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Abstract
We derive a Minimum Message Length (MML) esti-
mator for stationary and nonstationary autoregressive
models using the Wallace and Freeman (1987) approx-
imation. The MML estimator’s model selection perfor-
mance is empirically compared with AIC, AICc, BIC
and HQ in a Monte Carlo experiment by uniformly sam-
pling from the autoregressive stationarity region. Gen-
erally applicable, uniform priors are used on the coeffi-
cients, model order and log σ2 for the MML estimator.
The experimental results show the MML estimator to
have the best overall average mean squared prediction
error and best ability to choose the true model order.

Keywords
Minimum Message Length, MML, Bayesian, Information,
Time Series, Autoregression, AR, Order Selection.

INTRODUCTION
The Wallace and Freeman (1987) Minimum Message Length
estimator (MML87) [22] is an information-theoretic criterion
for model selection and point estimation. It has been suc-
cessfully applied to many problems including (univariate)
linear and polynomial regression models in [19, 18, 17, 14]
(and sequence data [6, 7], etc. [20, 22, 21]). The purpose of
this paper is to investigate the use of the MML87 methodol-
ogy for autoregressive (time series) models. Autoregressive
models differ from standard linear regression models in that
they do not regress on independent variables since the re-
gressor is a subset of the dependent variables (i.e., its lagged
values) - the independent variable is really time. This has
important (philosophical and practical) ramifications for the
MML87 regression estimator, which otherwise assumes that
the independent variables are transmitted to the receiver up
front (or are already known by the receiver). The indepen-
dent variables appear in the Fisher information matrix, which
is necessary for computation of the MML87 coding volume.
Such a protocol would be nonsensical if directly applied to
autoregression since it corresponds to transmission of the
majority of the data, before the data, in order to transmit the
data.
In this paper we investigate several MML87 estimators that
take these issues into account. In particular, we focus on
an MML87 estimator that is based on the conditional likeli-
hood function, using the least squares parameter estimates.

This MML estimator’s model selection performance is em-
pirically compared with AIC [1], corrected AIC (AICc) [10],
BIC [15] (or 1978 MDL [13]), and HQ [9] in a Monte Carlo
experiment by uniformly sampling from the autoregressive
stationarity region. While MML is geared towards inference
rather than prediction, we find that choosing the autoregres-
sive model order having the minimum message length gives
a prediction error that is superior to the other model selection
criteria in the Monte Carlo experiments conducted.

BACKGROUND

Autoregression
Regression of a time series on itself, known as autoregres-
sion, is a fundamental building block of time series analysis.
A linear autoregression with unconditional mean of zero1

relates the expected value of the time series linearly to thep
previous values:

yt = φ1yt−1 + ... + φpyt−p + et, et ∼ N(0, σ2) (1)

An orderp autoregression (AR(p)) model hasp + 1 param-
eters: θ = (φ1, ..., φp, σ

2). Some example data generated
from various AR(2) models are displayed in Figures 2 to 7.
The examples chosen are all stationary with all inside, but
many close to, the boundary of the stationarity region (see
Figure 1) to illustrate some of the diversity that can be found
in an autoregression model.
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Figure 1. AR(2) stationarity region with the plotted exam-
ple points (see Figures 2 to 7 on next page) identified.

1In this paper we only consider zero mean autoregressions for
simplicity. This does not cause any loss of generality, and all
results would be qualitatively the same without this assumption.



Figure 2. Example data: φ1 = 0, φ2 = 0.99 and σ2 = 1.

Figure 3. Example data: φ1 = 0.499, φ2 = 0.499 and
σ2 = 1.

Figure 4. Example data: φ1 = 1.99, φ2 = −0.995 and
σ2 = 1.

Figure 5. Example data: φ1 = 0, φ2 = −0.5 and σ2 = 1.

Figure 6. Example data: φ1 = 0, φ2 = −0.99 and σ2 = 1.

Figure 7. Example data: φ1 = −1.99, φ2 = −0.995 and
σ2 = 1.

The conditional2 negative log-likelihood ofθ is:

− log f(yp+1, ..., yT |θ, y1, .., yp) =
T − p

2
log(2πσ2)

+
1

2σ2

T∑
i=p+1

(yi − φ1yi−1 − ...− φpyi−p)
2 (2)

It is common to make the assumption thatyt is weakly sta-
tionary. This assumption means that the time series has a
constant mean (in our case zero) and the autocovariances de-
pend only on the distance in time between observations and
not the times themselves:

E(yt) = 0 ∀t (3)
E(ytyt−j) = E(ytyt+j) = γj ∀t∀j (4)

The firstp γ’s can be calculated as the firstp elements of the
first column of thep2 by p2 matrixσ2(Ip2 − (F ⊗ F ))−1

[8, page 59], whereF is defined as [8]:

F =


φ1 φ2 φ3 . . . φp−1 φp

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0

 (5)

The stationarity assumption implies that the firstp values
are distributed as a multivariate Normal distribution [8, page
124]. The negative log-likelihood ofθ for the firstp values,
zp = [y1, y2, . . . , yp]′, is:

− log f(y1, ..., yp|θ) =
p

2
log(2πσ2)− 1

2
log |V −1

p |+ 1
2σ2

z′pV
−1
p zp (6)

whereσ2Vp is thep by p autocovariance matrix.
The exact negative log-likelihood function, when stationarity
is assumed, is therefore (using equations 6 and 2):

− log f(y|θ) =
− log f(y1, ..., yp|θ)− log f(yp+1, ..., yT |θ, y1, .., yp)(7)

Parameter Estimation
There are a large number of methods used to estimate the
parameters of an autoregressive model (see, e.g., [8, 3, 4]).
Some of these methods include:
• Least squares
• Conditional least squares (OLS)
• Yule-Walker
• Burg
• Maximum likelihood
Maximum likelihood is rarely used because its solution is
non-linear, requiring a numerical solution which is slow and
can suffer from convergence problems [4]. The estimates
provided by the Yule-Walker, Burg and maximum likelihood
methods are guaranteed to be stationary whereas the least

2conditional on the first p observed values.



squares estimates are not [4]. Conditional least squares esti-
mates are often preferred since they are easily computed and
consistent regardless of whether the data is considered to be
stationary or not [8, page 123].

Model Order Selection
Some methods that are commonly used to automatically se-
lect the order of an autoregression are AIC [1], corrected
AIC (AICc) [10], BIC [15] (the same as 1978 MDL [13], as
noted below), and HQ [9]:

AIC(p) = log(σ̂2
p) +

2p

T
(8)

AICc(p) = log(σ̂2
p) +

2(p + 1)
T − p− 2

(9)

BIC(p) = MDL(p) = log(σ̂2
p) +

p log(T )
T

(10)

HQ(p) = log(σ̂2
p) +

2p log log(T )
T

(11)

whereσ̂2
p is the maximum likelihood estimate of the noise

variance for thepth order model. In practice, the exact
maximum likelihood estimate is rarely used. Instead, one
of the other methods mentioned in the previous section is
used as an approximation. A robust method that can be used
for stationary and nonstationary data [16] is to use the OLS
estimate forφ1, ..., φp and estimateσ2

p using

σ̂2
p =

1
T − p

T∑
i=p+1

(
yi − (φ̂1yi−1 + ... + φ̂pyi−p)

)2

(12)

Minimum Message Length Inference
The Minimum Message Length (MML) principle [20, 22, 21]
is a method of inductive inference, and encompasses a large
class of approximations and algorithms. In this paper we
use the popular MML87 approximation [22], which approx-
imates the message length for a model consisting of several
continuous parametersθ = (θ1, . . . , θn) by:

MessLen(θ, y) = − log

(
h(θ)f(y1, ..., yN |θ)εN√

|I(θ)|

)
+

n

2
(1 + log κn)− log h(n) (13)

where h(θ) is a prior distribution over then parameter
values,f(y1, ..., yN |θ) is the standard statistical likelihood
function, I(θ) is the expected Fisher Information matrix,
κn is a lattice constant (κ1 = 1/12, κ2 = 5/(36

√
3),

κ3 = 19/(192 × 21/3), κn → 1/(2πe) as n → ∞) [5,
page 61] [22, sec. 5.3] which accounts for the expected er-
ror in the log-likelihood function due to quantisation of the
n-dimensional space,ε is the measurement accuracy of the
data, andh(n) is the prior on the number of parameters.
The MML87 message length equation, Equation 13, is used
for model selection and parameter estimation by choosing
the model order and parameters that minimise the message

length. (For a comparison between MML and the subse-
quent Minimum Description Length (MDL) principle [13],
see [21]).

MML87 AUTOREGRESSION
In this section we derive several MML87 message length
expressions for an autoregression model. The first decision
that must be made is the form of the MML message. There
are two seemingly obvious message formats that we could
use based on the conditional or exact likelihood functions.
If the exact likelihood function is used we are assuming that
the data comes from a stationary process. If the conditional
likelihood function (Equation 2) is used, stationarity need
not be assumed, but we must transmit the firstp elements
({y1, ..., yp}) of the series prior to transmission of the data.
In this section we give three message formats. The first uses
the exact likelihood function and thus assumes stationarity,
the second uses the conditional likelihood function and does
not assume stationarity, and the third is a combination of the
previous two.

Stationary Message Format
The format of the MML87 message using the exact likelihood
function (Equation 7) is as follows:

1. First part:p, φ1, ..., φp, σ
2

2. Second part:y1, ..., yT

MML87 requires the determinant of the expected Fisher in-
formation matrix in order to determine the uncertainty vol-
ume for the continuous parameters. We can write the ex-
pected Fisher information as the sum of two terms which
arise in the exact likelihood function (Equation 7 from Equa-
tions 6 and 2):

I(θ) = Iy1,...,yp(θ) + Iyp+1,...,yT
(θ) (14)

The expected Fisher information is easily calculated for the
conditional likelihood term:

Iyp+1,...,yT
(θ) =

[
σ−2E(X ′X) 0

0 T−p
2σ4

]
(15)

whereX is a(T − p) by p matrix:

X =


yp yp−1 . . . y1

yp+1 yp . . . y2

...
...

...
...

yT−1 yT−2 . . . yT−p

 (16)

Since we have assumed stationarity,E(ytyt−j) = γj , and
therefore:

Iyp+1,...,yT
(θ) =

[
(T − p)Vp 0

0 T−p
2σ4

]
(17)

The Fisher information for the multivariate Normal term (re-
calling Equation 6),Iy1,...,yp(θ), is difficult to calculate and
I(θ) can be approximated asTT−pIyp+1,...,yT

(θ) (see, e.g.,
[3, page 303]). Using this approximation, the determinant of



the expected Fisher information is equal to:

|I(θ)| ≈ T p+1

2σ4
|Vp| (18)

The stationary model message length is calculated by substi-
tution of Equations 7 and 18 into Equation 13 along with the
selection of a suitable prior (we give a generally applicable
prior in a later section).

Nonstationary Message Format
In this subsection we give the format of the MML message
based on the conditional likelihood function (Equation 2).
When the conditional likelihood function is used we must
transmit the firstp elements,{y1, ..., yp}, of the series to the
receiver prior to transmission of (the rest of) the data. The
format of the message is therefore:

1. First part:p, y1, ..., yp, φ1, ..., φp, σ
2

2. Second part:yp+1, ..., yT

We see that the initial values are transmitted before the
continuous parameters, therefore they can then be used to
determine the optimal uncertainty volume for the continu-
ous parameters. However, the downside of this ordering is
that the receiver must be able to decode the firstp values
of the time series in order to be able to decode both the
parameters and (remaining) data. The initial values must
therefore be encoded without such knowledge. We assume
that the receiver knows the minimum (ymin) and maximum
(ymax) of the data3. We can then encode the initialp val-
ues independently, using a uniform density over the interval
[ymin− ε/2, ymax + ε/2] whereε is the measurement ac-
curacy of the data, in a message of length:

MessLen(y1, ..., yp) = p log
(

1 +
ymax− ymin

ε

)
(19)

Since the data elements in the message are also encoded to
an accuracy ofε (recall Equation 13) we find the termT log ε
appearing in the overall message length and therefore (for
sufficiently smallε) the choice ofε does not significantly
affect model order selection.
Calculation of the expected Fisher information for the con-
ditional likelihood function in the nonstationary case is dif-
ficult. Instead, we use the partial expected Fisher:

Iyp+1,...,yT
(θ) ≈

[
σ−2X ′X 0

0 T−p
2σ4

]
(20)

The nonstationary model message length is then the sum
of Equation 19 and Equation 13 after substitution of Equa-
tions 2 and 20 and the selection of a suitable prior (we give
a generally applicable prior in a later section).

Combining the Two Formats (Combination Format)
A slightly more efficient message can be constructed by using
a combination of the stationary and nonstationary messages.
The sender can compute the length of the transmission using
3or equivalently that these values have been transmitted using a
general code, thus adding a constant to the message length.

both messages and then choose to use the one having the
shorter message length. An additional bit is required at the
beginning of the message to tell the receiver which message
format has been used. In practice we will generally be using
the OLS estimate since the proper MML estimate requires a
non-linear solution. For the OLS estimate this coding scheme
can be translated to the following procedure:
• Compute the OLS estimate.
• Determine if the estimated model is stationary (e.g. by

checking the eigenvalues of F, Equation 5).
• If nonstationarythen the nonstationary message must

be used because the assumptions made in the multivari-
ate Normal term (Equation 6) of the likelihood function
are no longer valid

• Else (if stationary) use the shorter of the two messages.

BAYESIAN PRIORS
Supposing that we are ignorant prior to observation of the
data, but expect the data to be stationary, we place a uniform4

prior onp, φ1, ..., φp andlog σ2:

h(p) ∝ 1 (21)

h(φ1, ..., φp, σ
2) ∝ 1

Rp
× 1

σ2
=

1
Rpσ2

(22)

where Rp is the hypervolume of the stationarity region.
Based on results in [2], [12] gives the following recursion
for computation of the stationarity region hypervolume:

M1 = 2

Mp+1 =
p

p + 1
Mp−1

Rp = (M1M3 × ...×Mp−1)2 for p even

Rp+1 = RpMp+1

The stationarity region hypervolume is plotted in Figure 8
for orders 1 to 30.

EMPIRICAL COMPARISON
In the following experiments we have used the conditional
ordinary least squares (OLS) estimates and concentrated on
the nonstationary message format (i.e., the second format)5

using the priors given in the previous section. The nonsta-
tionary MML format is labelled ‘MML’ in the graphs and
tables. We have used the OLS estimates because they come
closest to the true minimum message length estimates. When
data is generated we simulate1000 + T elements and then
dispose of the initial 1000 elements. The residual variance
estimate,σ̂2, is calculated using Equation 12 (whereT is
4We note that the ranges used on p and log σ2 do not affect the
order selection experiments conducted in this paper but would
need to be specified in some modelling situations.
5While the combination message format was found to provide a
slight improvement over the nonstationary message format, it
did not fit into our experimental protocol (i.e., it could be
considered to have an unfair advantage over the other criteria
by gaining information from the multivariate Normal terms
appearing in the exact likelihood function). It is also less
practical since it requires significantly more computation time.
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Figure 8. Plot of the hypervolume of the stationarity re-
gion for orders 1 to 30.

the total sample size). The mean squared prediction error
(MSPE) is used to measure performance:

MSPE(p) =
1
T

2T∑
i=T+1

(
yi − (φ̂1yi−1 + ... + φ̂pyi−p)

)2

(23)

AR(1) Experiments
Data were generated from an AR(1) model for varied values
of φ1 over the stationarity region, withT = 50. Each method
was required to select the model order from the set of OLS
estimates for orders 0 to 20. The results can be seen in
Figure 9. Each point represents the average MSPE for 1000
data-sets. We see that MML has the smallest average MSPE,
especially when the signal is strong (i.e., for|φ| ≈ 1).
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Figure 9. Average Mean Squared Prediction Error for
1000 data-sets for varied true φ = φ1 with T = 50.

AR(p) Experiments
We conducted experiments forp = 0 to p = 10 where
1000 autoregression models were sampled uniformly from
the stationarity region (see [11] for a means of sampling).
Each method was required to select the model order from
the set of OLS estimates for orders 0 topmax. The results
for pmax = 12 andT = 30 can be found in Table 1 and
Figure 10. Results forpmax = 20 and T = 50 can be
found in Table 2 and Figure 11. The tables include both fre-
quency counts indicating the number of times each method
under/correctly/over inferred the model order and the stan-
dard deviation of the MSPE. Each figure and table clearly
shows that the MML criterion has the best overall MSPE and
best ability to choose the correct model order.

Table 1. AR( p) Simulation result totals for T = 30
Criterion p̂ < p p̂ = p p̂ > p Average MSPE

AIC 1235 1174 8591 2.8070± 5.5384
AICc 3899 2893 4208 2.0509± 4.7500
BIC 3307 2515 5178 2.3316± 5.2080
HQ 1852 1652 7496 2.6505± 5.4838
MML 5999 3196 1805 1.7101± 1.6681

Table 2. AR( p) Simulation result totals for T = 50
Criterion p̂ < p p̂ = p p̂ > p Average MSPE

AIC 862 1113 9025 2.5059± 2.7529
AICc 3006 3445 4549 1.6007± 1.5850
BIC 4150 3821 3029 1.6251± 1.6409
HQ 1992 2385 6623 2.1655± 2.8760
MML 5713 4314 973 1.2956± 0.6682
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Figure 10. Average Mean Squared Prediction Error for
1000 data-sets for varied true p with T = 30.
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Figure 11. Average Mean Squared Prediction Error for
1000 data-sets for varied true p with T = 50.
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CONCLUSION
We have investigated autoregressive modelling in the MML
framework using the Wallace and Freeman (1987) approxi-
mation. Three message formats were formulated. The most
appropriate format for general use is the nonstationary for-
mat, which is based on the conditional likelihood function.
This format is simple, easily computed and can be applied re-
gardless of whether the data is stationary or not. When used
in conjunction with least squares estimates the MML esti-
mator was found to have very good performance (in squared
error and order selection), as the experimental results show.
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