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The notion of algorithmic complexity was developed by Kolmogorov (1965) and Chaitin (1966)
independently of one another and of Solomonoff’s notion (1964) of algorithmic probability. Given
a Turing machine 7', the (prefix) algorithmic complexity of a string S is the length of the shortest
input to 7 which would cause T to output S and stop. The Solomonoff probability of S given T is
the probability that a random binary string of 0s and 1s will result in 7 producing an output having
S as a prefix. We attempt to establish a parallel between a restricted (two-part) version of the
Kolmogorov model and the minimum message length approach to statistical inference and machine
learning of Wallace and Boulton (1968), in which an ‘explanation’ of a data string is modelled as a
two-part message, the first part stating a general hypothesis about the data and the second encoding
details of the data not implied by the hypothesis. Solomonoff’s model is tailored to prediction rather
than inference in that it considers not just the most likely explanation, but it also gives weights to all
explanations depending upon their posterior probability. However, as the amount of data increases,
we typically expect the most likely explanation to have a dominant weighting in the prediction.

INTRODUCTION

The study and applications of the complexity of a body of
information have followed at least three streams, springing
from at least three independent conceptions of the concept.
The motivations and hence the direction of development of
these three streams have been different, yet there are obvious
similarities among them, and each stream has something to
offer and something to learn from the others. The intent of
this paper is to describe some of the relationships among the
different streams and to try to clarify some of the important
differences in their assumptions and development. Other
studies mentioning the relationships appear in [1, Section IV,
pp- 1038-1039], [2, sections 5.2, 5.5] and [3, p. 465].

The first stream to be described was initiated by
Kolmogorov [4] with important later developments by
Martin-L6f and Chaitin [5]. In this stream (as in the others)
the body of information is usually assumed to be a finite
string of binary digits S. We will write #S for the length of S.
The prefix Kolmogorov or algorithmic complexity of § with
respect to some specified universal Turing machine (UTM)
T may be defined as the length #I of the shortest binary
string I which, when supplied to 7', causes T to output S
and stop. The set of such inputs for all finite S forms a prefix
set, as no member of the set can be a prefix of another. This
prefix set may be regarded as a prefix code for the set of finite
binary strings. The code is decoded by 7. The universality
of T ensures that for all strings S, the difference between the
complexities of S with respect to the UTMs T'1 and T2 is
bounded above by a constant independent of S, namely the
length of the longer of the programs required to make 7'1
imitate 72 and to make 72 imitate 7'1.

We will write K7(S) for the Kolmogorov complexity of
S with respect to UTM T'.

The second stream (chronologically the first) springs from
the work of Solomonoff [6] and again involves the idea of
the length #1 of an input string which can cause a UTM T to
output the given string S. However, S is now treated not as
just an abstract binary string, but as a string which represents
in some binary code data about the real world. The intent is
not to measure the complexity of S, but rather to develop a
probability distribution over the set of finite binary strings
as a model of the probability that the data represented by
a string S is or will be true in the real world. Rather than
emphasizing the shortest I which will produce S, this stream
considers all strings / which will cause 7" to produce output
having § as a prefix and such that no proper prefix of 7 will
produce S. It then defines an (unnormalized) probability for
S as

Pr(s) =Y 7).
1

The above sum may often be dominated by the term for
the shortest input, in which case Pr(S) may be well
approximated by

2—K7(S)

Note, however, that the definition of K7(S) requires the
output of 7 to be precisely S, whereas the definition of
Py (S) requires only that the output begins with S, so K7 (S)
will in general exceed the length of the shortest stream-two
input.

The primary motivation for the development of this
probability distribution is inductive prediction. Given known
data represented by S and strings N1, N2 representing two
possible future events or observations E 1 and E2 in the same
code as used in S, the relative probability of E1 and E2 is
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estimated as

Prob(E1)/Prob(E2) = Pr(S: N1)/Pr(S : N2)
where ‘> represents concatenation. As with Kolmogorov
complexity, Solomonoff probabilities are defined with
respect to some particular UTM, but universality guarantees
that different choices of UTM will affect the odds between
future events only by a factor with bounds independent of S,
El and E2.

The third stream was introduced by Wallace and Boulton
[7, 8, 9, 10, 11, 12], with a similar but independent
development by Rissanen [3]. Unlike the other streams,
its basis is Shannon’s theory of information rather than the
theory of Turing machines. Like the second stream, it
regards the given string S as being a representation, in some
code, of data about the real world. We now seek a string
I = H : A where the first part H specifies an hypothesis
about the source of S (normally selected from a limited set
of possible hypotheses) and the second part A is an encoding
of the data using a code which would be optimally efficient
were the stated hypothesis true. By ‘optimally efficient” we
mean a code such as a Huffman or arithmetic code which
minimizes the expected length of the coded string.

Shannon’s theory shows that the length of the string
coding an event E in an optimally efficient code is given
by —log,(Prob(E)) (we will neglect rounding to integer
values), so the length of A is given by

#A = —log,(f(S | H))

where f(S | H) is the conditional probability of data S
given the hypothesis H. (We use H to indicate both the
stated hypothesis and the string which states it.)

The length #H of the specification of the hypothesis is
based on the assumption of a prior probability distribution
h(H) over the set of possible hypotheses, and again using an
optimal code for the specification, is given by —log, (h(H)).
The resulting total length #/ is thus

#I = #H +#A = —log,(h(H)) —log,(f(S | H))
= —logy(h(H) x f (S| H)).

The aim in this stream is to find the hypothesis H which
leads to the shortest such string 7, which may be regarded as
the shortest message encoding the data given in §. For this
reason, the technique is termed minimum message length
(MML) or minimum description length (MDL) inference.
The motivation for this aim is that the MML hypothesis
can be shown to capture all of the information in S
which is relevant to the selection of an hypothesis and this
method of inference automatically embraces selection of an
hypothesis of appropriate complexity as well as leading to
good estimates of any free parameters of the hypothesis.
If no I exists with #/ < #§, then there is no acceptable
hypothesis for the data, at least within the set considered
possible, and the data is concluded to be random noise.

The minimization of #I is, as shown by the equation
above, equivalent to maximization of h(H) x f(S | H) =

Prob(H, §), i.e. the joint probability of hypothesis and data.
It is thus formally equivalent to choosing the hypothesis
of highest Bayesian posterior probability given S. Note
in passing that this is a finite-posterior probability that
we maximize and not a density, so the chosen H is not
in general the posterior mode. Continuing on, however,
as shown in [13, 8], the shortest message is achieved in
general by devising a coding for the hypotheses in which
there are code strings defined only for a countable subset
of the possible hypotheses. We may call this subset the
set of ‘usable’ hypotheses, since only these may be stated
by the string H. Roughly speaking, the selection of the
subset is done in such a way that no two hypotheses in
the subset are so similar that the available volume of data
cannot be expected to distinguish reliably between them. A
useful side-effect of this subsetting is that real-valued free
parameters of the original hypothesis space may have prior
density distributions defined, but these cannot lead to finite
prior probabilities for all parameter values. The restriction
to a countable set of usable hypotheses allows a non-zero
prior probability to be assigned to each usable vector of
parameter values, and hence allows the construction of an
optimal finite-length binary code for the hypothesis strings.

As is evident from the above, the primary motivation for
the MML/MDL stream is the inductive inference of a general
hypothesis about the data, rather than prediction of future
data. Of course, a good model of the data source should lead
to good predictions, but not necessarily as good as those of
Solomonoff, which in a sense weight all possible hypotheses
about the data.

Sections 2 to 4 of this paper are an attempt to relate
stream three to the algorithmic complexity (AC) frameworks
of streams one and two. Specifically, we will attempt to
show that if the set of hypotheses considered in stream three
is expanded to include all computable probability functions
over the set of possible data, then the MML selection of
an hypothesis from given data is equivalent to the selection
of a shortest input which will cause a certain UTM to
output the data. The correspondence with stream-one and
stream-two frameworks clearly cannot be exact, because
there is no requirement in these frameworks that the inputs
producing a given string S permit interpretation as stating
any hypothesis about the data, or have the two-part structure
of an MML message. We therefore have to introduce certain
constraints on the acceptable input strings. The discussion
which follows should be read as a first attempt to define a
set of constraints on the AC framework which may bring it
into correspondence with MML/MDL. The constraints we
suggest may well be neither sufficient nor wholly necessary,
and undoubtedly further work will be needed to establish the
correspondence on a rigorous basis, if indeed this proves to
be possible.

2. SOME TECHNICAL DETAILS
2.1. The Turing machine

The Turing machine used in the definitions of Kolmogorov
complexity and Solomonoff probability is most conveniently
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taken to have a couple of special features. Rather than
finding its input and leaving its output on a single work
tape as assumed in the classical Turing machine model, our
machine has a one-way input tape which may be read and
advanced, but not altered or backspaced. It has a one-way
output tape which may be written and advanced, but not
backspaced or over-written. It has the usual one or more
work tapes. The input and output tapes use a binary alphabet
with no blank or delimiter symbol in addition to zero and
one.

In all cases where we speak of the machine reading an
input / and producing a string S, we mean that the machine
is started in a distinguished start state, with unspecified work
tape content, and with the input tape containing / followed
by unspecified digits; that the machine reads all of I; that
it writes S on its output tape; and that no proper prefix of
I satisfies these conditions. In stream one, the machine is
then required to stop. In stream two, its further action is
unspecified: it may or may not write further output and/or
read further input.

We will argue that for comparison with stream three, it
is convenient to require that the machine, having output the
last digit of S, should enter a read state. Indeed, in stream
three, we will assume that the reference UTM T is modified
by replacing all stop states by read states. Note that if, for
stream one, input / causes the (unmodified) 7 to produce S,
then for stream three, the same input / causes the modified
T to produce S. However, there may be strings J which by
the stream-three definition cause the modified 7 to produce
S, but which would not cause the unmodified 7" to produce
S.

For all streams, if I causes T to produce S according to
the appropriate definition, we will write

T() =S

with T being assumed to be modified in stream three.

2.2. Probability from complexity

Solomonoff explicitly relates complexity and probability.
The Solomonoff probability Pr(S) with respect to (w.r.t.)
T of the data represented by a string S is just the
probability that 7, when presented with an infinite string
of random digits as input, will produce an output having
S as prefix. (The event that 7 produces no finite string
may be considered as contributing to the probability of
the null string.) The undecidability of the halting problem
prevents the exact computation or normalization of this
probability distribution over finite strings, but it is a well-
defined concept with a clear probabilistic interpretation.

The algorithmic complexity K7 (S) may also be used to
define an unnormalized probability

Prob(S) = 27K = pK(s), say.

This probability does not correspond to the probability
of any easily-defined event and is always less than the
Solomonoff probability Pr(S). However, it may reasonably

be considered as a conservative estimate of Pr(S), since it
will often be only a little smaller.

In Shannon’s theory, if a uniquely-decodable code is
devised for a set of mutually-exclusive and exhaustive
events, where the probability of event E; is P;, the expected
length of a message announcing an event is minimized when
the length of the code word for E; is —log,(P;), and a
code so constructed is called optimal or efficient. One of
the properties of an efficient code is that it provides exactly
one code word or string for each possible event: it is non-
redundant. A UTM T may be regarded as a decoder for
a code over finite strings, where [ is a code word for § if
input / produces output S. The code is clearly not efficient,
since many code words exist for each S, so the code is
highly redundant. However, if we only ever use the shortest
code for each string, the code may be fairly efficient for the
unnormalized probability distributions over strings defined
by K7 (). In particular, it shares with efficient codes the
property that its words are random, in senses now to be
described.

2.3. Randomness

Informally, a random source of binary digits provides an
infinite stream of digits such that knowledge of the first N
digits provides no information about the next digit and which
produces ones and zeros with equal frequency. A property of
an efficient (Shannon) code is that if a sequence of events is
randomly drawn from the probability distribution for which
the code is efficient, and the code words for these events
concatenated, then the resulting stream of digits comes from
a random source. Note that this statement is about the
randomness of a source or process for producing binary
digits, not about the randomness of any finite string. The
randomness of a finite string is usually assessed by asking
whether any standard statistical test would cause us to reject
the hypothesis that the string came from a random source.
If the string indeed came from a random source such as
an efficient binary coding of an event sequence, the test(s)
will of course sometimes result in our falsely rejecting the
randomness hypothesis in just those cases where the source
happens by chance to give a string exhibiting some pattern.

Complexity theory provides a different definition of
randomness directly applicable to finite strings. A string §
israndom w.r.t. aUTM T if K7(S) > #S — ¢, where c is a
small constant chosen to impose a ‘significance’ requirement
on the concept of non-randomness, larger values of c¢
requiring a lower complexity before a string is accepted as
non-random. It has been shown that this definition is not in
conflict with the ordinary notion of randomness [5]. Another
way of stating this definition is that S is random w.r.t. T
if the code defined by T provides no coding of S which is
significantly shorter than S. That is, S is not compressible
by T.

Note that the notion of randomness as incompressibility
makes sense only in the context of a ‘redundant’ coding
system. In the code defined by 7, there are many
representations for S. One of these has the form of a ‘copy’
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program for T followed by a specification of the length #S
followed by § itself. The length of this representation is
about (#S + log, (#5)). If this is the shortest representation
of S, then § will be declared random. Only if the code
permits a substantially shorter representation will S be seen
as non-random. But alternative representations exist only in
redundant codes.

It is easily shown that, if S is drawn from a random source
(in the earlier sense), the probability that K7 (S) < (#S —d)
is less than 279, as there are 2 strings of length L, all
equiprobable from a random source, but at most 2(£=4=1
prefix-free representations available of length less than (L —
d). Conversely, if S comes from a non-random source, its
early digits give some hint as to the values of later digits. In
this case, T may be given an input comprising a fixed-length
program to compute the probability (in the usual sense) of
the Nth digit’s being one as a function of the earlier digits
and then to decode a (Shannon) optimal code for the Nth
digit based on this probability. Whenever the probability
differs from one half, the optimal code will be able to code
the next digit with less than one bit on average. Provided S
is long enough, this input will be shorter than §, and so S
will be declared non-random w.r.t. T'.

Since T 1is universal, it follows that the shortest input /
to T which produces § is random w.r.t. 7. Were it not,
and had a significantly shorter representation J, a shorter
representation of S could be constructed comprising a short
program followed by J. The program would instruct T’
to decode J, remember the resulting string (which is 1)
and then act as if this were its input. Hence, when only
the shortest code word for every string is used, the UTM-
based code words, like those of a Shannon code, are random,
although in a somewhat different sense.

Similar remarks apply to the two-part MML code. It too
is redundant, since the data S may be encoded using the
assertion of any usable hypothesis H for which f(S | H) >
0. Hence compressibility is a relevant concept, and MML
chooses H to maximize compression. If S is incompressible,
it is regarded as random, i.e. having no pattern expressible
within the set of possible hypotheses.

2.4. Universal distributions

The interest in AC as a means for prediction arises from a
special property of Pr(S) and Pf (S): they are universal
if T is universal. In particular, given any effectively
computable distribution Q(S) over all finite strings, the ratio
0(S)/PK(S) < Co,r, where Cg, 1 depends on Q and T
but not on S.

This result follows from the fact that for any such Q(),
there exists a finite-length program ¢ for 7 which enables
T to compute Q(S) for any finite S, and hence to decode
a Shannon-optimal code for Q(). Thus for any S, K7 (S)
cannot exceed (#g —log, Q(S)). Indeed, Cg 7 may be taken
as 2%4_ This argument applies to Pr () as well as to PTK 0.

Now suppose that within the context of some observa-
tional program, the real world yields data strings randomly
drawn from a distribution closely approximated by some

Q(. Suppose a string S has been observed, and we are
interested in the relative probabilities of two alternative
future events, representable respectively by S7 and S>. The
ratio of their probabilities is approximately

Q(S: §1)/Q(S = 52).

As each of the probabilities in this ratio is bounded above
by Pr(S : Si) x Cg,7 (for i = 1 or 2), the ratio may be
approximated by

Pr(S:S1)/Pr(S:$2).

If PTK () is used, the approximation will be crude at best,
since for all S, Pf (S) is by definition a negative power
of two. For either AC-based probability, the possibility
exists that P(S) greatly exceeds Q(S) for some strings
which happen to have a computationally simple form (e.g.
01010101...), so no useful hard bounds can be placed
on the approximation error. However, for a wide class
of computable distributions over strings, there is a high
probability approaching one for very long strings that the
two-part input form described above will be among the
shortest inputs producing S, and hence a high probability
that the approximation is quite close [1].

It is this universal ability of the complexity-based
probabilities to approximate the probability ratios of
effectively computable distributions which justifies their use
in prediction.

3. DATA AND HYPOTHESES

We are trying to work towards a version of AC which can
be assimilated to a version of MML inference. In the latter,
the concepts of data and hypotheses play central roles, but
these concepts do not appear explicitly in stream one, and
hypotheses have no formal role in stream two. To allow any
correspondence between these streams and MML, we appear
to need to impose a specific interpretation on the ‘meaning’
of the binary strings involved. In this section we attempt
to specify this interpretation and to outline the consequent
formal constraints on the structure of the binary strings.

3.1. The data string

We assume that the given binary string S is a representation
of data obtained by observation of a real-world phenomenon
which we wish to understand or whose future we wish to
predict. If § is to be such a representation, it will be
a representation of a number of facts and to some extent
we must be concerned with the mapping between the facts
which might be observed and the binary strings. We propose
to assume that S consists of the concatenation of one or
more ‘sentences’ in a data language L. Each sentence
records one or more observed facts relating to a particular
instance of the studied phenomenon. The sentences in L
form a prefix set, so a string S can be uniquely parsed
into its several sentences. It will be helpful to assume that
every sufficiently long string has a sentence as prefix and
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that distinct sentences represent distinct sets of facts. That
is, we assume L is non-redundant. This assumption could
probably be weakened at the cost of some elaboration of our
argument.

We make the important assumption that each sentence
in S records data from an independent instance of the
phenomenon. By independence we here mean that we
believe that the facts recorded in one sentence are not
causally or statistically related to the facts recorded in
another sentence in any way except that both sentences
record instances of the same phenomenon. That is,
we believe that the sentences would be conditionally
independent given full knowledge of the nature of the
phenomenon. It may be objected here that the data is what
the world gives us and our beliefs about it are irrelevant to
what it means. While this objection is valid in principle,
real data used in real science has invariably been already
captured, interpreted and transformed by our human choice
of what to look at, what instruments to use and what we
believe our senses and instruments observe. Our similar
beliefs about the independence of instances are of the same
inescapable nature and may be as legitimately part of our
understanding of L as any of these other choices and beliefs.

A consequence of the independence assumption is that if
S is the concatenation of several sentences, the order of the
sentences may be permuted without affecting the meaning
of the data string, so a permuted string may be substituted
for S.

3.2. Hypotheses

An hypothesis about the phenomenon studied is a
computable-probability distribution over the sentences of
L. Hence we consider hypotheses only in the context of a
defined-data language and do not consider what meaning if
any an hypothesis might have outside this context. If s is
a sentence of L, the probability of s under hypothesis Q is
written Q(s). The independence of sentences implies that
the probability of a data string S =51 : 52 : ... : s, under Q
is the product

Q(8) = Q(s1) x Q(s2) X ... X Q(sn).

Note that we are not excluding hypotheses for sequences of
data such as might be produced by a high-order Markov
process, where we expect the probability of the next
observation in the sequence to depend on the values of
previous observations. We regard the record of such
a sequence to be a single sentence in L. If the data
string comprises several such sentences, these are read as
the sequences produced by several independent runs of
the same Markov process, or perhaps as widely-separated
subsequences from the one run.

Conversely, we do not require that the facts recorded
in a single sentence of L necessarily be interdependent.
Suppose, for example, that each fact is the weight of a
randomly-selected cow and that the sentences of L begin
with a code for the sentence’s length followed by one or
more weights. If s; and sy are respectively the sentences

3, wi, wa, w3 and 2, ws, ws then the sentence
53 =15, wi, w2, w3, W4, W5

may also be a sentence of L. If, as is probably the case,
we believe each weight to be an independent instance of
‘cow-weight’, then we believe the meaning of s3 to be the
same as the meaning of s1 : s and of s : s;. However,
some hypothesis Q may hypothesize a correlation among the
weights of a sentence and so treat s3 quite differently from
the two-sentence forms. Of course, even if O hypothesizes
the independence of all weights in a sentence, the presence
of length codes in the sentences will in general mean that

Q(s3) # Q(s1) x Q(s2).

4. TWO-PART ENCODING

We now consider how the notion of an hypothesis-based
encoding of a data string may be embedded in an AC
context.

One approach, which has been described by Li and
Vitdnyi [2], is via the stream-one concept of conditional
prefix complexity. The conditional complexity K7 (X | Y)
of a string X given a string Y is defined as the length of the
shortest input string which will cause the reference UTM T
to produce X, when T already has access to the string Y, e.g.
on its work tape. Here, Y is considered as a representation
of the hypothesis. The difficulty with this approach is that,
while K7(X | Y) may be regarded as defining a conditional
probability PX(X | Y) = 27KrXI) this probability
does not correspond closely to the ordinary conditional
probability of obtaining data X given that proposition Y
is true of its source. In particular, whatever X and Y
may be, PIK (X | Y) is never zero and indeed cannot be
much less than Pf (X). Hence, no data X can ever falsify
the hypothesis Y in the Popperian sense. The string Y is
not treated as asserting the truth of some hypothesis, it is
merely information which may or may not be used in the
compression of the data.

We propose instead that the string g representing the
hypothesis be a prefix of the input to 7. In what follows,
we use stream-three conventions. Recall that we assume 7'
is a UTM with no-stop state and that we define input / to
produce output S, written 7 (1) = S, iff T reads all of I,
writes S, then enters a read state, and that no proper prefix
of I satisfies these conditions.

An input [ will be regarded as an acceptable MML
message encoding a data string S, where S is one or more
sentences of the data language L, if certain conditions on
are met. These conditions and the reasons for them are now
described.

Cl: T(I)=S. This requires I to encode S.

C2 : #I < #S. This condition requires that some
compression of the data is achieved, so some regularity in
the data has been discovered.

C3: I has the form I = g : j where

C4: T(q) = A, the empty string. That is, the hypothesis
itself does not determine the data.
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Define T'q as the Turing machine equivalent to the state of
T after reading ¢g. That is, for all strings X, Tg(X) = T(q :
X). It follows from C1, C4 and C3 that Tg(j) = S. Then:

CS5 : For all strings X,

Tq(j:X)=S:Tq(X),or equivalently,
Tq:j:X)=S8:T(q:X).

This condition means that reading j (and so producing
S) does not permanently alter the state of 7: it remains
equivalent to T'q. The intent is to ensure that whatever
regularity in S is exploited by I to compress the data, it is
expressed in ¢ and not in j. That is, the machine makes no
further inference from j. This condition excludes second-
part ‘incremental’ codes in which successive independent
data items (sentences) are used to refine the distribution used
to code the next item. Such codes, while efficient, do not
lead to first parts capturing all the regularity in the data, and
hence are not a good basis for estimation.

C6 : #j < Kr(S). This condition requires g to say
something significant about the data. The condition is
not strictly testable, since K7(S) is not computable and in
practice the best known upper bound on K7(S) would have
to be used, or #S if that is smaller.

Suppose S comprises several sentences: s 1 §3 :... 18 ¢
...: s, of L. Then we require

C7:j=j1:Jj2: ...t jit...: jpwhere for all
i = 1...n, Tq(j;) = s;. This condition forces separate
sentences to be treated as independent propositions, given
the hypothesis.

C8 : Again supposing S to comprise several sentences,

there must exist an equivalent data string S, = Sy : S where
S1 comprises some of the sentences of S and S> comprises
the remainder such that the correspondingly-permuted input
I, = I : I satisfies
Tq(l) = 8 with#I1 < K7(81) and
Tq(h) = Sy with#I, < K7(S52).
C8 is an attempt to require a certain generality in the
hypothesis. It means that the hypothesis says something
useful about at least two independent subsets of the available
data. It would be too strong to require (using the notation of
C7) that for all sentences of S, #j; < K7 (s;).

C9 : g has no proper prefix satisfying all the above
conditions on ¢g. This merely means that all of ¢ is needed
for the specification of the hypothesis.

The above rather untidy collection of conditions is an
attempt to specify conditions on the input which make it
plausible to identify the first part of the input with the
specification of an hypothesis, without requiring an attempt
to understand the course of the computation by detailed
inspection of 7.

In this vein, we now show from C1, C3, C5 and C9 that the
division of I into the two parts g and j is unique. Suppose
the contrary. Then I can be written as either

I=qi:juqu=a;j1i=b:c;
or
I=Q2:j2;q2=d2b;j2=5'_

For any string X: T(q1 : j1 : X) = T(q2 : j2 : X).

Using C5, S : T(q1 : X) = S : T(q :
T(q1:X)=T(q2: X).Putting X = ¢ = jp:

T(qi:j2)=T(q2: j2)=TU)=S.

X), and so

Hence, contrary to C9, g» = a : b has a proper prefix g1 = a
satisfying all conditions, so the supposition is false.

4.1. Interpretation of the first part

We have suggested conditions on the input / which are
intended to ensure that it can bear the interpretation as a
two-part message of which the first part states a general
hypothesis. As described in Section 3.2, we regard an
hypothesis as a probability distribution over the sentences
of the data language L. If I = g : j is an acceptable MML
message causing 7 to produce a data string S, we need to
ask what is the hypothesis represented by the first part .
The string g has the effect of converting 7 into an
equivalent of another Turing machine 7'¢. This machine can
decode certain strings, e.g. j, into sentences or sequences of
sentences in L. Indeed, if S is a concatenation of sentences
as in condition C7, we can be sure that T¢ can decode a set
of input strings into each of these sentences. More generally,
T g can be seen as a decoder for a code over some subset of
the sentences of L. The subset contains every sentence s
such that there exists a string w with T¢g (w) = s. The code
words of the code are those strings which, when input to T'q,
cause it to output a sentence of L. Since the sentences of L
are a prefix set, the code so defined is a prefix code, but it
is not necessarily non-redundant. There may exist infinite
strings which do not begin with a word of the code and there
may be several code words producing the same sentence.
We propose that ¢ be interpreted as a specification,
relative to 7', of a probability distribution over the sentences
of L given by:
Pry(s) = 2% where w is a shortest code word for sentence
S,
or
Pry(s) = 0 if there is no code word for s. The prefix
property of the code ensures that

> Pry(s) < 1.

That is, we propose that with respectto 7', g be interpreted
as specifying an hypothesis for which 7' decodes a pseudo-
optimal code. By this we mean that, if the hypothesis is
true, then the code decoded by T¢ minimizes the expected
length of the code word needed to encode a data sentence.
Of course, the code is not truly optimal for this (or any
other) hypothesis unless it is non-redundant, which is not
necessarily the case.

Note that if the code is non-redundant, equality is reached
in the above inequality and also T'gq is clearly not universal.
Its only capability is to decode a non-redundant prefix code
for sentences. Further, the probability distribution defined
by the hypothesis is clearly computable. On the other
hand, if the code is redundant, it may be that there exist
input strings (not commencing with a code word) which
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can cause Tg to emulate any UTM. Whether this is so is
probably undecidable, in which case the code words cannot
be enumerated and may not correspond to a computable
probability distribution over L. This would not necessarily
mean that the (incomplete) hypothesis defined by the known
code-word lengths is without meaning and useless. It
would simply mean that the hypothesis assigns computable
probabilities to some sentences of L, including the sentences
in the given data, but not to all possible sentences. It can still
be useful in predicting the relative probabilities of potential
future sentences which lie within its domain.

Any hypothesis (complete or not) specified as we propose
by the first part of an acceptable MML input string is
necessarily falsifiable, as we now show. Recall from
Section 3.1 that the data language L is assumed to be non-
redundant. That is, its sentences form a complete prefix
code for data facts. Hence L defines a ‘default’ probability
distribution over its sentences:

Pr(s)=2""

with

> Pr(s)=1.

seL
If I = g : j is an acceptable MML input for sentence s,
then by C2, #I < #s and hence #j < #s. Hence the Tgq
code provides a shorter coding of s than does the (complete)
L code. It follows that there must be sentences s of L for
which either the T'¢ code has no code word, or the Tq word
is longer than s. If future data add enough such sentences
to the given data, no input beginning with ¢ will be able to
encode the augmented data more briefly than L and so g will
no longer be an acceptable hypothesis.

4.2. 'Two-part versus one-part codes

This section has developed a model of MML with an
hypothesis set comprising all computable distributions, as a
restricted form of AC. The restricting conditions C1...C9
are not trivial, so the question arises as to whether our
restricted form deviates so far from the AC framework
that no interesting correspondence exists. In essence, the
question is whether, and under what conditions, we can
expect the shortest MML encoding of a data string to have
a length close to the AC complexity of the string. Defining
M7 (S) as the length of the shortest acceptable MML input
to UTM T producing S, it is clear that the difference

Mt (S) — K7 (S) is at least zero.

Li and Vitdnyi [2, sections 5.2, 5.5] discuss the same
question, but assuming a two-string form based on
conditional AC complexity. To gloss over the details
of their treatment, the conclusion reached is that if the
data string is very long, is a typical realization of some
recursive distribution, and this distribution is typical of the
distribution over recursive functions implied by the lengths
of the shortest programs required to compute them, then the
difference is small with high probability and the hypothesis

string will probably approximate the distribution from which
the data was drawn. Their treatment appears to apply to our
two-part form with the further proviso that the independence
assumptions made in the data language and enforced by C7
are true of the data source. Indeed, most theoretical results
concerning the use of complexity in inductive inference,
such as the powerful convergence results of Barron and
Cover [1], have assumed a two-part input form similar to
ours, rather than the conditional-complexity form (using
K7 (X | Y) as in Section 4).

The difference M7(S) — K7(S) has an interesting
interpretation. My (S) = #qgs + #js, where gg and jg are
the two parts of the shortest MML message. The length #g5
is the AC complexity with respect to 7 of the distribution
defined by 7y representing the MML hypothesis Q, so #gs
may be taken as K7(Q). By definition, #js = log, (P(S |
0)). If we treat the AC ‘probabilities’ PJ () = 27 K7() as
ordinary probabilities, then it follows that

M7 (S) — K7(S) = —log, (P (Q) x P(S | Q)/Pf(S)).

By Bayes’s theorem, the difference is the negative log of the
‘posterior’ probability of the hypothesis O given the data
S, where PTK (Q) plays the role of the ‘prior’ probability
of Q. Hence, choosing Q to minimize M7 (S) is formally
equivalent to choosing the hypothesis of maximum posterior
probability given the data.

Further, it follows that for any two hypotheses Q, and Q)
about data S, the posterior odds ratio in favour of Q,, is

Prob(Qq | S)/Prob(Qy | §) = 20#h—#la)

where I, and [, are the two shortest inputs which use the
respective hypotheses.

5. EXPECTED AND ACTUAL LENGTHS

Some experts in AC see a fundamental difference between
algorithmic and MML approaches to the inference of
hypotheses, in that the former is concerned with the
shortest encoding of the actual given data (with respect
to some Turing machine), whereas the latter considers
Shannon-optimal codes giving the shortest expected length
of encodings. This view is mistaken.

The mistake is understandable given the different histories
of the streams. In MML, developed within a more or
less standard statistical inference framework, the probability
models were the givens: the standard Gaussian, binomial,
etc., distributions traditionally used to model data. Hence the
line of thought went from the probabilities of data strings to
the code-word lengths needed to encode them. The natural
code to use in transmitting data to a receiver who had been
informed of the inferred model was a Shannon-optimal code.
But in AC theory, the Turing machine was the given and the
line of thought naturally runs from the ‘code-word’ strings
which encode a data string to the probability of that data
string.

In AC theory, the probability associated with an output
string is (at least in stream two) the probability that T
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will emit the output given random input. But suppose
that 7 is such that the code words it accepts form a non-
redundant code for some set of output strings. (7 is then
clearly not universal.) Using AC definitions, the T -relative
probability of an output § is just the probability that T
will emit S given random input and this is 2~#/ where
I is the (unique) input producing S, or zero if 7 cannot
produce S. But this probability distribution over outputs
is exactly the distribution for which the code decoded by
T is Shannon-optimal. That is, 7" decodes a code for its
possible outputs which has minimal expected code-word
length. Even for universal 7, it is reasonable to regard Pf )
as the distribution for which T is a near-optimal decoder.

All streams agree to identify input string length with
negative log of probability, so all are dealing with input
codes for output strings which are close to optimal in terms
of expected length. And both streams one (AC) and three
(MML/MDL) use the shortest word within this code which
will produce the given output S.

It is worth noting that, in the stream-three development of
MML-type codes in Section 4, the only mention of expected
lengths occurs in Section 4.1, where the interpretation of
hypotheses was discussed. Expected length played no role
in the definition or selection of the MML input string. The
only criterion was the actual length of the input required for
the actual data.

Expected code-word lengths do play a role in streams two
and three, being an important consideration in the choice
of the decoder T. This choice determines the complexities
of the distributions which may be employed in coding the
data. In two-part codes, it determines the lengths of the
shortest first-part ¢ string needed to specify the hypothesis
distribution Q, and if T is not universal, as is typically the
case in practical applications of MML/MDL, it determines
the set Gr of possible hypotheses. In fact, for the given
data S, the choice of T limits the usable hypotheses even if
T is universal: the only usable hypotheses are those whose
complexity #g = K7 (Q) is less than #S.

In any attempt at inference from a finite body of data, there
is always some relevant prior knowledge. In fact, without
some prior knowledge of the phenomenon studied, it would
scarcely be possible to obtain and record information about
it. In practice, even informal everyday inductions are guided
by the huge body of knowledge about the world that we all
possess. Any serious attempt at inductive inference should
make some use of this knowledge, at least to the extent
of not biasing the inference towards hypotheses which are
ridiculous. In the context of algorithmic complexity, this
means choosing 7" so as to provide short representations of
regularities thought most likely to be found in the data, and
longer representations for the long shots.

It is most important to note that the choice of 7" must
be made without knowledge of S and using only genuinely
prior knowledge about the source of the data and the way it
will be represented in L. Encoding is a concept which arises
in the transmission of information from one agent to another,
or in the storage of information for later recall by an agent
who does not know, or has forgotten it. In either case, it

may reasonably be assumed that the agent who is to decode
the information (the ‘receiver’) has some general prior
information about the context of the information and perhaps
some prior beliefs about its original source. The encoding
can then reasonably be chosen with this prior knowledge in
mind. However, an encoding chosen as a function of the
information itself will necessarily be unintelligible to the
receiver, who by definition does not have the information
when he attempts to decode its encoded form. Any coding
choices made in the light of the information itself must be
stated in the encoded form in a code decodable by a receiver
who as yet does not have the information. They cannot be
embodied in T itself, which in our context is the receiver.
In choosing T, we are or should be attempting to model a
receiver with just such knowledge as is genuinely available
prior to receipt of the data S.

It should now be clear that whether we are using the MML
framework or the stream-one approach, the actual encoding
used for a string S is the shortest input which will cause T to
produce S. The only difference in approach lies in the choice
of T. Whereas the traditional stream-one approach has
tended to dismiss the choice of T as unimportant, provided
it is universal, in MML and stream two there is an attempt
to specify T as a model of a receiver agent informed with
relevant prior information. If the inference problem is such
that our prior knowledge suffices to exclude all but a limited
set of hypotheses, T need not be universal. If, however,
we are willing to entertain any hypothesis representable by
a computable function, MML will use a universal 7', but
still one chosen as far as practicable to reflect our relevant
prior knowledge. It is in making this choice of 7', which
is not much addressed in stream one, that expected string
lengths are of interest. Once the choice is made and data
S obtained, MML chooses its encoding exactly as in the
stream-one school, namely, it chooses the shortest which T
can decode.

5.1. A related confusion

A related confusion with regard to a ‘fundamental
difference’ between streams one and three is best illustrated
by an example.

Suppose the data string S is (unbeknown to us) generated
by a random process which emits each digit independently,
and gives 1s with probability 0.3. If our set of possible
hypotheses contains the family of Bernoulli processes with
probability parameter p, it is highly likely that a member
of Gr decoding a code which encodes digit 1 with length
—log,(0.3) and digit 0 with length —log,(0.7), or values
close to these, will provide the shortest two-part encoding
of S. But it is possible, if unlikely, that the second part
j of the encoding happens to have 90% of ‘1’ digits.
Suppose it does. Then the AC school is inclined to suggest
that a still shorter encoding will be possible, because j is
clearly non-random and can be compressed, whereas the
published MML treatments of Bernoulli processes admit
no such further compression. It is true that, provided T
is universal and S is long enough, there will indeed be a
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shorter encoding of S in the AC framework. But there will
also be one in the MML framework. Even if limited to
non-universal machines, the hypothesis set envisaged in the
MML analysis can still contain the hypothesis family that
the source of § is such that, when data is encoded using
an optimal Bernoulli code, the coded string itself will be
generated by a Bernoulli process with probability other than
0.5. The corresponding family of hypotheses in the MML
Gr is a two-parameter family of hypotheses, each being
composed of two Bernoulli decoders, one feeding the other.
If such an hypothesis family is in the MML G, then it
will provide a shorter encoding than any single-Bernoulli
hypothesis and be the MML inference. If no such family
is available in Gr, then the plain Bernoulli hypothesis with
p near 0.3 will be inferred, despite the form of j. But this is
not because the MML method deals in expected rather than
actual lengths, it is because this MML analysis did not allow
hypotheses capable of representing the particular grotesque
regularity which appeared in the data.

Note also that if 7" is non-universal, then it follows [13,
p- 241, 14] that the second-part strings j will appear as
if they have been developed by a purely random process,
a zeroth-order Markov model. It necessarily follows that
some, if few, of those code words might appear compressible
to some Turing machine (c.f. Section 2.3). However, in an
efficient code, it is redundant not to use all available code
words.

6. CHOOSING A DECODER

We now describe how the reference Turing machine T
is designed in MML inference. There are two creeks
contributing to stream three, MML and MDL. Although in
practice similar in their results, there are differences in the
way the decoding machine is selected and hence in the way
they encode data. We will describe the MML construction,
but offer some comments on MDL.

6.1. The MML code

As described in Section 1, MML inference is normally
concerned with selection of an hypothesis or model of the
data source from among a limited set of possible hypotheses.
Recasting the notation of Section 1 into a form making more
reference to decoding machines, we assume that there are
given:

e A set G of possible hypotheses. This set may contain
continua of various dimensions, each spanned by some
set of real-valued parameters.

e A prior probability function (a density if G is a
continuum) A (H ) defined on G.

A countable set X g of possible data strings.

e A conditional probability or likelihood function f(S |

H) defined for all S and H.

For all H, let Q i be a Turing machine which decodes an
optimal code for the distribution f(. | H). If f(. | H) is
computable, as will usually be the case, this code can be a

Shannon-optimal code requiring for each S an input Jz g of
length —log, (f(S | H)). If f(. | H) is not computable, O y
may be chosen to minimize as far as practicable the expected
length of the shortest input Jy s which will cause Qpy to
produce S, the expectation being taken over the distribution
f(. | H) forall § for which f(S | H) > 0. We thus select
for each hypothesis a machine best able to compress data
expected to occur when that hypothesis is true.
For every S, define

rs =Y h(H)x f(S| H).
H

The sum is replaced by an integral if G is a continuum. rg
is the marginal probability of data S. The construction of T
can now proceed in two different ways.

6.1.1. Strict MML
Let V be a partition of Xg into non-empty subsets
X1,X2,...,Xj,.... Foreach subset, define

rj = er

SeX;

and let Q; be the machine corresponding to H; where H;
minimizes

Ly,j= Z (rs/rj) x #Ju;,s.
SGXj

This quantity is the weighted average of the lengths of
the inputs Jp; s needed to make machine Q; produce S,
averaged over the strings in X;. The set of machines
{Q;:j=1,2,...}1is the set of useful Turing machines, and
the set of the corresponding hypotheses {Hi; j = 1,2,...}
is the set of ‘useful” hypotheses which may be used in a two-
part encoding of the data.

Let Ty be a Turing machine capable of imitating all
the useful machines (so G7y, includes the set of useful
hypotheses) and such that the length of the input Iy g;
needed to make Ty imitate Q; is minimized in expectation
over the distribution {r;; j = 1,2,...}. In the usual
computable case, Ty needs to decode a Shannon-optimal
code for this distribution, and #ly g, = —log, (r;).

Finally, the partition V is chosen (with the consequent
choice of the useful machines, their encoding and 7y) to
minimize

Ly = er X (IV-Qj + Lvy,j)
J

where Ly is the expected length of a two-part encoding of a
string drawn from the marginal distribution {rg; S € Xg}
using the ‘useful’ machine Q; for the subset X; of Xg
containing S.

Discovering the minimizing partition V is an extremely
difficult calculation even for very simple and regular
functions #(.) and f(. | .). Properties of the resulting
inference method have been described elsewhere [13, 14,
8]. Briefly, it has been shown that the method is
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very general, invariant under arbitrary measure-preserving
transformations of G, statistically consistent and efficient in
the sense that the hypothesis giving the shortest two-part
encoding of S captures (almost) all the information in S
relevant to the choice of hypothesis [13, 1, 14]. Some other
widely-used Bayesian point estimators, such as maximum
a posteriori (MAP) which selects the mode of the posterior
density and the mean of the posterior, are not invariant in
this sense. The estimate obtained by such methods depends
on how the model space is parametrized.

6.1.2. Practical MML

The SMML construction is infeasible for all but the simplest
problems [15]. Fortunately, for purposes of inferring an
hypothesis from data, it is not actually necessary to construct
its encoding. We need only to be able to calculate with
sufficient accuracy the length of the encoding for any
hypothesis, and then to find the hypothesis which minimizes
this approximate length. The practical applications of
MML use such approximations. One result useful in many
problems is now stated [13]. For a region of G which is
a k-dimensional continuum with vector parameter H, prior
density A(H) and probability function f(S | H) a member
of the exponential family, the length of the shortest encoding
of § is approximately

—log(h(H)) —log(f(S | H))
4+ 0.5(og(F(H)) — klog(2m) + log(2m (k + 1)))

where all logs are natural, the length is given in units
of log,(e) bits, F(H) is the Fisher information of the
probability function and H is chosen to minimize the
expression. The error in this expression is less than two
for k > 10 and corrections for smaller k£ are known. The
minimizing H is chosen from the full set G of possibilities,
not restricted to the SMML ‘useful’ set, which need not
be constructed. The minimizing H is taken as the MML
inference.

We emphasize again that the construction outlined here
in no way introduces a fundamental distinction between
MML and minimizing two-part complexity for hypothesis
inference. All that MML does differently is that it gives
serious consideration to the choice of reference machine
most appropriate for the data at hand, whereas stream one
largely does not (see Section 7).

For computable /(.) and f(. | .), exactly the same SMML
construction can be derived from the aim of producing
Bayesian point estimates of high-posterior probability,
without any reference to information or AC theory [8].

6.2, Minimum description length

The MDL development [3, 16] differs in some respects
from the MML approach, although in practical applications,
similar results are usually obtained.

First, in MDL the stated aim is most usually to select
not a single fully-specified hypothesis, but rather to select
a parametrized family (called a ‘model class’). For instance,

in encoding a set of (x,y) values using as G the set
of all polynomial functions of the form y = p(x) plus
a Gaussian noise term, the MDL emphasis would be on
selecting the best ‘order’ of polynomial, with estimation of
its coefficients to be considered later, perhaps by different
means. Consistent with this aim, MDL defines the stochastic
complexity of the data with respect to a model class as the
length of an encoding of the data using a code optimized for
the distribution obtained by integrating over all parameters
of the model class with respect to some measure considered
appropriate. In practice, the stochastic complexity is often
approximated by the code length of a two-part encoding
[16], where the first part names one of a discrete set of
parameter vectors and the second codes the data using a
code based on the distribution given the stated vector, very
much as in MML. Indeed, the discrete set employed is very
similar to the set of ‘useful” models constructed in MML. We
have reservations about MDL’s emphasis on model classes
rather than fully-specified models. It loses the ability of
MML to make parameter estimates often superior to the
maximum likelihood estimates typically used in conjunction
with MDL [17, 18, 19, 20]. Also, in some problems,
e.g. mixture modelling, two competing hypotheses of the
same formal structure but differing parameter values may
really represent models with markedly different conceptual
structure, and lumping these together in the same ‘class’
seems little different from conflating different model classes.

Second, MDL eschews the assumption or use of prior
probabilities. The codes used to encode a parameter vector
attempt to avoid appeal to priors, instead relying on a
‘natural’ enumeration of the vectors. Similarly, when
integration is performed over parameters to obtain an exact
stochastic complexity, an appeal is made to some ‘natural’
measure on the parameter space. Of course, the resulting
code may always be interpreted as the code Shannon-optimal
for some prior, and, if so interpreted, the prior implied by the
codes used in practice in MDL would usually not alarm a
Bayesian; but the MDL school resists such interpretations.
The implied ‘prior’ often resembles the ‘Jeffreys prior’
proportional to the square root of the Fisher information,
which is inadmissible as a genuine Bayesian prior, as it
depends on the properties of the observational protocol used
to measure the parameters rather than genuinely prior beliefs
about their values [21, 22].

Third, a recent development in MDL has been an attempt
to shorten the second part of two-part encodings [23]. It is
based on the fact that if the hypothesis giving the shortest
encoding is always used in encoding data, many data strings
which are possible under the probability distribution f(S |
H) for some useful H will never in fact lead to the inference
of H; a different hypothesis will be preferred. Putting it
another way, for a particular H which may be used in a two-
part coding, the strings which will ever be coded using the
code optimal for f(. | H) include only those strings for
which H is the best hypothesis and will not include many
strings which could be coded in this optimal code. It is
therefore proposed that the code used when H is stated in
the first part be based, not on the distribution f(. | H), but
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on a truncated form of this distribution,

f(‘(S|H):f(S|H)/Z f(s | H)(S € Xp)

seXy

fo(S| H)=0 (otherwise).

Seen as an attempt to approximate the stochastic complexity
better, this technique, known as ‘complete coding’, may
have virtue. However, in the light of two-part coding
it destroys the basis used in MDL for selecting ‘useful’
parameter vectors, as there is now no advantage in code-
length terms in not using as many vectors as possible. In
fact, the shortest length is then obtained by allowing every
data string its own hypothesis, thus reducing the length of
the second part to zero. When this is done, the minimal code
length achieved does not even depend on what hypothesis
each string is mapped to, provided only that the string has
non-zero probability in that hypothesis! The construction
thus provides no basis for selecting one such mapping over
another, and hence no useful estimator.

The code length achieved by this complete version of
MDL for data S is just —log,(rs) where rg is the marginal
data probability defined in 6.1.

Finally, the potential saving in code length is usually very
small. It has been shown [13] that the expected saving
for regular model classes with k free parameters is about
(1/2) log(2m (k + 1)) nits! for large k and about 0.18 nit for
k = 1. For models in the exponential family, the greatest
saving for any string exceeds the expected saving by less
than two bits. For less regular model classes, the best-case
saving may be much greater, but for the model classes we
have studied, the strings giving substantial savings are rare
in the marginal data distribution. These are not just large-
sample results; they hold even for small samples.

7. TERMS ‘OF ORDER ONE’

The stream-one literature pays little attention to the choice
of the reference UTM T in analysing the behaviour of
complexity. The reason usually given is that the difference
in the complexities of a string relative to two UTMs can
be no more than the length of an interpreter program,
which is independent of the string and hence ‘of order
one’. We consider this dismissal of order-one terms as
misguided and potentially dangerous in any attempt to apply
stream one theory to real problems of prediction, estimation
and induction. Solomonoff’s approach (stream two) does
consider terms of order one, and hence the choice of T,
to be important. Moreover, since it deals with the relative
probabilities of small extensions to the same long data
string, using the same reference machine, its results may be
relatively insensitive to the choice of 7. However, when AC
theory is advanced as a means of discovering the pattern (or
randomness) of a real, finite data string, the choice of 7’ may
be crucial.

First, note that the length of an interpreter making 7'1
imitate 72, whilst fixed independently of the data, may

L1 nit = log, (e) bits.

not be small. The length of an actual interpreter to make
one general-purpose computer imitate another quite similar
computer is typically many thousands of digits. Whilst
some of this length is due to speed considerations, much is
essential.

Second, many of the results suggesting the inductive
prowess of AC rest on derivations which use the two-part
input paradigm, e.g. [1]. In obtaining these results indicating
consistency, convergence and efficiency, the length of the
first part of the input plays a crucial role. It is only the
balance between the lengths of the first and second parts
which prevents the data string being completely encoded in
the first part, which determines whether a string is random or
not and which allows us to assert that the first part captures
the regularities in the data leaving the noise in the second
part. But what is the crucial length of this first part? It is
precisely the length of an interpreter which makes 7 imitate
another Turing machine. That is, it is a length of precisely
the same order as that which is dismissed as unimportant in
the selection (or rather, non-selection) of 7.

Finally, recall that the difference in the lengths of two
two-part encodings of the same data S using the same
reference machine 7 can be interpreted as the log of the
posterior odds ratio between the two hypotheses used. A
difference of ten bits represents a ratio of approximately
1000:1.  Such a likelihood or posterior ratio is usually
considered highly significant in statistical inference, and a
length difference of 30, giving posterior odds of billions,
should be overwhelming. But arbitrary or unwise selection
of T can easily make much larger changes in the first-
part lengths needed to encode the hypotheses and so can
completely vitiate or even reverse what should be seen as
convincing evidence. If complexity-based methods are to be
accepted as practical and reliable methods for induction and
prediction, they must be less cavalier with ‘terms of order
one’.

Some work in the MDL school is also open to a
weaker version of this criticism. Different but equally
‘natural’ choices of parametrization and enumeration
of model classes can lead to variations in calculated
complexity which are large compared with what should
be convincing length differences. Also, some MDL work
has replaced the calculation of the log Fisher information,
an important component of the first-part length, with the
gross approximation k log(N), where k is the number of
parameters of the model class and N the data sample size.
The error introduced can easily exceed 1000 in the posterior
odds, e.g. in poorly conditioned multiple-linear-regression
problems—regardless of sample size. Similarly, most MDL
work [16] has neglected geometric factors arising in the
spacing of ‘useful’ parameter vectors, thus introducing a
smaller but still significant error in length calculations.

In MML work, considerable care has been given to
minimizing such errors [19, 24, 25, 26, 27, 28, 29, 30, 31].
The largest uncertainty in most cases comes from the use
of priors chosen for their mathematical convenience as
much as for their accurate representation of reasonable prior
beliefs.
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8. PREDICTION AND INDUCTION

In a sense, all practical uses of previous data are predictive.
We use our past experience to guide our future behaviour
according to our predictions of future events. It is therefore
reasonable to ask whether inductive inference, in the limited
dictionary sense of forming general theories from specific
data, need play any role in intelligent reasoning. If we
can predict from data without formulating theories about
its source, why bother with theories which are inevitably
uncertain and usually flawed? Solomonoff’s stream-two
program seems to offer just such theory-free prediction.
Starting with a reference UTM T, and given data S, it
allows the inference of the relative probabilities of future
events represented by strings Ny, N», without ever requiring
commitment to any theory as represented by the first part of
the two-part encodings used in streams one and three.

Part of the answer is simple curiosity: we like to
understand the world and inductively-derived theories help
us do so. The more pragmatic desire for theories is
that Solomonoff’s program is (leaving aside questions of
computability) beyond our capacity to execute. We cannot
as individuals, or even as a society, record in full all the data
which we would like to use for guidance and we certainly
cannot afford the computational effort of computing Pr (S :
N1)/Pr (S : N2) where S is all previous data, just to predict
how high a ball will bounce or how much alkali is needed to
neutralize an acid spill.

General theories serve us as useful if imperfect summaries
of the relevant aspects of previous data, being compact
enough to remember or record and simple enough to
give rapid calculation of approximate probabilities for
future events. In our discussion, such theories have been
represented by the first parts of two-part inputs, or rather,
by the Turing machines encoded by these strings. These
‘theory’ machines may be used for prediction. If T'q is the
equivalent of reference machine 7" after T has read the first
part g of an MML input for data S, then the Tg estimate
of the relative probability of future data strings N, N> is
PTq(Nl)/PTq(NZ)-

Solomonoff has shown that given T and S, a Turing
machine Ts can be constructed such that the Solomonoff
probability ratio Pr(S : N1)/Pr(S : Nz) is given by the
ratio Pry(N1)/Prg(N3), so in a sense T summarizes the
known data S [32]. However, the general construction for
Ts requires it effectively to contain in its design a complete
copy or representation of S, and in the general case its
computation of predictive probability ratios is no faster than
that of 7. Like the Bourbons, T forgets nothing and learns
nothing and its construction was intended as an existence
proof rather than as a practical means of prediction.

The pragmatic need for compact theories with readily-
computed implications drives scientific enquiry, and on its
modest scale, the work on MML. We concede that an
MML- or stream-one-derived theory will not predict as
well as Solomonoff probability ratios, nor as well as their
equivalent in computable domains, the ratios of conventional
Bayesian posterior densities as used in Bayesian decision

theory. However, commitment to a single theory brings
great benefits, as it allows deductions to proceed easily. The
more accurate alternatives in effect require every possible
theory consistent with the data to be given some weight in
prediction, and in deductive reasoning from the data.

A compromise is possible. If an analysis of § fails to
find a single theory of overwhelming superiority, the few
best theories may be retained and predictions based on a
weighted average of their various predictions. Examples of
this compromise have been developed [33].

9. CONCLUSION

We have argued that, as applied to the inference of models or
theories from data, there is no essential difference between
Kolmogorov complexity and minimum message length
approaches. They differ only in the choice of reference
Turing machines and in the attention given to this choice.
Whereas in stream one, any universal machine is regarded as
acceptable, MML usually (but not necessarily [34]) restricts
the reference machine to a non-universal form in the interest
of computational feasibility. Further, MML attempts as far
as possible to choose the machine so that the complexities of
different theories relative to the reference machine reflect the
prior probabilities which would be afforded these theories
by an intelligent agent knowing the circumstances under
which the data was obtained. This attention to the choice
of machine allows MML, in domains where the possible
theories are computable, to estimate complexities with errors
of only a few digits. By contrast, significant terms ‘of order
one’ are usually neglected in stream-one theory. As a result,
MML can be, and has routinely been, applied with some
confidence to many problems of machine learning, inductive
and statistical inference from finite bodies of real data,
whereas a comparison of competing theories using stream-
one theory would seem to require overwhelming evidence
in the data before the approximations in the theory could be
safely ignored.

Minimum description length is close to MML in practice
and has many successful applications.  However, its
avoidance of priors and (in some work) less accurate length
approximations may make it less reliable than MML.

None of the above techniques is ideally suited to
predictive inference. Solomonoff’s algorithmic probability
theory can ideally offer better predictive performance, by
taking into account all possible explanations of the known
data. Practical application of the ideal Solomonoff model
appears very difficult, but Solomonoff has proposed an
applicable model based on resource-limited computations of
T . For practical prediction from real data, the best approach
where feasible may be to form a weighted combination
of the predictions from the best few theories found by
the two-part stream-one or MML methods, or (following
a suggestion of Solomonoff’s) by selecting the prediction
yielded by one of the shortest-known stream-two encodings
of the data, the selection favouring the shorter inputs.

Although not demonstrated in this paper, the experience
of the authors with complexity-based inference, particularly
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MML, over the past 30 years has led to some confidence in
its properties. In problems where the number of parameters
to be estimated grows in proportion to the data, e.g. mixture
modelling, factor analysis and the Neyman—Scott problem,
MML is known in theory and can be seen in practice to give
consistent results, where maximum likelihood, Akaike’s
information criterion (AIC) and related classical techniques
are known to fail [17, 18, 20, 31].

We have found MML to give statistical estimators with
good performance on some difficult distributions [19] and to
handle easily complex-model selection problems such as the
inference of causal nets [35].

Mindful of the Bayesianism inherent in streams one and
two (see Sections 5 and 7), this experience has led the
second author to conjecture [36] that only MML, minimum
expected Kullback—Leibler distance and closely related
Bayesian techniques can in general infer fully-specified
models with both statistical consistency and invariance
under one-to-one re-parametrization.
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