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Table 2. IRAS LRS classes. The horizontal scale is in microns.
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10pum, 11.5pum, 13um, as well as the ‘plateau’ feature at 16pum-22um, and the
variation in the overlap region of the red and blue instruments. Judging by the
large standard deviations, this class models a variety of sources which don’t fit
well into other classes, and it is probable with a model incorporating multiple
factors [15] per class that different factors and different classes would arise to
account for the variety of effects currently modelled by a single factor.

It may be true that certain features are correlated with other features (mean-
ing that a single factor will model both adequately), however this cannot be
known without allowing multiple factor models. The most important difference
made by allowing multiple factors would probably be the separation of the ef-
fects of red/blue instrument problem from the effects of true spectral features
and colour temperature effects. In addition, a factor could be used to model
overall intensity, removing the necessity for normalization and its inherent risk
of loss of important information.

7 Future Work and Conclusion

We have presented a method for the inference of mixture models with a single
factor per component. It has shown good results with test data, finding the
correct class structure with good accuracy and concurring with Wallace and
Freeman [20] for the factor estimates within classes. Our model represents a large
improvement over plain mixture models for real world data, such as the IRAS
LRS spectra, involving correlation other than that accounted for by separate
sub-populations.

The methods presented for the incorporation of single factor models into
mixture modelling with MML ought to extend to multiple factors, based on
the work of Wallace [15]. More complex would be the ability to share factor
estimates between multiple classes. These techniques would prove useful for the
IRAS data.

In the mixture modelling of protein dihedral angles [3], many classes were
found to lie on a line diagonal between the two attribute angles. It would be
worthwhile to develop an MML estimator for factors involving angular data,

based on the von Mises distribution [17], to model correlation in data such as
this.
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