
maximum likelihood techniques. For the barely detectable factor |a| = 1.0, the
factor load length is overestimated. This is presumed to be a selection effect, since
for about one third of dataset classes an uncorrelated model was preferred, due to
statistical variation obscuring the presence of a factor, with remaining statistical
variation in the data included for analysis producing apparently stronger factors.

There is a discrepancy in the statistics of the ), log 6%, included to de-
tect any bias in the estimation of the standard deviations (the true values of

® See forthcoming Monash University School of Computer Science and Software Engi-
neering technical report for details of these heuristics.
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lal = 1.5 lal = 1.25 la] = 1.0
Class 1|Class 2||Class 1|Class 2|[Class 1|Class 2
a“‘ 2.243 | 2.226 || 1.583 | 1.580 || 1.129 | 1.120
+ 0.016 | 0.016 || 0.013 | 0.014 || 0.010 | 0.010
I 2.333 | 2.310 || 1.674 | 1.745 || 1.214 | 1.197
- 0.020 | 0.019 || 0.016 | 0.086 || 0.013 | 0.012
(@ - a)* 0.097 | 0.098 || 0.102 | 0.109 || 0.102 | 0.111
+ 0.002 | 0.002 || 0.002 | 0.007 || 0.003 | 0.006
sin“ error angle || 0.031 | 0.032 0.050 | 0.052 0.078 | 0.084

in a
0.001 0.001 0.001 | 0.001 0.002 | 0.002
E;Iog T -0.027 | -0.025 || -0.033 | -0.043 || -0.070 | -0.063

+ 0.006 | 0.006 0.006 | 0.010 0.007 | 0.006
i 3.9986 |-0.0016]| 3.9933|-0.0011]] 3.9975 | 0.0020
+ 0.0034 | 0.0033 || 0.0053| 0.0035 || 0.0040 | 0.0038
g 4.0030(-0.0025|| 3.9977 |-0.0002]] 4.0000 | 0.0012
+ 0.0035| 0.0036 || 0.0054 | 0.0035 |} 0.0040 | 0.0042
s 3.9907 |-0.0017|| 3.9874 |[-0.0029]| 3.9865 |-0.0006
+ 0.0039| 0.0039 || 0.0055{ 0.0050 || 0.0042 | 0.0042
fg 3.9851 |-0.0004|] 3.9818] 0.0007 || 3.9830 |-0.0006
+ 0.0041 | 0.0042 || 0.0056 | 0.0040 || 0.0043 | 0.0043
fs 3.9968]-0.0019{]| 3.9936 |-0.0015(| 3.9973 | 0.0019
+ 0.0045 )| 0.0045 || 0.0058 | 0.0045 || 0.0046 | 0.0048
Number of data 998 998 964 957 669 690

sets estimated
to have factors

Relative 0.4999 0.4954 0.5000
abundance
(class 1)
+ 0.0002 0.0005 0.0001

Table 1. Estimates and errors on simulated data

which were all 1). Unlike MML estimation of single factors without mixture
modelling, there appears to be a small but significant bias towards underesti-
mating the standard deviations. Moreover, there may also be a very slight bias
towards underestimating the means of class 1 (the class with ‘true’ means of 4).
These effects are presumed to be a result of the inconsistency of total assignment,
(section 3.3), however it should be noted that the mean value of }_, log o for
our estimator i1s considerably closer to zero than that obtained when using the
maximum likelihood estimator out of the context of mixture modelling. This es-
timator shows means of approximately l] 113,-0.148 and -0.20 for |a| = 1.5,1.25
and 1.0 respectively [20].

6.2 Application: IRAS LRS Spectral Classification

We have also applied our program to astronomical point-source infrared spectra
from the Infrared Astronomical Satellite (IRAS) Low Resolution Spectrometer
(LRS). This data consists of spectra of 5425 point sources, in the wavelength
range 7pm - 23 pm. Measurements were made with two instruments with over-
lapping wavelength coverage. The spectra as provided to the public by NASA
have been corrected in a number of ways[l] to take into account calibration
details and inconsistencies between the various components of the spectrome-
ter, however many of the spectra still exhibit a lower reading from the red (long
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wavelength) instrument than the blue (short wavelength) in the region of overlap
despite measures to minimize this. For input to our modelling software, spectra
were normalized to a mean attribute value of 1 to remove the very large variance
in intensities from spectrum to spectrum.

A Bayesian maximum a posteriori classification of this data has been pub-
lished by Goebel et. al [6]. This classification was produced by the AutoClass
program [2] which assumes no correlation within classes. A total of 77 classes
were found, with the distribution parameters of these classes being clustered into
‘metaclasses’. As noted by Goebel et. al., there is considerable serial correlation
in the attribute values (i.e. intensity values for given wavelengths).

In addition, there is large amount of correlation of the continuous kind which
in our opinion is well modelled by factors. The AutoClass classification contains
many classes which are identical to other classes apart from the presence of
say a slightly larger broad peak at a certain wavelength. Rather than modelling
the variance from spectral features of different strengths with large numbers of
classes, and then trying to cluster them according to their distribution parame-
ters, it is better to model them by a factor, where the factor scores correspond
to the strength of the feature in a particular spectrum, and the factor loads
indicate the effect the feature has on spectra.

Table 2 depicts the best classification yet found by our program for the IRAS
LRS data. In each class, the points lie on the attribute means, the error bars
extend one standard deviation above and below the means, and the factor loads
are plotted as a line which usually crosses the horizontal axis around the middle.
In addition to the parameters displayed as above, there are two lines representing
pr + ap and pp — ag, which can be identified as lines approximately following
the shape of the mean points. These are included to give an indication of the
range effects the factor can have for spectra with factor scores + one standard
deviation from the mean of 0. There are a total of twelve classes.

The major difference between our classification and that of AutoClass is of
course the large reduction in the number of classes. We believe this indicates
that our classes are closer to the true class structure of the data. By and large,
the factor in each class accounts for variation in the strength of some spectral
feature : the 10um and 10um silicate emission bands in classes 2, 6 and 7, the
8um band in classes 8, 9, and 10, and the colour temperature (which affects the
overall slope of the curve) for the approximately blackbody spectra in classes 4,
5, 11 and 12. In many classes the factor accounts for the variation in the amount
by which the intensities from the red and blue instruments miss in the overlap
region : classes 4, 2 and 12 are strong examples of this. Also, in some classes
the factor appears to account for variation in the shape of spectral features : in
classes 6 and 7 in particular, the (negative) peak in the factor loads occurs at a
lower wavelength than the peak in the means, and hence the factor score models
the variation in peak emission wavelength as well as in the size of the peak.

For many classes the factor tries to model correlation structure which arises
from more than one of the causes above. The strongest example of this is class

3, which would appear to simultaneously attempt to model features at 8um,
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10um, 11.5pum, 13um, as well as the ‘plateau’ feature at 16pum-22um, and the
variation in the overlap region of the red and blue instruments. Judging by the
large standard deviations, this class models a variety of sources which don’t fit
well into other classes, and it is probable with a model incorporating multiple
factors [15] per class that different factors and different classes would arise to
account for the variety of effects currently modelled by a single factor.

It may be true that certain features are correlated with other features (mean-
ing that a single factor will model both adequately), however this cannot be
known without allowing multiple factor models. The most important difference
made by allowing multiple factors would probably be the separation of the ef-
fects of red/blue instrument problem from the effects of true spectral features
and colour temperature effects. In addition, a factor could be used to model
overall intensity, removing the necessity for normalization and its inherent risk
of loss of important information.

7 Future Work and Conclusion

We have presented a method for the inference of mixture models with a single
factor per component. It has shown good results with test data, finding the
correct class structure with good accuracy and concurring with Wallace and
Freeman [20] for the factor estimates within classes. Our model represents a large
improvement over plain mixture models for real world data, such as the IRAS
LRS spectra, involving correlation other than that accounted for by separate
sub-populations.

The methods presented for the incorporation of single factor models into
mixture modelling with MML ought to extend to multiple factors, based on
the work of Wallace [15]. More complex would be the ability to share factor
estimates between multiple classes. These techniques would prove useful for the
IRAS data.

In the mixture modelling of protein dihedral angles [3], many classes were
found to lie on a line diagonal between the two attribute angles. It would be
worthwhile to develop an MML estimator for factors involving angular data,

based on the von Mises distribution [17], to model correlation in data such as
this.
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