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This chapter describes the minimum message length (MML) principle, including

its relationship td,_é the subsequent minimum description length (MDL) principle.
A brief discussion of the history and development of MML is given, including
‘stricc MML’ (SMML) and some of its approximations. After addressing some
common misconceptions about MML, we present a novel application of MML
to the inference of generalized Bayesian networks, using decision trees to supply
conditional probability distributions. Unlike many Bayesian network applications,
the new generalized Bayesian networks presented in this chapter are capable of
modeling a combination of discrete and continuous attributes. This demonstrates
the power of information-theoretic approaches, such as MML, which are able to
function over both discrete probability distributions and continuous probability
densities. Furthermore, we give examples of asymmetric languages in which the
desired target attribute is best modeled implicitly rather than as an explicit output
attribute. Last, we provide some preliminary results and suggest several possible
directions for further research. ‘
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11.1 Introduction

Minimum message length (MML) is an information-theoretic Bayesian principle of
inductive inference, machine learning, statistical inference, econometrics, and “data
mining” which was developed by Chris Wallace and David Boulton in a series of
six journal papers from 1968 to 1975, including several explicit articulations of the
MML principle (see, e.g., [Wallace and Boulton 1968, p. 185, sec. 2|; [Boulton and
Wallace 1970, p. 64, col. 1]; [Boulton and Wallace 1973, sec. 1, col. 1]; [Boulton and
Wallace 1975, sec. 1, col. 1]; [Wallace and Boulton 1975, sec. 3]). (David Boulton
then published his Ph.D. thesis [Boulton 1975] in this area.)

Given a data set, D, we wish to find the most probable hypothesis, H — that
is, that which maximizes P(H|D). By Bayes’ theorem, the posterior probability
of H is the product of the prior probability of H and the likelihood function of
D given H divided by the marginal probability of the observed data, D — that
is, P(H|D) = (1/P(D)) x P(H) x P(D|H), where the marginal probability P(D)
is given by P(D) = 3, P(H) - P(D|H) or P(B) = [, P(H)-P(D|H) dH. Recall
from elementary information theory that an event of probability p; can be optimally
encoded by a code word of length I; = —logp;. Because P(D) is a function of D'
independent of the hypothesis, H, maximising P(H|D) is équivalent to maximising
the product of the two probabilities P(H) x P(D|H), which is in turn equivalent to
minimising — log P(H)—log P(D|H), the length of a two-part message transmitting,
first, H and then D given H (see, e.g., [Wéi;llace and Boulton 1968, p. 185, sec. 2J;
[Boulton and Wallace 1970, p. 64, col. 1]; [Boulton and Wallace 1973, sec. 1, col.
1]; [Boulton and Wallace 1975, sec. 1, col. 1]; [Wallace and Boulton 1975, sec. 3)).

In the remainder of this chapter, we define strict MML (SMML) and then
deal with several issues pertaining to MML. These include dealing with some
common (unfortunate) misconceptions in the literature about MML, Kolmogorov
complexity, Bayesianism, statistical invariance, and statistical consistency. We also
present in Section 11.3.1 a conjecture [Dowe, Baxter, Oliver, and Wallace 1998, p.
93]; [Wallace and Dowe 1999a, p. 282]; [Wallace and Dowe 2000, p. 78] of David
Dowe’s relating some of these concepts. In Section 11.4, we mention the issue
of inference vs. prediction and the merits of logarithmic scoring in probabilistic
prediction. We tersely (due to space constraints) survey some MML literature, relate
it to our understanding of current minimum description length (MDL) writings and
raise the issue of MML as a universal principle of Bayesian inference. Given the
many (unfortunate) misconceptions some authors seem to have about the extensive
MML literature and its original concepts, and given the above-mentioned historical
precedence of MML over MDL, we have cited several instances where — at least
at the time of writing — MML is apparently state-of-the-art.

Subsequently and in Section 11.4.4, we then discuss comparatively new work
on the second author’s notion of inverse learning (or implicit learning) [Dowe
and Wallace 1998; Comley and Dowe 2003] and the first author’s refinements
thereof [Comley and Dowe 2003], including setting the asymmetric languages in
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a framework of generalized Bayesian networks and investigating search algorithms.
We believe that this is an advance of much substance and potential.

11.2  The Strict Minimum Message Length Principle

The strict minimum message length (strict MML, or SMML) principle was first
introduced in [Wallace and Boulton 1975], from which we largely borrow in this
section. The relationship of strict MML with algorithmic information theory is
given in [Wallace and Dowe 1999a], and various other descriptions and applications
of it are given in [Wallace and Freeman 1987; Wallace 1996; Wallace and Dowe
1999b; Farr and Wallace 2002; Fitzgibbon, Dowe, and Allison 2002a).

A point estimation problem is a, quadruple {H, X, h, f} such that H is a param-
eter space (assumed to be endowed with a field of subsets), X is a set of possible
observations, and % is a given prior probability density function with respect to a
measure, df, on the parameter space H such that [ g h(8) do = 1.

[ is the known conditional probability function Jo (X H) = [0,1] 1 f(z,0) =
f(z]0), where Y, f(2;16) = 1 for all 6 € H.

A solution to a point estimation problem is a function m : X — H with
m(z) = 0. Recalling from Section 11.1, that r(z) = [, h(0)f(x|0) dO is the
marginal probability of a datum, z, we note that YwexT(z) = 1 and that the
posterior distribution, g(-|-), is given by g(|z) = h(O) - f(216)/ [, h(0) - f(x]0)do =
hO)f(@16) /r(z).

We assume that the set, X, of possible observations is countable. (We suspect the
even stronger result(s) that it is probably even recursively enumerable and perhaps
even recursive.) Giv gtllat X is countable, so, too, is H* = {m(z) : z € X}, that
is, we can say H* = {QJ :J € N}. We can then define ¢; = {i : m(x;) = 6;} for each
0; € H*, and C = {¢; : ; € H*}. Given some fixed H* as Jjust defined, we assign
finite prior probabilities ¢; = Ziecj r(z;) = Zi:m(xi):ej 7(2;) to the members 6; of
H* and then, for each z € X, we choose m(z) to be that § € H* which maximize
p(z|h) and in turn minimizes the expected length of the codebook (given this H ).

This defines m* : ¢ — H ¥, which we can then take to be our solution to
{H, X, h, f}, provided that we have indeed selected the correct H*.

For each c; we choose the point estimate f; to minimize ~Z$i:i@] () -
log f(z;]6;). For each H* the average two-part message length is

(-2 1020) + (- X (05 22 g ey,

7 1:6(1]' q

In essence the larger the data groups the shorter the average length of the first part -
of the message but the longer the average length of the second part. We choose the
¢; to minimize the expected two-part message length of the codebook. Having thus

chosen the codebook given datum z, the SMML estimate is the 0; representing the
code block including z. -
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11.3 Invariance and Consistency of MML, and Some Common Misconceptions
11.3.1 Maximum a Posteriori (MAP) and MML

One common misconception among some authors is that the MML estimate is
supposedly the same as the posterior mode — or maximum a posteriori (MAP)
— estimate. To the contrary, when dealing with continuous distributions, MAP
maximizes the posterior density (not a probability) [Wallace and Boulton 1975,
p. 12]; [Wallace and Dowe 1999a, p. 279 sec. 6.1.1]; [Wallace and Dowe 1999c¢,
p. 346]; [Wallace and Dowe 2000, secs. 2 and 6.1] and is typically not invariant,
whereas MML maximizes the posterior probability and is invariant[Wallace and
Boulton 1975] [Wallace and Freeman 1987, p, 243]; [Wallace 1996, sec. 3.5 and
elsewhere]; [Dowe, Baxter, Oliver, and Wallace 1998, secs. 4.2 and 6]; [Wallace and
Dowe 1999a, secs. 6.1 and 9]; [Wallace and Dowe 1999c, secs. 1 and 2]; [Wallace and
Dowe 2000, p. 75, sec. 2 and p. 78-79]. A metﬁod of parameter estimation is said
to be (statistically) invariant if for all one-to-one transformations ¢, f(b) = ¢(6),
that is, the point estimate in the transformed parameter space is equal to the
transformation of the original point estimate.

For further cases highlighting the differencc between MML and MAP which
also show MML outperforming MAP, see; for example, [Dowe, Oliver, Baxter, and
Wallace 1995; Dowe, Oliver, and Wallace’ 1996] (for polar and cartesian coordinates
on the circle and sphere respectively), and [Wallace and Dowe 1999b, secs. 1.2 and
1.3].

MAP and MML when all attributes are discrete On some occasions, all
attributes are discrete — such as if we were interested only in the topology of a
decision tree and the attributes which were split on (and possibly also the most
likely class in each leaf [Quinlan and Rivest 1989]) without being interested in
the additional inference of the class probabilities [Wallace and Patrick 1993; Tan
and Dowe 2002; Comley and Dowe 2003; Tan and Dowe 2003] in each leaf. In
these cases, where all attributes are discrete, like MML, MAP will also maximize ,af
probability rather than merely a density. For many MML approximations, in these
cases, both MAP and MML will optimize the same objective function and obtai
the same answer. It is a subtle point, but even in these cases, MAP will generally b
different from the strict MML inference scheme [Wallace and Boulton 1975; Wall
and Freeman 1987; Wallace and Dowe 1999a] of Sections 11.2 and 11.3.3 (whi
partitions in data space) and to the fairly strict MML’ scheme (which is similar b
strict MML but instead partltlcms in parameter space). The subtle point centers o
the fact that the construction of the strict (or fairly strict) codebook is done in suc
a way as to minimize the expected message length [Wallace and Dowe 1999&,8?
6.1]. Consider two distinct hypotheses available as MAP inferences which happe
to be very similar (e.g., in terms of Kullback-Leibler distance) and suppose — for
sake of argument — that they have almost identical prior probability. If these
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11.8  Invariance

merged into one, the prior probability of the resultant hypothesis will have about
twice the prior probability — resulting in itg being about 1 bit cheaper in the first
part of the message — than either of the unmerged alternatives. If the expected
additional cost to the second part of the message from the merging is more than
compensated for by the expected saving from the first part, then such g merging
would take place in the construction of the MMI, codebook. So, we recall from
Section 11.3.1 that MAP is different from MML when continuous-valued attributes
and probability densities are involved. But — as we have Just explained — even in the
rare case when all attributes are discrete and only probabilities (and no densities)
are involved, then - although some approximations to MMI, would yield MAP — we
still find that MMIL, is generally different from MAP. Whereas the MAP, maximum
likelihood (ML), and Akaike’s information criterion (AIC) estimates are statistically
inconsistent for g variety of parameter estimation problems (e.g., Neyman-Scott
[Dowe and Wallace 1997] and linear factor analysis [Wallace 1995; Wallace and
Freeman 1992]), the two-part structure of MMI, messages leads to MML’s general
statistical consistency results [Barron and Cover 1991; Wallace 1996]; [Wallace
and Freeman 1987, Sec. 2, p 241]. We note in passing Dowe’s related question
[Dowe, Baxter, Oliver, and Wallace 1998, p. 93]; [Wallace and Dowe 1999a, p. 282];
[Wallace and Dowe 2000, p. 78] as to whether only (strict) MML and possibly also
closely related Bayesian ’techniques (such as minimising the expected Kullback-
Leibler distance [Dowe, Baxter, Oliver, and Wallace 1998]) can generally be both
statistically invariant and statistically consistent.

11.3.2 “The” Universal Distribution and Terms “of Order One”

In its most general sense (of being akin to Kolmogorov complexity or algorithmic
information-theoretic complexity), MML uses the priors implicit in the particular
choice of universal Turing machine [Wallace and Dowe 1999a, sec. 7 and elsewhere].
We agree with other authors [Rissanen 1978, b 465]; [Barron and Cover 1991,
sec. IV, pp. 1038-1039]; [Vitanyi and Li 1996][Li and Vitanyi 1997, secs 5.5 and
5.2]; [Vitanyi and,Lj 2000] about the relevance of algorithmic information theory
(or Kolmogorov complexity) to MDL and MML. However, a second common
misconception is either an implicit assumption that there ig one unique universal
distribution, or at least something of a cavalier disregard for quantifying the
(translation) terms “of order one” and their relevance to inference and prediction.
We note that there are countably infinitely many distinct universa] Turing machines
and corresponding universal (prior) distributions. As such, the relevance of the
Bayesian choice of prior or Turing machine oy both should be properly understood
[Wallace and Dowe 1999a, secs. 2.4 and 7].

A third, related, common misconception concerns the construction of the MML
codebook in SMML. Given the likelihood function(s) and the Bayesian prior(s),
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without having seen any data, we construct the MML codebook as in Section
11.2 so as to minimize the expected length of the two-part message [Wallace and
Boulton 1975, secs. 3.1 - 3.3]; [Wallace and Freeman 1987, sec. 3]; [Wallace 1996];
[Wallace and Dowe 1999a, secs. 5 and 6.1]; [Wallace and Dowe 1999b, secs. 1.2
and 1.3]. This typically results in coding blocks which are partitions of the data
space. (One can only record countably different measurement values, and it is
reasonable to assume that any continuous-valued measurement is made to some
accuracy, €. As such, its value can be encoded with a finite code length.) With the
MMTL codebook now thus chosen, given data D, we choose hypothesis, H, so as
to minimize the length of the two-part message. This should clarify that common
misconception about SMML and the MML codebook. The strict MML principle
has been applied to problems of binomial distributions [Wallace and Boulton 1975,
sec. 5]; [Wallace and Freeman 1987, sec. 3|; [Farr and Wallace 2002] and a restricted
cut-point segmentation problem [Fitzgibbon et al. 2002a] (which, like the Student
T distribution, would appear to have no sufficient statistics other than the data
themselves), bit is generally computationally intractable. In practice, we consider
approximations to a partitioning of the parameter space, such as the invariant point
estimator of [Wallace and Freeman 1987, sec. 5, a usable estimator]; [Wallace and
Dowe 1999a, sec. 6.1.2, practical MML]; [Wallace and Dowe 1999¢, p. 346, col. 2] —
and sometimes others, as discussed below. v

&

Tractable Approximations to Stricc MML The invariant point estimator of
[Wallace and Freeman 1987, sec. 5, a usable estimator]; [Wallace and Dowe 1999a,
sec. 6.1.2, practical MML]; [Wallace and Dowe 1999c, p. 346, col. 2] is based on
a quadratic approximation to the Taylor expansion of the log-likelihood function
and the assumption of the prior being approximately locally uniform. Despite the
many and vast successes (e.g. [Wallace and Dowe 1993; Dowe, Oliver, and Wallace
1996; Dowe and Wallace 1997; Oliver and Wallace 1991; Oliver 1993; Tan and
Dowe 2002; Tan and Dowe 2003; Wallace and Dowe 2000; Edgoose and Allison
1999: Wallace and Korb 1999; Baxter and Dowe 1996; Wallace 1997; Vahid 1999;
Viswanathan and Wallace 1999; Fitzgibbon, Dowe, and Allison 2002b; Comley
and Dowe 2003]) of the Wallace and Freeman [1987] approximation [Wallace and
Freeman 1987, sec. 5]; [Wallace and Dowe 1999a, sec. 6.1.2], it 4s an approximation,
and its underlying assumptions are sometimes strained [Wallace and Dowe 1999c,
p. 346, col. 2] (or at least appear to be [Griinwald, Kontkanen, Myllymaki, Silander,
and Tirri 1998]) — leading us to new approximations. These include Dowe’s invariant
MMLD approximation and Fitzgibbon’s modification(s) [Fitzgibbon et al. 2000a,b],
Wallace’s numerical thermodynamic eptropy approximation [Wallace 1998], and
others (e.g., [Wallace and Freeman 1992; Wallace 1995]).

We note that the standard deviation o of measurements of accuracy € (as in
Section 11.2 and 11.3.3) is generally assumed ([Wallace and Dowe 1994, sec. 2.1};
[Comley and Dowe 2003, sec. 9]) to be bounded below by 0.3€ or e/V/12.
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11.4 MML as a Universal Principle, Prediction and MDL

11.4.1  Brief History of Early MML Papers, 1968-1975

These first six MML papers [Wallace and Boulton 1968; Boulton and Wallace
1969, 1970, 1973, 1975; Wallace and Boulton 1975] from Section 11.1 and David
Boulton’s 1975 Ph.D. thesis [Boulton 1975] were variously concerned with univariate
or multivariate multinomial distributions [Boulton and Wallace 1969; Wallace and
Boulton 1975, multivariatc Gaussian distributions, mixture modeling (or clustering
or cluster analysis or intrinsic classification or unsupervised learning) of such
distributions [Wallace and Boulton 1968; Boulton and Wallace 1970; Boulton
and Wallace 1975; Boulton 1975] and even hierarchical mixture modeling of such
distributions [Boulton and Wallace 1973]. We also see the introduction [Boulton
and Wallace 1970, p. 63] of the (term) nit, where 1 nit = log, e bits. The nit has
also been referred to as a nat in subsequent MDL literature, and was known to Alan
M. Turing as a natural ban (see, e.g., [Hodges 1983, pp. 196-197] for ban, deciban,
and natural ban). These units can be used not only to measure message length and
description length but also to score probabilistic predictions.

11.4.2 Inference, Prediction, Probabilistic Prediction and Logarithmic
Scoring

Two equivalent motivations of MMIL are, as given in Section 11.1, (1) to maximize
the posterior probability (not a density — see Section 11.3.1) and, equivalently, (2)
to minimize the length of a two-part message.

The second interpretation (or motivation) of MML can also be thought of in
terms of Occam’s razor [Needham and Dowe 2001]. Both these interpretations can
be thought of as inference to the best (single) explanation. Prediction [Solomonoff
1964, 1996, 1999] is different from inductive inference (to the best explanation) in
that prediction entails a weighted Bayesian averaging of all theories, not just the
best theory [Sol&imonoﬂ“ 1996; Dowe, Baxter, Oliver, and Wallace 1998]; [Wallace
and Dowe 1999a, sec. 8]; [Wallace and Dowe 1999c¢, sec. 4]. Thus, despite the many
successes described in this chapter, MML is not directly concerned with prediction.

Probabilistic Prediction and Logarithmic Scoring A prediction which gives
only a predicted class (e.g., class 2 is more probable than class 1) or mean (e.g.,
A = 5.2) conveys less information than one giving a probability distribution —
such as (p1 = 0.3, 5, = 0.7) or N(ji = 5.2,62 = 2.1%) — whereas a probabilistic
prediction, such as (0.3,0.7), also gives us the predictively preferred class (class
2) as a byproduct. To paraphrase it more bluntly, the current literature could be
said to contain all too many methods endeavoring to tune their “right” / “wrong”
predictive accuracy with scant regard to any probabilistic predictions. A first
obvious shortcoming of such an approach will be its willingness to “find” (or “mine”)
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spurious patterns in data which is nothing more than 50% : 50% random noise.

One criterion of scoring functions for probabilistic predictions is that the optimal
expected long-term return should be gained by using the true probabilities, if
known. The logarithmic scoring function achieves this, and has been advocated
and used for binomial [Good 1952; Good 1968; Dowe, Farr, Hurst, and Lentin
1996]; [Vovk and Gammerman 1999, sec. 3], multinomial [Dowe and Krusel 1993];
[Tan and Dowe 2002, sec. 4]; [Tan and Dowe 2003, sec. 5.1], and other distributions
(e.g., Gaussian [Dowe et al. 1996]). Interestingly, Deakin has noted several cases
of scoring functions other than logarithmic achieving this criterion for multinomial
distributions [Deakin 2001]. Nonetheless, we prefer the logarithmic scoring function
for the added reason of its relation to log-likelihood, the sum of the logarithms of
the probabilities being the logarithm of the product of the probabilities, in turn
being the logarithm of the joint probability.

The predictive estimator which minimizes the expected (negative) log-likelihood
function is known as the minimum expected Kullback-Leibler distance (MEKLD)
estimator [Dowe et al. 1998]. Theoretical arguments [Sf()lomonoff 1964; Dowe et al.
1998] and intuition suggest that the SMML estimator (recall Sections 11.2 and
11.3.3) will come very close to minimising the expected Kullback:Leibler distance.

11.4.3 MML, MDL, and ‘Algorithmic Information Theory

The relation between MML [Wallace and Boultén 1968; Wallace and Freeman
1987; Wallace and Dowe 1999a] and MDL [Rissanen 1978, 1987, 1999b] has been
discussed in [Wallace and Freeman 1987; Rissanen 1987] and related articles in a
1987 special issue of the Journal of the Royal Statistical Society, in [Wallace and
Dowe 1999a,b,c; Rissanen 1999a,b,c] and other articles [Dawid 1999; Clarke 1999;
Shen 1999; Vovk and Gammerman 1999; Solomonoff 1999], in a 1999 special issue of
the Computer Journal, and elsewhere. For a discussion of the relationship between
strict MML (SMML) (see Sections 11.2 and 11.3.3) and the work of Solomonoff
[1964], Kolmogorov [1965], and Chaitin [1966], see [Wallace and Dowe 1999a].

We reiterate the sentiment [Wallace and Dowe 1999c| that, in our opinion,
MDL and MML agree on many, many points.. We also acknowledge that from
the perspective of someone who knew relatively little about MDL and MML, the
disagreements between MDL and MML would appear to be both infrequent and
minor [Wallace and Dowe 1999c]. Having said that, we now venture to put forward
some concerns about some MDL coding schemes.

Efficiency and Reliability of Coding Schemes and of Results Recalling
Section 11.4.2, the predictive reliability of MDL and MML will depend very much
upon the coding schemes used. In [Quinlan and Rivest 1989; Wallace and Patrick
1993] and [Kearns, Mansour, Ng, and Ron 1997; Viswanathan, Wallace, Dowe, and
Korb 1999], we respectively see a decision tree inference problem and a problem
of segmenting a binary process in which the original coding schemes [Kearns et al.
1997; Quinlan and Rivest 1989] had their results improved upon by corresponding
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improvements in the relevant coding schemes [Viswanathan et al. 1999; Wallace and
Patrick 1993]. Reinterpreting the Occam’s razor measure of decision tree simplicity
from the node count in [Murphy and Pazzani 1994] to a message length measure in
[Needham and Dowe 2001] likewise gives improved results.

~ While the principle and spirit of the 1978 MDL coding scheme [Rissanen 1978]
live on, it is generally acknowledged in more recent MDL writings and elsewhere
(see, e.g., [Wallace and Dowe ’1999a, p. 280, col. 2]) to have been substantially
improved upon.

In conclusion, we ask the reader wishing to use an MDL or MML coding scheme to

note that the reliability of the results will be highly dependent upon the reliability
of the coding scheme.

Further Comments on Some Other MDL Coding Schemes While MML
is openly and subjectively Bayesian and known to be so, many often either assert
that MDL is Bayesian or ask whether or not it is (see, e.g., [Vitanyi and Li 1996];
[Dawid 1999, p. 323, col. 2, sec. 4, sec. 5]; [Clarke 1999, sec. 2]; [Vitanyi and Li
2000]). Some would contend that a parameter space restriction [Rissanen 1999b, p.
262, col. 2] was also invoking a prior — namely, that the values of the parameters
cannot lie in the prohibited area (cf. [Dawid 1999, p. 325, col. 2]).

The Jeffreys ‘prior’ [Jeffreys 1946] uses the Fisher information as though it were
a Bayesian prior, thus depending upon the sensitivity of the measuring instruments
and observational protocol used to obtain the data [Lindley 1972; Bernardo and
Smith 1994]; [Dowe, Oliver, and Wallace 1996, p. 217]. This would appear to be
able to lead to situations where the prior beliefs one uses in modeling the data
depend upon the streﬂé;th or location of the measuring instrument [Dowe, Oliver,
and Wallace 1996, p. 217]; [Wallace and Dowe 1999a, sec. 2.3.1] (see also [Wallace
and Freeman 1987, Sec. 1, p241]; [Wallace and Dowe 1999a, sec. 5, p. 277, col. 2] for
other concerns). The Jeffreys ‘prior’ has been used in comparatively recent MDL
work [Rissanen 1996a,b], raising some of the above concerns. The Jeffreys ‘prior’ also
does not always normalise (e.g., [Wallace and Dowe 1999b, secs. 2.3.2 — 2.3.4]). We
understand that Liang and Barron [2005] and Lanterman [2005] partially address
this problem. The notion of complete coding in MDL [Rissanen 1996a; Dom 1996];
[Griinwald, Kontkanen, Myllymaki, Silander, and Tirri 1998, sec. 4] would appear
to be in danger of contravening the convergence conditions of the two-part message
form from [Barron and Cover 1991].

Some other comments on some MDL coding schemes and suggested possible
remedies for some of the above concerns are given in [Wallace and Dowe 1999c¢, sec.
2] and [Wallace and Dowe 1999b, sec. 3].

11.4.4 MML as a Universal Principle
The second author founded and (in 1996) chaired the Information, Statistics and

Induction in Science (ISIS) conference (see, e.g., [Rissanen 1996b; Solomonoff 1996;
Wallace 1996; Vitanyi and Li 1996; Dowe and Korb 1996]) because of a belief in the
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universal relevance of MML to problems in induction and the philosophy of science.
Recalling Section 11.4.3, we suspect that the editors and perhaps also many of the
other authors in this book might well have similar beliefs.

The relevance of MML to inductive inference is clear, but let us summarize. MML
has been used for parameter estimation for a variety of distributions [Wallace and
Boulton 1968: Boulton and Wallace 1969; Wallace and Dowe 1993; Dowe, Oliver,
and Wallace 1996; Dowe and Wallace 1997; Wallace and Dowe 2000], and for
supervised Iearning [Wallace and Patrick 1993; Oliver and Wallace 1991; Oliver
1993; Vahid 1999; Tan and Dowe 2002; Tan and Dowe 2003} and unsupervised
learning (clustering or mixture modeling) [Wallace and Boulton 1968; Wallace
1986; Wallace and Dowe 1994; Wallace and Dowe 2000; Edgoose and Allison
1999], hierarchical clustering [Boulton and Wallace 1973], inference of probabilistic
finite state automata (PFSAs) or hidden Markov models (HMMs) [Wallace and
Georgeff 1983], Markov models of clustering [Edgoose and Allison 1999], linear
and polyndmial regression [Baxter and Dowe 1996; Wallace 1997; Viswanathan
and Wallace 1999; Vahid 1999; Fitzgibbon et al.':"t-’;2002b], segmentation problems
[Viswanathan et al. 1999; Fitzgibbon et al. 2002a], factor analysis [Wallace and
Freeman 1992; Wallace 1995], clustering with factor analysis: [Edwards and Dowe
1998], and so on. It should be added that the success of MML in some of the
above problems is emphatic. We also recall the statistical invariance and statistical
consistency of MML from Section 11.3.

MML or closely related work has also been applied to genome analysis [Allison,
Wallace, and Yee 1990; Dowe, Oliver, Dix, Allison, and Wallace 1993; Dowe,
Allison, Dix, Hunter, Wallace, and Edgoose 1996; Edgoose, Allison, and Dowe
1996], psychology [Kissane, Bloch, Dowe, R.D. Snyder andP. Onghena, and Wallace
1996], causal networks [Wallace and Korb 1999], Bayesian networks (sec. 11.4.4 in
this book and [Comley and Dowe 2003]), Goodman’s “Grue” paradox [Solomonoff
1996, financial market (in)efficiency [Dowe and Korb 1996], and cognitive science
and IQ tests [Dowe and Hajek 1998; Hernandez-Orallo and Minaya-Collado 1998;
Dowe and Oppy 2001]; [Sanghi and Dowe 2003, sec. 5.2].

We now proceed throughout the remainder of this chapter to discuss compar-
atively new work on the second author’s notion of inverse learning (or implicit
learning) [Dowe and Wallace 1998; Comley and Dowe 2003] and the first author’s
refinements thereof [Comley and Dowe 2003], including setting the asymmetric lan-
guages in a framework of generalized Bayesian networks and investigating search
algorithms. sectionMML, Generalized Joint Distributions, and Implicit Learning

11.4.5 Generalized Bayesian Networks

We now describe an application QEMML to the inference of generalized Bayesian
networks. This is an extension of the idea of ‘inverse learning’ or ‘implicit learning’
proposed by Dowe in [Dowe and Wallace 1998], and further developed by Comley in
[Comley and Dowe 2003]. In this domain we deal with multivariate data, where each
item X (also known as a thing, case, or record) has k attributes (also referred to as
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priXy| Xq) { prXy|

priXa| Xy, X,)

prXz| X, X, Xy) priXz| Xp)

Figure 11.1 Examples of Bayesian network structures, illustrating the probability
distributions supplied in each node. On the left is a fully connected network, while
the network on the right is partially connected. Notice here that X3 is conditionally
independent of X; and X, given X,

variables or fields), denoted here as X 1.+, Xi. We wish to model the statistical
relationships between attributes when presented with a set of n such data. We may
want to do this to be able to predict one of the attributes when given values for
the others, or simply because we are interested in the interattribute correlations.
The graphical structure of Bayesian networks makes them an intuitive and
easily interpreted representation of the relationships between attributes. A Bayesian
network is a directed acyclic graph (DAG) with one node corresponding to each
attribute. Each node provides a conditional probability distribution of its associated
attribute given the attributes associated with its parent nodes. Figure 11.1 shows
example network structures for X — {X1, X5, X5, X4}. For a general introduction
to Bayesian network theory, see [Russell and Norvig 1995, chap. 15, sec. 5].
Bayesian networks model the joint distribution over all attributes, and ex-
press this as a product of the conditional distributions in each node. In the case
of a fully connected Bayesian network (see Figure 11.1), the joint distribution
P(Xi&XQ&‘..&Xk) is modeled as P(Xy) - P(X,|X7). P X, y Xk—1). In
practice, however, Bayesian networks are rarely fully connected, and make use of
conditional ind@pendencies to simplify the representation of the Joint distribution
(see Figure 11.1). .
Although — in the abstract sense — the conditional probability distribution
of a node can take any form at all, many Bayesian network methods simply use
conditional probability tables, and are limited by the restriction that all attributes
must be discrete. Others [Scheines, Spirtes, Glymour, and Meek 1994; Wallace
and Korb 1999] model only continuous attributes, describing an attribute as a
linear combination of its parent attributes. Here we show how information-theoretic
approaches like MML can be used, together with decision tree models, to build a
general class of networks able to handle many kinds of attributes. We use decision
trees to model the attribute in each node, as they tend to be a compact and
powerful representation of conditional distributions, and are able to efficiently
express context-specific independence [Boutilier, Friedman, Goldszmidt, and Koller
1996]. It should be noted that any conditional model class could be used, so long
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as MML message lengths can be formulated for it. An MMI, coding scheme for
basic decision trees is given in [Wallace and Patrick 1993], which refines an earlier
coding scheme suggested in [Quinlan and Rivest 1989]. A variant of this scheme is
summarized in Section 11.4.7,

11.4.6 Development and Motivation of Implicit Learning

The idea of implicit learning (or inverse learning) by MML presented here builds
on material originally proposed by Dowe in [Dowe and Wallace 1998]. That work
involved only two attributes, or at most two groups of attributes. Comley [Comley
and Dowe 2003] later refined the implicit learning MML coding scheme (given in
Section 11.4.7) and generalized the idea to handle more than two attribute groups,
relating it to Bayesian networks.

Although the two-attribute case is a simple one, it provides informative examples
of the benefits of implicit learning. The idea is that we have a class of conditional
models that we are comfortable with and know how to use. We can use this to
accurately model one attribute X 1 as a probabilistic function of the other attribute,
X2. But imagine it is actually X5 that we wish to predict, given X;. Using Bayes’
rule, and coupling our model of P(X1]|X3) with a ‘prior’ model of P(X3), we can
form a model of the joint distribution PX1&X,) = P(Xy) - P(X1]X2). By taking
a cross-sectional ‘slice’ from this compébsi[te joint model, we can then extract the
conditional probability P (Xa]X1). co ~ k

For example, take the case where X; and X, are both continuous variables,
where X, is generated from the Gaussian distribution N (10,1) and X7 is in turn
generated from (X3)3 + N (0, 1). Suppose our model language is the class of uni-
variate polynomials of the form '

Xo = ag + a1 Xy + ax(X1)? + az(X1)3 + - ¢ aq(X1)?% + N(0,0?) for some de-
gree d

and we wish to predict X given Xi. If such a technique were to model X5 as
an ezplicit probabilistic function of Xy, it could not express — let alone discover
— the true conditional relationship X, = (X 1+ N(0, 1))5, as this is outside its
model language. However we can use the same model language to implicitly state
X’s dependence on X, using the joint distribution and Bayes’ rule as follows:

_ P(Xi&Xy)

P(Xo|X:) = TR (11.1)

P(Xy) - P(X;|X

_ MM (11.2)
Joex; P P(X1]2) ,\

where P(X3) is given by X, = 10 + N(0,1), and P(X1[X3) is given by X, =

(X2)® + N(0,1). The point here is that the given model language cannot explicitly

express P(X3[X;). It can, however, express both P(X3) and P(X1|X3), which can
be used together to define P (X2|X1) implicitly. :
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Many other circumstances exist where our target attribute is not necessarily best
modeled as an explicit probabilistic function of the remaining attributes. Consider
two continuous attributes, X; and X 2, which come from a two-dimensional mixture
model [Wallace and Dowe 2000; McLachlan and Peel 2000]. While one could attempt
to do a linear or polynomial regression of the target attribute, X1, as a function
of X5, one would do best to acknowledge the mixture model and then model X
as a cross section (giveig;—Xg) of the mixture distribution. (Indeed, in this example
X1 and X could equally well be groups of attributes [Dowe and Wallace 1998]).
The point is that with a restricted model language one cannot always accurately
estimate the desired conditional probability distribution, and it may be beneficial
to implicitly model the target attribute by estimating the joint distribution. The
generality of MML makes it an ideal tool for doing this. The consistency results
of MML [Barron and Cover 1991; Wallace 1996;: Wallace and Dowe 1999a; Wallace
and Dowe 1999¢c], [Wallace and Freeman 1987, sec. 2, p. 241] suggest strongly that
— quite crucially — it will converge to the best possible representation of the joint
distribution.

The idea of implicit modeling was in fact first inspired by the problem of protein
secondary structure prediction based on a known amino acid sequence. Learning
a conditional model of the secondary structure sequence given the amino acid
sequence is difficult, but the secondary structure sequence is far from random and
can be easily modeled by itself. This model can be paired with a conditional model

~of the amino acids given the secondary structures, forming a joint distribution from
which secondary structure can be predicted.

11.4.7 MMLLVCOding of a General Bayesian Network

Recall from Section 11.1 the two-part format of the MML message - first stating
the hypothesis H, then data D in light of this hypothesis. These two parts reflect
a Bayesian approach where the cost of stating H is —log (P(H)), P(H) being our
prior belief that H is the true hypothesis, and D is transmitted using some optimal
code based an the probabilities supplied by H. The H corresponding to the shortest
overall message is chosen, as it maximizes the joint probability P(H &D). Since D
is held constant and we are only choosing from competing Hs this also corresponds
to choosing the H with the highest posterior probability P(H|D). This subsection
details how one might construct such a message for the general Bayesian networks
proposed here.

The first part of the message, our hypothesis, must include the structure of
the network — that is, the (partial) node ordering and connectivity — and the
parameters required for the conditional probability distribution in each node. There
are many possible ways in which one could do this; we describe one below.

We start by asking how many possible network structures there are. For k
attributes there are k! different fully connected structures (or total node orderings).
But this does not take into account the number of partially connected networks.
A total ordering has (]2“) = (k* — k)/2 directed arcs (each of which may or may
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not be present in a partially connected network). So there are 2(k*—k)/2 possible
arc configurations for each of the k! total orderings, leaving us with k! o(k*=k)/2
possible network structures. We can assign each of these an equal prior probability
of (k! 20°=R)/2) 71

Note now, though, that many of the partially connected structures will actu-
ally correspond to the same network (Figure 11.2). As we wish to choose between
distinct networks it is important to treat these equivalent network representations
as a single hypothesis. If we were to ignore this, the hypothesis’ prior probability
will be split among its equivalent representations, each of which would be inappro-
priately expensive. So from each group G of equivalent structures we choose one
representative and assign it the prior probability of cg (k‘! 2(k*=k)/ 2) ' where ca is
the cardinality of group G. This means that network structures with many equiv-
alent representations are assigned a higher prior probability. Note that the coding
scheme was chosen primarily for its simplicity, rather than being motivated by any
belief that these structures are really more likely. For some applications it may be
worth using a less ‘biased’ scheme, even if this is computationally more difficult.

Let us now calculate len(S), the number of bits required to encode a network
structure S (remembering that we are yet to transmit the conditional probability
distribution parameters for each node).

len(S) = —log, (P(9)) (11.3)
= —log, ﬁ) (11.4)
— Tog, (k!) + log, (2~—) ~ logy(ca) (1L5)
= log,(k!) + Sk logs(ca) (11.6)

Now that we have stated the node ordering and connectivity, we can transmit the
parameters for the conditional distribution in each node. Nodes can express their
conditional probability distributions using any of a wide variety of model classes —
for example, conditional probability tables, polynomial regressions, and so on; here
we use a rather general class of decision tree, described below.

The leaves of the tree may model either continuous-valued attributes using Gaus-
sian density functions, or discrete-valued attributes using multistate distributions.
Branch (test) nodes are capable of performing a binary split on a continuous-valued
attribute (using a cut point) or a multiway split on a discrete-valued attribute (one
subtree per possible value). Once a discrete-valued attribute has been tested in a
branch, no sub-tree may test this attribute again (as the outcome of such a test is
already known). However, a continggﬁs attribute may still be tested by a branch
even if a parent branch has already tested it, as a different cut point can be used
to further partition the data. The coding scheme used for these trees is similar to
that presented in [Wallace and Patrick 1993].

We transmit the topology in a depth-first fashion as a string of code words —
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Order: X4, X5, X3, X4

_____________________ g

Figure 11.2 Two equivalent partially connected networks with different total node
orderings.

each either ‘branch’ or ‘leaf’. The probability of the root node being a branch is
na/(na+1) where n4 is the number of input attributes for the tree. The probability
of any other node being a branch is taken to be 1 /a where a is the ‘arity’ of the
node’s parent. The probability of a leaf is obviously one minus the probability of

‘a branch. For a tree where all tests have a binary outcome, stating ‘branch’ or

‘leaf” each costione bit.! After each ‘branch’ code word, we state which of the input
attributes is tested there. This costs log, (n/y) bits where n/ is the number of input
attributes that could be tested at that node. n'y is equal to n4 at the root of the
tree, but decreases by one in any path when a discrete attribute is tested (as further
testing of the same discrete attribute is prohibited). If it is a continuous attribute
we are tesi}ing, we also need to encode the associated cutpoint ¢. For this we use
a scheme outlined in [Comley and Dowe 2003, sec. 3.1}, and used prior to that in
the software associated with [Wallace and Patrick 1993] and [Kornienko, Dowe, and
Albrecht 2002, sec. 4.1].

Each ‘leaf’ code word is followed by the parameters for the model in that leaf —
either y and o for a Gaussian distribution, or P(v1),...,P(vpm—1) for an m-state
distribution (where the target attribute can take the values VL, ..., Um). Wallace
and Boulton [1968] and Boulton and Wallace [1969] give well-behaved priors and
coding schemes for both of the Gaussian and multistate models respectively.

This completes the transmission of H. We now transmit the data, D, one attribute
at a time according to the node ordering of the network specified in H. For

1. Except at the root of the tree where P(branch) =na/(na + 1)
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each attribute X;, we can build an optimal code book based on the conditional
probability distribution in the relevant node. We use this code book in conjunction
with the attributes already sent to encode X,;. We thus achieve our two-part MML
message.

If our H is a complicated network with high connectivity and large decision trees
it will be expensive to transmit, but can achieve high compression of the training
data, allowing us to state D very efficiently. At the other extreme oversimplified
networks can be encoded cheaply, but may not fully exploit the correlations that
exist in the data, making the transmission of D expensive. Minimising our two-
part MML message corresponds to our intuitive wish to find a tradeoff between
unjustifiably complicated models that overfit the data, and overly simplistic models
that fail to recognize important patterns. The level of complexity we can accept in
our models increases with the size of our (training) data.

B
L

11.4.8 Symmetric (Invertible) Languages B

Tt is interesting to note that some families of conditional distribution are symmetric
with respect to node ordering — that is, any probabilistic relationship P(X;) =
£(X;, X)) can also be expressed as P(X;) = g(X;, Xx), or P(Xi) = h(X:, X;5),
where f, g, and h are all in the family of conditional distributions. Put another
way, the inverse of any model in the 1anguage is also in the language.

For Bayesian networks using such distributions, the node ordering has no effect on
the family of joint distributions able to be expressed, provided that the connectivity
of the network remains the same. In other words, reversing the direction of one

or more arcs in a network will have no impact on the distributions it is able to
represent. The choice of node ordering for such a network is somewhat arbitrary
in the sense that it should not alter the joint distribution inferred.? This is in
fact the case for the typical Bayesian network where all attributes are discrete and
modeled by conditional probability tables. Another example of a model language
able to be inverted without altering the joint distribution is that where all attributes
are continuous and modeled as a linear combination of their parents, plus some
Caussian noise term. This is shown below:

X, = a1 Py + asPs + - - + apPy + N(p,07),

where Py,... P, are the p parent attributes of X;. v
Although one can still do implicit Jearning with such languages, if the aim is sim-

ply to extract the conditional distribution, say P(X;|X \ {X:}), from the inferred

network, then one will do just a; ‘well to simply learn this conditional distribu-
tion outright rather than go to the trouble of inferring an entire Bayesian network.
This idea is investigated by Ng and Jordan in [Ng and Jordan 2002], which is con-

9 In the case of causal networks the node ordering is often dictated by the user’s notion
of causality, or extra temporal information.
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cerned with generative-discriminative model pairs. That work concerns two equiva-
lent representations of a conditional probability distribution: one modeled explicitly
(discriminative), and the other modeled implicitly via a joint distribution (genera-
tive). Ng and Jordan compare the performance of the generative and discriminative
models, focusing on the efficiency of each and the asymptotic error rates. In this
chapter we are interested in asymmetric languages — that is, situations where we
are unable to express (or work with) the discriminative equivalent of a generative
model. Thus the discriminative and generative models compared here do not really
qualify as ‘pairs’ — the generative model is a more general case that can describe
distributions unavailable to the discriminative model.

11.4.9 Inferring the Node Order

As mentioned in Section 11.4.8, some networks use conditional distribution lan-
guages that are symmetric with regard to node order. Altering the node order of
such a network will not change the family of joint distributions able to be expressed.

If, however, we use asymmetric conditional models — for example, the class of
decision trees described in Section 11.4.7 — then the order of the nodes can have
a significant impact on the nature of the Jjoint distribution.

Consider the simple case where we have only two attributes — a binary-valued
attribute X3 and a continuous-valued attribute X c- Using the decision tree language
just mentioned, there are two ways to build a joint distribution over (X,&X,) —
one using the ordering X;, X. and the other using the ordering X, X;. These are
illustrated in Figure 11.3. When we construct our MMI, message (using the coding
scheme in Section 11.4.7), one of these networks will be cheaper than the other.
So, in the case bfi.,,such an asymmetric model language, MML provides us with a
natural way of inférring node ordering. The node ordering in this example is not
to be interpreted causally. We are simply choosing the ordering which provides us
with the best family of joint distributions. For research pertaining to MML and
causal networks, see, for example, [Wallace and Korb 1999].

11.4.10, An Efficient Search for Network Structure

Section 11.4.9 explained that, when using asymmetric conditional models, node
ordering and connectivity can have a significant impact on the nature of the joint
distribution. We show here how we can use this to our advantage when searching
for the best network structure.

We begin by searching over the space of total node orderings. As mentioned
in Section 11.4.7, there are k! possible total orderings, where k is the number of
attributes. Clearly we would like to avoid learning all the corresponding networks.
First, we use the MML decision tree scheme discussed in Section 11.4.7 to build
k decision tree models, DT 1.+, DT}, where DT; models X; and treats the other
attributes as input. Note that just because Xj is an input attribute to DT} does
not necessarily mean that it is tested at any branches.
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pr(Xp)
pr(Xy, = true) = 0.6

PriXe | Xp)

[ Xp, = true? [

pr(X| Xy = true)
pr(X| Xy = true) .

X

5, cut

Figure 11.3 Two networks, each representing a different joint distribution over X3& X..
This figure shows the difference that node order can make to the nature of the joint
distribution when dealing with asymmetric Bayesian networks. Two networks are depicted
- one on the left with the ordering (Xb,Xc), and one on the right with the ordering
(Xe, Xp). To the right of each node we depict the conditional probability distributions it
contains. Below each network is a (rough) graph showing how, when X, = true, P(X)
varies with X.. NOTE: This figure is not drawn: accurately or to scale — it is intended
only to give an idea of the behavior of our class of asymmetric networks.

We can now establish a list of independencies, and one- and two-way dependen-
cies. If DT’ does not test X;, and DT} does not test X; then we can conclude
that X; and X; are independent (at least in the presence of the other attributes)
and there is not likely to be much benefit in directly connecting the corresponding
nodes.

If DT; does test Xj, but DT} does not test X;, then we establish a one-way
dependency. This is particularly useful in formulating partial ordering constraints.
Here we assert that there is little use in placing a connection from X; to X in the
network, as we are not able to express X;’s dependency on X;. There is, however,
some benefit in a connection directed from X; to X;, because we can see from
examining DT; that we can express some dependency of X; on X,;. Given these
considerations, it makes sense to try to place X; after X; in the total nodc ordering.

If DT; tests X, and DT} also tests X;, then we conclude that there is a two-
way dependency between X; and X;. This tells us that a connection between the
corresponding nodes will probably be useful, but does not tell us which way this
link should be directed, and hence does not shed any light on sensible total node
orderings.

We now build a list L of useful dlrected links. For each one-way dependency from
X; to X, we add X; — X to the list. For each two-way dependency between X,
and X, we add both X, — X}, and X, — X, to the list.

Now we give each possible fully connected network structure a score equal to the
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number of directed links in [, that it exhibits. We keep only those structures with
an equal highest score. For each of these structures, we remove any links that do not
feature in L, creating a set of partially-connected structures, many of which will now
be equivalent. For each group of equivalent structures we record the cardinality, and
keep only one representative. We can now build a list of the conditional probability
distributions required. Many of these will be used in more than one network, and
there is no need to learn thgﬁ more than once. For example, two networks may both
model X; as a probabilistic function of the same set of parent attributes, P(X;).
The corresponding decision tree need only be learned once.

After learning all decision trees required (using the MML approach outlined in
Section 11.4.7), we cost each network according to the scheme presented in Section
11.4.7. The cheapest network is chosen to represent our joint distribution.

While this method generally works well, it is not guaranteed to produce the opti-
mal network structure. The two paragraphs below outline two potential downfalls.

Falsely Detecting Dependencies Consider an attribute X, depending on a
Boolean attribute X, v, and, if X, is true, also depending on X.. We conclude from
this that X, depends on both X, v and X, and that the corresponding directed links
are worthwhile. Imagine now that we go with the ordering X,, X,, X;. Suddenly
the link X, — X, is useless — we cannot detect any dependency of X, on X,
without the presence of X,. It would be better to have removed this link, but it
is too late because the structure (and connectivity) is decided before the trees are
inferred, and it is only when we infer the trees that we discover DT ale does not test
Xe.

i

Failing to Detect a Dependency If some attributes are highly correlated, they
may ‘overshadow’ each other. For example, X, has a strong dependency on X, and
a weaker (but still important) dependency on X.. The decision tree DT, tests X, at
the root node, nicely partitioning the classes. Each leaf now decides not to bother
testing X., due to fragmentation of data, and the minimal extra, purity gained.
So we conclude that X. does not depend on Xe, but in fact this independence is
conditional on X, being present. Imagine an ordering X, Xa, Xy where we would
decide to remove the link X. — X,. Now our encoding of X, will not benefit from
any correlations. '

Another cause of this error is that in the presence of many input attributes,
stating which attribute is to be tested at any branch becomes expensive. A ‘border-
line’ branch may be rejected on this basis whereas in the actual network (where
there are fewer input attributes) it will be cheaper to state that branch and it may
be accepted. ’

11.4.11 A Coding Scheme for ‘Supervised’ Networks

We present in this subsection an alternative to the MML costing scheme given in
Section 11.4.7. This alternative scheme can be used when we know, before inferring
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the network, which attribute it is that we wish to predict. This is often the case
in practical classification situations, where there is usually a particular attribute of
interest which is difficult to measure, that we want to predict based on the rest of
the (more easily) observed attributes. In this subsection we will refer to such an
attribute as the ‘target’ attribute, and label it as X;.

This scheme focuses on learning an accurate conditional distribution of X: given
XA\ A{X,}, as opposed to learning an accurate joint distribution over all of X.
Wettig, Griinwald, Roos, Myllyméki, and Tirri [2003] refer to networks that result
from such schemes as ‘supervised’ networks, and to networks that have attempted
instead to optimize the Joint distribution as ‘unsupervised’ networks. We adopt this
terminology, as it draws attention to the role of networks and their distributions in
classification tasks.

If we had a universal language for our conditional probability distributions
(CPDs), able to represent any conditional distribution at all, then we could do
no better than to optimize the Joint distribution over X. In other words, if one is
able to perfectly model the joint distribution, then this will also yield (by taking the
appropriate ‘cross section’) the best conditional distribution for any attribute. In
practical situations, however, we cannot usually find such a perfect representation
of the joint distribution, and the best Jjoint distribution able to be expressed may
not in fact correspond to the best conditional distribution for X:.

For the asymmetric networks presented here, the structure, connectivity, and
barameters required to represent the best Jjoing distribution may differ significantly
from those required to represent the best condi @_nal distribution of X,. We expect,
when the task is to predict or classify X, that the supervised network will produce
better results.

Our proposed MML scheme for supervised networks differs only slightly from
that for unsupervised networks presented in Section 11.4.7. The major difference
is that the supervised scheme assumes that the values for X \ {X;} are common
knowledge, and need not be included in the message. We transmit the network
structure and the decision tree parameters in exactly the same manner. In the
supervised scheme, though, we do not transmit the data values of X \ {X:}. After
decoding the network the receiver may use it, together with the values for X \{X:},
to derive a CPD pr(X,|X \{Xe}). Tt is by using this distribution that the values of
our target attribute, X,, are transmitted.

11.4.12 An Example Network

Figure 11.4 shows a network and one of the CPDs learned from the well-known iris
data set.

Figure 11.5 summarizes the performante of various classifiers on the iris data set.
The classifiers are:




