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We discuss Rissanen’s scheme of ‘complete coding’ in which a two-part data code is further
shortened by conditioning the second part not only on the estimates, but also on the fact that
these estimates were preferred to any others. We show that the scheme does not lead to improved
estimates of parameters. The resulting message lengths may validly be employed to select among
competing model classes in a global hypothesis space, but not to select a single member of the chosen
class. A related coding scheme is introduced in which the message commences by encoding an
ancillary statistic, and then states parameter estimates using a code conditioned on this statistic.
The use of Jeffreys priors in MDL codes is questioned and the resulting normalization difficulties
and violations of the likelihood principle are discussed. We argue that the MDL objective of avoiding

Bayesian priors may be better pursued by other means.

1. COMPLETE CODING

Rissanen [1] has introduced a technique of ‘complete
coding’ to reduce description length estimates when the
description of the datax ∈ X is based upon a two-part
message form for a model class with a fixed numberK
of real-valued parameters, parameter vectorθ ∈ 2 and
probability model f (x | θ). (Note thatx is all the data
available, and may typically be a vector of values, each i.i.d.
from some unknown distribution.) The first part names a
parameter vector̂θ which is one of a discrete set2∗ of
possible vectors and the second part encodes the datax
using a code based on the probability distributionf (x |
θ̂ ). However, unlike the case in minimum message length
(MML), the code for the second part is not a Shannon-
optimal code for the distributionf (x | θ̂ ). Rather, the code
is optimized for the truncated distribution

fc(x | θ̂ ) = Cc f (x | θ̂ ) if m(x) = θ̂

or fc(x | θ̂ ) = 0 otherwise

wherem(x) is an estimator function mapping data values
onto2∗, andCc is a normalization constant.

That is, fc(· | θ̂ ) is f (· | θ̂ ) with support restricted
to just those data values which will be encoded using the
estimateθ̂ and renormalized. The result of the restriction
and renormalization is thatCc ≥ 1, so for allx which will
be encoded usinĝθ , fc(x | θ̂ ) ≥ f (x | θ̂ ). The inequality
will be strict if there is anyx such that f (x | θ̂ ) > 0 and
m(x) 6= θ̂ . As this will usually be the case, the second part
code length−log fc(x | θ̂ ) will be less than the ‘incomplete’
code length−log f (x | θ̂ ) used, for example, in MML
codes.

Clearly, the effect of this use of ‘complete codes’
will usually be to shorten the length of the two-part
description and is therefore regarded as preferable in
minimum description length (MDL) work.

In discussing this idea, it will be useful to introduce a
probability densityh(θ) on 2 and the resulting marginal
distribution

r(x) =
∫

h(θ) f (x | θ) dθ.

The densityh(θ) plays the role of a ‘prior’, but in MDL
work is usually derived from considerations other than ‘prior
belief’ [2]. One definition of the stochastic complexity (SC)
of datax with respect to the model class described above is
SC1(x) = −logr(x). It gives the length of a message which
encodesx using a code based on the marginal distribution
of data. (Here, and elsewhere unless noted, message lengths
are given in nits, one nit = log2(e) bits.) We will use the
symbolI0(x) for SC1(x) and define its expectation

I0 = −
∑
x∈X

r(x) logr(x).

A second definition of the SC ofx with respect to the
model class is based on a two-part coding as described
above. In the original derivation, which did not employ
‘complete codes’, the complexity was defined by [3]

SC2(x) = −logq(m(x)) −log f (x | m(x))

wherem(.) is an estimator function fromX onto2∗, usually
but not necessarily approximating the maximum likelihood
estimator, andq(θ̂) defines a ‘probability’ distribution over
the members of2∗. The members of2∗, i.e. the estimates
which may be used in the first part of the message, were
chosen to be spaced in2 with a spacingδ (or a Voronoi
region volumeδ) so that the probabilityq(θ̂) associated with
an estimateθ̂ ∈ 2∗ is q(θ̂) = δ × h(θ̂ ). The optimum
value of δ (which may vary in different regions of2) is
then chosen by balancing the reduction in the first term of
SC2(.) yielded by a largeδ against the increase in its second
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term produced by the fact that a largeδ causes an increasing
disparity between the maximum likelihood estimate forx
and the estimatem(x) ∈ 2∗ which will be used in the
encoding. The optimumδ turns out, for sufficiently regular
model classes, to be proportional toF(θ)−1/2 whereF(θ) is
the Fisher information.

Thus far, this second derivation ofSC2(.) closely parallels
the commonest approximation to message length used in the
MML school. The differences are confined to the choice of
the densityh(.), which is regarded as a Bayesian prior in
MML, and the question of whetherδ and the estimatorm(.)

should be chosen to minimize the ‘expected’ or the ‘worst-
case’ message lengths. For any two-part coding scheme, we
generically defineI1(x) as the length of the encoding ofx
with respect to the model class, andI1 as its expectation.
Thus, for this derivation of SC, we have

I1(x) = SC2(x), I1 =
∑
x∈X

r(x)I1(x).

In MML, m(.) (and hence2∗ andδ(θ)) are chosen to mini-
mize the expectationI1, but in MDL it appears commoner to
minimize maxx∈X (I1(x) − I0(x)). For sufficiently regular
model classes, e.g. those in the exponential family, and for
similar choices ofh(.), the differences between the MML
and MDL SC2(.) approaches are numerically small. Note
that in both cases,I1 ≥ I0, but for somex , it is possible that
I1(x) < I0(x).

The introduction of complete codes changes the picture,
and leads to a third definition of stochastic complexity:

SC3(x) = −logq(m(x)) −log fc(x | m(x)).

Clearly if complete coding is introduced to anSC2(.)

coding scheme without altering the estimator, thenδ,2∗
and q(.) remain unchanged and for allx , SC3(x) ≤
SC2(x), with strict inequality being the usual case. An
improvement in message length, both expected and worst-
case, is obtained. However, the balancing of first-part and
second-part message lengths leading to the choice ofδ is no
longer valid.

Suppose that the originalSC2(.) choice of δ is now
everywhere halved. This will double the number of estimate
values in2∗ and halve everyq(θ̂) ∈ 2∗, with the result
that the first term inSC3(.) is increased by log 2. But
also, the number of data values mapping to each estimate
is halved on average, because the same number of values
in X are now distributed by the estimator mappingm(.)

over twice as many estimates. Hence, for each estimate
θ̂ ,

∑
x :m(x)=θ̂

f (x | θ̂ ) is typically halved, leading to a
doubling of the normalization constantCc and so a reduction
in the second term ofSC3(.) of at least log 2. In fact,
the reduction will typically be greater, because the reduced
number of data values mapping toθ̂ may now be chosen to
be those most probable underθ̂ . That is, if θ̂ was an original
member of2∗, it can now shed its worst-case data values
to a newly-introduced estimate chosen to give these values
higher likelihood. Both on average and in worst case, the
productCc× f (x | θ̂ ) will at least double, and typically more

than double, leading to a reduction in the second term of
SC3(.) of more than log 2. Overall, the effect of halving the
originalδ cannot increase the SC of anyx and will typically
decrease it, i.e. give a shorter description length.

If halving δ after introducing complete codes reduces
SC3(x), halving it again may lead to further improvement.
In fact, for all x , SC3(x) decreases monotonically as more
estimates are added to2∗. The minimum expected and
worst-case values ofSC3(x) − I0(x) are sure to be reached
only when so many estimates are included in2∗ that for all
θ̂ ∈ 2∗, the pre-image of̂θ underm(.) contains only a set of
data values with identical sufficient statistics.

If complete coding is carried to this logical limit of
increased efficiency, a little thought shows that, for the set of
data values mapped bym(.) to some estimatêθ , the actual
value of θ̂ has no effect on the value offc(x | θ̂ ) for any
x in the set, provided only thatf (x | θ̂ ) > 0. Since all
x in the set have equal sufficient statistics, if this proviso
is satisfied for any member of the set it is satisfied for all.
Thus, the full-blooded adoption of complete coding for a
two-part description, while giving an efficient code for the
data, destroys the basis on which two-part coding can be
claimed to yield good parameter estimates.

If the intention of introducing complete coding is simply
to make SC3(.) a closer approximation to the original
definition SC1(.) = I0(.) than wasSC2(.), it is clearly a
useful advance, whether applied just once to the estimator
derived usingSC2(.), or carried to its logical limit. However,
if the intent of two-part coding is to obtain good estimates
of the parameters of the model, as well as a measure of
complexity with respect to the ‘class’ of models, complete
coding seems less advisable. Even if applied only once,
retaining the estimator derived underSC2(.), its soundness
as a component of a model-selection process must be
questioned because, if unleashed, it would vitiate the
estimator. Of course, MDL was designed to select a model
class, not a fully-specified model, and the above objection
is nugatory in this context. However, some users of MDL
appear to regard complete coding as yielding good parameter
estimates [4, 5, Section 4], and this view appears mistaken.

1.1. ‘Complete coding’ in MML

In the MML approach, the intention is to find the best ‘fully-
specified’ model of the data within some set2 of possible
models, regardless of how this set is classified. Without here
discussing whether this aim is worthy, we simply note that
for the reasons stated above, complete coding as used in
MDL would conflict with this aim. However, this does not
mean that MML has nothing to learn from the technique.
In thinking about this discussion of the differences between
MML and MDL approaches to coding data, we realized
that a technique closely related to complete coding could,
at least in some cases (see Section 1.2), overcome a serious
deficiency in MML. The idea is new to us, arising only after
writing our main paper in this issue, and so our presentation
should be regarded as tentative, but we hope still useful.

For a model class withK parameters, letS be the smallest
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integer for which there exists anS-dimensional vector
‘sufficient statistic’, i.e. anS-dimensional vector function
of the data which captures all the data information relevant
to the parameters. Most applications of MML (and MDL)
have used data models which could be decomposed into
components each having a fairly simple probability model,
commonly a member of the exponential family. For models
in this family, S = K . For all such models that we have
used, the standard MML two-part code has a high efficiency,
both in expectation and in worst-case.

It has been shown [7] that if for anyx the log-likelihood
function has an approximately quadratic form about its
maximum, and the prior densityh(.) is slowly varying, the
MML construction yields a two-part code with

I1 − I0 < (1/2) log(2π(K + 1)) + 2.

Further, ifS = K , it can be shown that for allx ,

I1(x) − I0(x) < (1/2) log(2π(K + 1)) + 4.

Well-behaved models stay well within these bounds. For
instance a binomial model of a Bernoulli trial with unknown
success probabilityp, h(p) = 1, N = 1000, givesI1 − I0 =
0.175. . . and I1(x) − I0(x) < 1.14 for all success counts.
Hence, the MML two-part code comes within a very few
nits of the ‘ideal’ code lengthI0(x). As any improvement
due to complete coding would be limited to these few nits at
best, we considered the technique to be not worth the risk of
prejudicing the MML parameter estimation.

Not all model classes are so well behaved and when
S > K , it is possible forI1(x) − I0(x) to be large in the
worst case, even ifI1− I0, the expected inefficiency, remains
small. We now illustrate with a simple example and show
how a version of complete coding may dramatically improve
the performance of MML.

1.2. An awkward example

Consider the model class of a uniform distribution of known
range. The datax consists ofN values{vn : n = 1 . . . N}
i.i.d. with a uniform distribution betweenµ − 1/2 and
µ + 1/2, so the range of the distribution is known to be one,
and there is onlyK = 1 free parameter, the meanµ. Assume
thatµ is known to lie in some range of lengthR � 1 and
assume it has a uniform ‘prior’ over this range. Let the data
values{vn} be represented to a least count or measurement
quantum ofa � 1/N . We assumeR so large anda so
small that end effects near the ends of the possible range of
µ may be neglected and sums replaced by integrals where
convenient. Define for eachx the sufficient statistics

s = vmax − vmin; c = (vmax + vmin)/2.

Then the probability model is

f (x | µ) = aN if |µ − c| < (1 − s)/2

or f (x | µ) = 0 otherwise.

There is no smaller set of sufficient statistics, soS = 2 >

K = 1.
For givenµ, the joint density of (s, c) is

j (s, c | µ) = N(N − 1)sN−2 where f (x | µ) > 0.

This gives the marginal density ofs as

g(s | µ) = g(s) = N(N − 1)(1 − s)sN−2.

As g(s) is independent ofµ, it gives the marginal density of
s marginalized overc andµ. The overall marginal density
of c is w(c) = 1/R. Marginalized overµ, the joint density
of (s, c) is g(s)/R.

The problem presents no difficulty for theSC1(.)

definition. Integration overµ gives

r(x) = (1 − s)aN /R,

SC1(x) = I0(x) = −logr(x) = D −log(1 − s)

whereD = log R − N loga. Integrating over the density
g(s) gives

I0 = E(SC1(x)) = D +
N∑

n=2

1/n.

For largeN , I0 is approximatelyD + log N + γ − 1 =
D + log N − 0.422. . . .

The simple two-partSC2(.) construction and the standard
MML approximation do badly on this problem. The Fisher
information does not exist and the estimate setM∗ must have
members spaced by at mosta, since for anyx with sample
ranges = 1, µ̂ must exactly equal the sample midpointc. If
all members ofM∗ are coded similarly, the first part of the
message has length log(R/a). If, as in these two methods,
the second part codes the data using simply the distribution
f (x | µ̂) = aN , the total length is

I1(x) = log(R/a) − N loga = D −loga.

For a � 1/N , this value may grossly exceedI0(x) for
almost allx .

To see the effects of ‘complete coding’ of the second part
using thisM∗, note that for givenµ, the density ofc is

N(1 − 2|c − µ|)N−1 for µ − 1/2 ≤ c ≤ µ + 1/2

and consider the obvious estimatorµ̂ = c. The density ofc
givenµ = µ̂ at c = µ̂ is N , so given thatc is specified to
least counta, Prob(c = µ̂ | µ̂) = a N . Hence,

fc(x | µ̂) = f (x | µ̂)/Prob(c = µ̂ | µ̂)

= aN /(a N) = aN−1/N.

So, for the completed code, the message lengthI1(x) is

SC3(x) = log(R/a) −log(aN−1/N)

= log R − N loga + log N = D + log N.
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Hence, for largeN , I1 ≈ I0 + 0.422. . . , so the code
is quite efficient on average. However, it gives the same
complexity for anyx , so differs greatly fromSC1(x) =
I0(x) = D−log(1−s) for data with unusually large or small
sample range. Rissanen’s recent suggestion of a ‘normalized
maximum likelihood’ (NML) measure of SC [6] in this issue
does not cope well with this problem. For allx ∈ X , the
maximized likelihood is the same, viz.aN , so this measure
will also give the same complexity to all data.

The strict MML construction (SMML), to which standard
MML is an approximation, is a two-part code in which the
code used in the first part to specify the estimateθ̂ , is not
based on a notional allocation tôθ of the ‘prior’ probability
δh(θ̂ ) in some interval of2 containingθ̂ . Instead,q(θ̂)

is taken as the marginal probability thatx will lie in the
pre-image ofθ̂ under the mappingm(.). That is, q(θ̂) =∑

x :m(x)=θ̂
r(x). This construction achieves the shortest

expected message length for any two-part code in which the
second part codesx using a code length−log f (x | m(x)).

The SMML code for this example uses, perforce, a set
M∗ with spacinga, but assigns unequal code lengths to
its members. An ‘order 0’ set ofR estimates has integer
estimate values, all with the same first-part code length and
all x which can be coded using some member of this set are
mapped to it. An ‘order 1’ set ofR estimates has half-integer
values, equal but slightly larger code lengths and is used for
all x which can use these values and are not mapped into
order 0 estimates.

Proceeding recursively, an ‘orderi ’ set of 2i−1R estimates
has estimate values odd multiples of 2−i and is used for all
possiblex not already mapped into lower-order estimates.
The recursion stops when allx are mapped or wheni >

−log2 a. It can be shown that the first-part code lengths
increase with increasingi and that an estimate of orderi > 0
will be used only (but not always) for data valuesx with
s > 1 − 21−i .

This SMML code achieves good expected efficiency. For
all N > 1, it gives I1 − I0 < log 2, with equality being
approached for largeN . However, its worst-case efficiency
is poor and unbounded asa approaches zero. For order
i > log2 N , there is anx mapping to an order-i estimate
with I1(x) − I0(x) > 2(i − log2 N) log 2. Sincei can reach
−log2 a for somex , I1(x) − I0(x) can reach−2 log(a N),
which can be large sincea � 1/N . If such data occurs,
the SMML code length gives a serious over-estimate of the
data’s complexity with respect to the model class, which
could distort a comparison with alternative model classes for
the same data. Equally seriously, it can give very different
complexities to two data vectors with the same sample range
s but slightly different sample midpoints. Ifs is close to
1, the estimatêµ will be a low-complexity order-0 value if
the midpointc lies within (1 − s)/2 of an integer value, but
a high-order high-complexity estimate ifc lies just outside
this range.

The excessive SMML code length for some (admittedly
improbable) data is caused by the ‘incomplete’ second-part
codes used for such data. The data incurring an excessive
cost are thosex which have sample rangess much closer

to 1 than would be expected from the densityg(s), i.e. data
with (1 − s) � 2/(N + 1). When the SMML code maps
such anx into a high-order estimate, the use of this estimate
implies thats > 1 − 2(1−i), but the coding in the second
part of the code makes no use of this knowledge. MDL-
type complete coding using the SMMLM∗ and first-part
coding would greatly increase the worst-case efficiency. The
expected code lengthI1 would also be decreased slightly,
but would remain greater thanI0, because the completed
second part code for data mapped toµ̂ is still based on a
distribution fc(x | µ̂) which is proportional tof (x | µ̂) and
so implies a joint density for the statistics(s, c) proportional
to j (s, c | µ̂) or sN−2 whereas the actual joint density for
data in any region of(s, c) space (and hence in the pre-image
of µ̂) is g(s)/R proportional to(1−s)sN−2. The discrepancy
would cause a large difference betweenSC3(x) andSC1(x)

for x with (1 − s) � 1/N .
We propose instead of the MDL complete coding a

three-part modification of the two-part MML code. The
probability distribution g(s) of the sample ranges is
independent ofµ. Hence a message encodingx can begin
by encodings using a code optimized for the distribution
g(s). No knowledge ofµ is needed to encode or decode
this segment, length−log(ag(s)). The message continues
by stating an estimatêµ, but now the code used can employ
knowledge ofs, since the receiver of the message will have
this knowledge before having to decode the code forµ̂. In
this example, onces is known, it is clear that̂µ need only be
coded with precision(1 − s). That is, we may now use an
estimate setM∗

s with spacingδs = (1 − s) and all estimates
in the set can be given the same code length log(R/(1− s)).
Finally, a third message segment can encodex using the
(unique)µ̂ ∈ M∗

s for which f (x | µ̂) > 0.
The code used in the third part will employ a kind

of ‘complete coding’, using a code for the distribution
conditioned onµ̂ ands, with length−log f (x | µ̂, s) where

f (x | µ̂, s) = Prob(x, s | µ̂)/Prob(s | µ̂)

= f (x | µ̂)/(ag(s)) = aN /(ag(s)).

Summing the lengths of the three parts gives

I1(x) = (−log(ag(s))) + (log(R/(1 − s)))

+ (−log(aN /(ag(s))))

I1(x) = log R − N loga −log(1 − s)

= D −log(1 − s) = I0(x).

Thus the new three-part MML code gives ideal efficiency.
It does no violence to the intent of the MML approach,
since it differs from two-part MML only in beginning the
message with an aspect of the data which is independent of,
and conveys no information about, the unknown parameter.
All results about the consistency, invariance and efficiency
of the MML method seem to apply to the three-part form. In
particular, it better conforms to one of the guiding principles
of the MML method, that parameters should be specified
to a precision consistent with the expected error in their
estimation.

THE COMPUTER JOURNAL, Vol. 42, No. 4, 1999



334 C. S. WALLACE AND D. L. DOWE

1.3. Three-part MML coding

The three-part coding scheme developed above may have
application to other model classes havingS > K . Suppose
we have a model class with probability modelf (x | θ),
data spaceX of N dimensions and parameter space2 of
K < N dimensions and thatN ≥ S > K . There may
exist an invertible mappingt (x) = (y, z) for all x ∈ X
wherey andz have dimensionL ≤ (S − K ) and(N − L)

respectively, and such that the probability distribution ofy
is independent ofθ , sayg(y). Then the valuey = y(x) may
be optimally coded as the first part of the message without
any knowledge or estimate ofθ . However, knowledge ofy
may assist in constructing an efficient code for an estimateθ̂

of θ , which is then stated in the second part of the message.
Finally, the remaining detail of the data, namely the value
z = z(x), may be encoded in the third part, using a code
based on the conditional distributionfz(z | θ̂ , y) or fx (x |
θ̂ , y) = f (x | θ̂ )/g(y).

The statisticy is not informative aboutθ , but it may imply
information about the shape of the likelihood function and
thus assist in choosing an appropriate precision for stating
the estimatêθ . In the uniform example of 1.2, the sample
ranges played the role ofy and while it said nothing about
µ, it indicated the shape of the likelihood function and hence
allowed the optimum2∗

s spacingδs = (1 − s) to be used in
the second part of the message.

The statisticy, if it exists, appears to fit Fisher’s definition
of an ‘ancillary’ statistic.

The generality and utility of this three-part MML coding
scheme remains to be examined in future work. While in the
present example it achieves the ideal resultI1(x) = I0(x),
this cannot be generally true. It is interesting that, while the
scheme was inspired by Rissanen’s ‘complete coding’, it is
strangely different. In both forms, the final coding of the data
uses a probability distribution conditioned on the estimate
and on a function of the data. In Rissanen’s form, the
conditioning function is the estimatorm(x) which is highly
informative aboutθ , whereas in our form, the conditioning
function is an ancillary statistic which, by definition, is
independent of and uninformative aboutθ .

2. SOME PROBLEMS WITH MDL

Earlier comparisons between earlier versions of MDL and
MML are given in [3, 7] and the accompanying discussion
in that 1987 issue ofJ. R. Statist. Soc.; and also in [8].

2.1. Partitioning models into ‘model classes’

We see some difficulties in a program which aims to select
a model class in that some sets of models permit several
different plausible partitions into model classes. We provide
two examples where the partition into model classes seems
rather unclear: one being the family of computable functions
and the other being the family of polynomial functions.

Is it legitimate to consider the class of functions,Cn ,
which can be described byn bits of input to a universal
Turing machine (UTM) as a model class? If so, this

definition and the corresponding model class structure will
depend upon the choice of UTM,T . In general, for UTMs
T1 and T2, CT 1

n−1 is not contained inCT 2
n andCT 2

n−1 is not
contained inCT 1

n .
For the family of polynomials, do we (in the spirit of

TMs) considerCn to be the class of polynomials computable
in n arithmetic steps? Or perhaps we considerCn to be
the polynomials of degreen. In the latter case,x23 would
be considered less complex thanx32, whereas we would
expect the reverse in the former case. Or perhaps we
should considerCn to be the class of polynomials with
just n non-zero co-efficients. But, is such a definition
with respect to the basis{1, x, x2, . . . } or with respect to
some orthonormal basis for a given scalar dot product? For
rational polynomials, we might even considerCn to be the
class whose sum of integer coefficients in the numerator and
denominator is equal ton.

In summary, it is not always clear how a well-defined
family of models should be partitioned into classes.

2.2. Completing the code over the ‘model class’

As described in Section 1, the idea behind complete coding
[1] is that, given a model class, when we encode the data,
we may assume the receiver of the message to know the
estimatorm(·). Hence, on receiving a message stating
estimateθ̂ , the receiver may deduce that the datax lies
within the pre-image ofθ̂ under m. So, in the second
part of the message, based on the distributionf (· | θ̂ ),
all code words encoding data not in the pre-image ofθ̂

may be eliminated, allowing a shortening of the remaining
code words using the truncated distributionfc(· | θ̂ ) from
Section 1. However, if we are to complete the code within
model classes so that data is encoded using this truncated
distribution, then we ask the question of why we do not
complete the code over model classes within the family. In
other words, when data is encoded as coming from a certain
model class, why do we not encode this data conditional on
its lying within the pre-image of that model class?

2.3. Jeffreys prior and normalized maximum likeli-
hood

2.3.1. Interpretation of the Jeffreys prior
The Jeffreys prior depends upon the sensitivity of the
measuring instruments and observational protocol used to
obtain the data [9, 10, 11, p. 217]. While such a prior is
clearly mathematically convenient, it is formally equivalent
to using a Bayesian prior which will favour parameter
values (or models) around the values where the measuring
instruments are most sensitive. Consider, for example, an
observer inside a circular train track trying to estimate the
position of a train moving at fixed speed along the track.
The Jeffreys prior advocates that if the observer is standing
away from the centre of the circle nearer the track, then
the observer should have a higher prior probability of the
train being at a part of the track near the observer than at
a corresponding length of track diametrically opposite. A
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related example is given elsewhere [11, p. 217] regarding
estimating the strength of a magnetic field.

From a Bayesian perspective, use of a Jeffreys prior is
tantamount to saying that our prior belief about the strength
of a field or the value of a parameter depends upon our
measuring instrument and even upon its location, which is
clearly rather silly.

2.3.2. Normalization of Jeffreys prior
Even from a non-Bayesian perspective, we have reservations
about the use of a Jeffreys prior. What are we supposed to
do in the situation when we cannot normalize the Jeffreys
prior? The negative binomial distribution arises from a
modification to the protocol in the binomial distribution—
whereas the binomial distribution sees us take a fixed
number of trials, the negative binomial distribution sees us
sample until we have had a fixed number of successes and
is but one distribution for which we are unable to normalize
the Jeffreys prior.

2.3.3. Negative binomial distribution and Jeffreys prior
Given i.i.d. probability of binomial trial successesp,
the negative binomial distribution for parametern is the
probability distribution of the number of trials,N , needed
to getn successes and is writtenN ∼ Nb(n, p), with the
geometric distribution,G(p) = Nb(1, p), being a special
case.

The negative log-likelihood function,L, is given by

L = −log f (N | n, p)

= −log

(
N − 1

n − 1

)
− n log p − (N − n) log(1 − p). (1)

The Fisher information can be shown to ben/(p2(1− p)),
from which we obtain its square root, the Jeffreys prior, to
be

√
n/(p2(1 − p)), which exceeds 1/p and therefore has

an infinite integral and cannot normalize.

2.3.4. Negative binomial and normalized maximum likeli-
hood

From equation (1), givenn andN , the maximum likelihood
(ML) estimatep̂ML = n/N , which gives a maximum value
of

f (N | n, p̂ML ) =
(

N − 1

n − 1

)
(n/N)n (1 − n/N)N−n .

Choosen0 ≥ n such that for allN ≥ n0 we have that
N !/(N − n)! ≥ Nn/2 and that(1 − n/N)N ≥ e−n/2. Then

∞∑
N=n

f (N | n, p̂ML )

=
∞∑

N=n

(
N − 1

n − 1

)
(n/N)n(1 − n/N)N−n

≥ nn
∞∑

N=n0

n/N

(
N

n

)
(1/N)N (1−n/N)−n(1−n/N)N

≥ nn/n!
∞∑

N=n0

n/N × 1/2 × 1 × e−n/2

= nn+1 e−n

4n!
∞∑

N=n0

1/N = ∞

and so, for the negative binomial distribution, we are unable
to do the normalization necessary for normalized maximum
likelihood.

2.3.5. A mixed binomial protocol
Consider now a protocol of binomial trials in which our
sampling experiment terminates when either 100 successes
have occurred and been registered, or when 3000 trials
have taken place, whichever comes first. The maximum
likelihood can be normalized with this protocol limit
on the number of trials, so NML is applicable as a
measure of complexity. Suppose the experiment in fact
concludes with 100 successes achieved in 469 trials, so
we compute the NML complexity of this result. But just
as we are about to send off the results for publication,
our laboratory assistant informs us that he has found a
design flaw in the experimental apparatus which, while not
affecting the outcome of a trial, would inevitably cause
irreparable damage to the equipment after just 500 trials
and that our grant could not fund a replacement. So in
fact, although we did not know it, our experiment was
conducted under the protocol of 100 successes or 500 trials.
Using these numbers gives a substantially different NML
complexity. Which value is correct? And why should
the non-event of equipment failure change anything much?
And, indeed, were the number 3000 above changed to
300,000, the difference between the original and revised
NML complexities would be even more substantial.

3. IS MDL MISDIRECTED?

There are two aspects of MDL with which we disagree, but
will accept for the purposes of this section. The first is
the reluctance of the MDL school to accept that any human
investigator brings prior knowledge to every scientific study
and the course of the work is informed by prior expectations.
Indeed, we are born with strong prior expectations and
would not survive without them. The second is the belief
that the selection of a ‘model class’ for data is somehow
more fundamental than and logically prior to the selection
of a fully-specified model. A third aspect seen in the work
of some followers of the school is the apparent belief that
the best way to select a fully-specified model is first to
select the model class and then to estimate its parameters
by conventional means. This belief does not seem to be
universally held and is certainly not an essential of the MDL
program, so we will discuss it no further.

Accepting these two tenets, we may characterize the MDL
program as we see it by the following points.

(i) We wish to select one of several parametrized model
classes in the light of the data, but are uninterested in
parameter values.
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(ii) We will make no assumption of a Bayesian prior over
the unknown parameters of a model class.

(iii) The selection of a class should be made by deriving
a single number for each class and choosing the class
with the smallest number.

(iv) The length of an efficient data description with respect
to the class is a good choice for this number.

We may now ask whether the tools currently used in MDL
are well suited to this program. It seems to us that there is
reason for doubt.

First, several of the MDL tools, including theSC1, SC3
and NML measures, require for their application use of a
normalized density measure over the parameter space of a
class. Since no prior knowledge is allowed, this density must
somehow be conjured from what is available, which is only
the data spaceX , the parameter space2 and the functional
form of the classf (x | θ). The available choices seem
limited. The ‘Jeffreys prior’ (if it exists at all) and the more
general, but often similar, density implicitly defined by NML
cannot be normalized for many simple and regular classes,
as in Sections 2.3.3 and 2.3.4.

The response to this problem [6], namely artificially to
restrict2 to make normalization possible, seems arbitrary
and distasteful. We are given no general guidance as to
how this restriction should be done and different restrictions
will give different results. If, as has been suggested, the
restriction is made ‘in the light of the data’, we have no
workable data description method at all, contrary to point
(iv).

Second, any method reliant on a density on2 constructed
from X and f (x | θ) is likely to lead to a serious
violation of the likelihood principle. Both the Fisher
information on which the Jeffreys prior is based, and the
normalization constant in NML, depend on the data space
over which expectation or integration is performed. Thus,
it becomes possible that exactly the same information may
lead to different judgements depending on the observational
protocol under which it was obtained. These MDL measures
depend significantly on the data which was not obtained as
well as on the data which was. (We note in passing that
MML might be seen as equally in violation of the likelihood
principle, but study of examples such as the binomial versus
negative binomial comparison shows that its violations are
insignificant [12].)

Finally, theSC3 and NML methods involve an estimator,
i.e. a selection of specific parameter values, which should be
unnecessary in the light of point (i).

Let us take points (i), (ii) and (iv) seriously. An efficient
encoding is one which exploits regularities in the data
encoded. If we wish to encode our data with respect to some
model class, we should aim to exploit only those regularities
which we expect to find in the data by virtue of its being
sourced from this class. If we encode our data with respect to
the class of univariate normal distributions (with absolutely
no prior assumptions about mean or variance), we should use
those regularities arising solely from the ‘Normal-ness’ of
the data and not from the nomination of any specific member

of the class. NeitherSC1, SC3 nor NML conforms to this
obvious requirement.

It does not seem impossible to devise coding schemes
based purely on the regularities to be expected of the class
rather than of a specific member. However, it is in general
the case that even when the data is a vector of i.i.d. values,
the coding will not encode these individual values directly.
Rather, the code will aim to provide efficient encodings of
various functions of the data, the functions being chosen
to exhibit the regularities of the ‘class’. Necessarily, this
means that the joint distribution of these functions must be
independent of the parameter values. Only such distributions
are characteristic of the class, rather than of some member
model. For instance, ifx is a set ofN scalars{vn : n =
1 . . . N}, and the model class is that the scalars are i.i.d.
according to somef (v | µ, σ) whereµ is a location andσ a
scale parameter, then the functionsun = (vn − v̄)/Av(|vn −
v̄|) have distributions independent of the parameters and
so can be efficiently coded assuming only the model class.
Of course, theseN functions are insufficient to reconstruct
the data, since onlyN − 2 of them are independent. The
MDL description would also have to include, e.g., the
sample mean and standard deviation, and these could best be
encoded using whatever ‘code’ or representation was used
in the presentation of the raw data. We certainly have no
warrant to suppose any better code.

We conclude that the MDL program (according to our
understanding of its aims) might be better pursued by
considering the coding of those functions of the data
whose distributions are characteristic of the model class and
independent of the parameters. This course would make it
unnecessary ever to postulate densities over the parameter
space, or equivalently marginal distributions over the data
space. With them would go the ghost of the Reverend Bayes
and any dependence on an estimator. We do not pretend
that this course would be easy to follow. It is not obvious
that the required number of functions of the data (ideally
(N − K )) with a joint distribution independent ofθ can
easily, or always, be found.

The ‘Predictive’ coding technique described in [6] seems
better adapted to the MDL program than the other methods
mentioned, since it avoids definition of a density on2,
but it still involves (admittedly ephemeral) estimates, which
should not be needed by the program.
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