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Figure 11.4 On the left is a Bayesian network learned from the iris data set using the
MML approach presented in this chapter. On the right is the decision tree used to give a

probability density over petalLength, given values of the parent attributes — pctalWidth,
class, and sepalLength.

* MML-DT: This is a decision tree tool that infers models from the class of
decision trees described in Section 11.4.7. It uses an MML costing metric (see

Section 11.4.7) similar to that in [Wallace and Patrick 1993] and a look-ahead-0
greedy search algorithm. This method is equivalent to a supervised network where

all nontarget attributes are parents of the target attribute.

= C5: C5 [Quinlan ] (and its forerunner, C4.5) are popular decision tree tools
used for classification. C5 does not use the MML principle and is widely used as a
performance benchmark in classification problems

® unsup-net: This is the algorithm presented in this chapter for learning unsuper-
vised asymmietric Bayesian networks.

® sup-net: This is the modified algorithm (see Section 11.4.11) that learns super-
vised asymmetric Bayesian networks.

The results in Figure 11.5 are from a series of ten-fold cross-validation exper-
iments using the iris data set, available from [Blake and Merz 1998]. In all, 10
experiménts were performed, for a total of 100 learning tasks for each method. In
each experiment, each method’s performance was averaged over the 10 test sets to
yield a score, s. The graph shows the best, worst, and average values of s for each
classifier. These results show the two MML asymmetric Bayesian network classi-
fiers performing favorably, on average achieving a lower classification error than the
decision trees. This is an example of a situation in which we do better by modeling
the target attribute, implicitly using a joint distribution — rather than building an
explicit conditional mode] like the two decision tree classifiers.

11.4.13 TIssues for Further Research

The asymmetric Bayesian networks presented in this chapter have already produced
encouraging results [Comley and Dowe 2003, and raise several interesting areas
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Figure 11.5 Best, average and worst performance of four classification tools on the 118
data set.

for further research. We feel it would be beneficial to investigate other classes of
asymmetric models, for example a multivariate version of the polynomial regression
described in Section 11.4.6.

Another issue for future research relates ifo the estimation of Gaussian density
functions in the leaves of decision trees modéﬁpg continuous attributes. The prob-
ability distribution for a discrete attribute tested by such a decision tree is partly
determined by the ratio of these Gaussian distributions. When the estimated vari-
ance is small, this ratio can become very large and yield extreme probabilities for
certain values of the discrete (target) attribute. This issue is discussed in more de-
tail in [Comley and Dowe 2003]. In [Ng and Jordan 2002] the problem is avoided to
some degree by fixing the variance at a value estimated from the entire training set,
and allowing only the mean to vary as a function of the discrete target attribute.
This seemingly has the effect of avoiding small variance estimates, and producing
less dramatic ratios of Gaussian distributions.

Finally, we believe that the network structure coding scheme and search strategy
presented in this chapter could be further refined, and have begun work on a
promising variation based on incrementally adding directed links to an initially
unordered, empty network.

11.5 Summary

This chapter has described minilmfm message length (MML) — a statistically
invariant information-theoretic ap'p}oa,ch to Bayesian statistical inference dating
back to Wallace and Boulton Wallace and Boulton [1968] — and highlighted
some of the differences between MML and the subsequent minimum description
length (MDL) principle. Furthermore, in Section 11.3, we have addressed several
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common misconceptions regarding MMI,
Dowe’s question as to whether Bayesianism is i
statistical invariance and consistency.

This chapter has also presented an application of MML to a general class of
Bayesian network that uses decision tr

ees as conditiona] probability distributions.
It can efficiently express context-specific independence, and is capable of modeling
a combination of discr@te and continuous attributes. We have suggested that when

dicted, it may be better to use a ‘supervised’

network rather than an ‘unsupervised’ one. We have proposed a modification to
our algorithm to allow for this.

The main contribution here, other than extending Bayesian networks to handle

continuous and discrete data, is the identification of ‘asymmetric’ networks, and
the proposal of an efficient scheme to search for node order and connectivity.
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