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7 Some re-capping and revision

7.1 Invariance of MML under 1-to-1 re-parameterisation

As! has? been mentioned before and as will be repeated below, MML is invariant under
1-to-1 re-parameterisation. This holds not just for 1-dimensional estimation problems,
but also for general n-dimensional estimation problems.

One can show invariance formally mathematically, but a basic outline i s as follows.

First recall from Section 4.3, that the MML estimate of 0 is the value of § which maximises

= = =

h(6)f (x16)/{F(6)}"/*.

The likelihood function, f(z|6) 3, is invariant under 1-to-1 re-parameterisation. A bit less
obvious is that fact that h(8)/{F(8)}*/2 is also invariant under 1-to-1 re-parameterisation.
Although one should formally show this mathematically, we note that h(g) has the di-
mensions of “per something”, or “ something * 7 . E.g., if # were to be a length in metres,

!This document contains some revisions of earlier material by David Dowe alone or by David Dowe
and Graham Farr (variously entitled “Introduction to Minimum Encoding Inference’, ’An introduction to
MML Inference’, etc.); the rest is new. Typographical feedback on that earlier material from Hons and
other students in 1997-1998 are gratefully acknowledged.

2As Graham Farr has understandably revised some of his earlier 1997-1998 material, I apologise in
advance for any subsequent out-of-date and incorrect cross-references to page numbers (in particular),
section numbers or equation numbers in the material distributed by him in 1997-1998.

3or p(x|6) if we accidentally confuse notation.
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then h(H_') would have the dimensions of per metre, or m=!. F (5), being the expectation of
a second derivative, has the dimensions of a second derivative, namely “ per something® ”,

~1/2

or “ something™>”. So, F(f) ”? has the dimensions of “per something”, the same as h(6).
This at least tells us that h(6)/{F(6)}'/? is dimensionless, which is a necessary condition
for being invariant under 1-to-1 re-parameterisation.

~1/2
In fact, it turns out (H. Jeffreys, 1946) that F'(9) ? has the same mathematical form as
a prior, and indeed that h(0)/{F(6)}'/? is invariant under 1-to-1 re-parameterisation.

As well as being invariant, we also see that the likelihood function and the log-likelihood
function are dimensionless.

Since f(z|6), L = —log f(z|@) and h(6)/{F(0)}/? are invariant, it therefore follows that

= =

h(9)f(«|6)/{F(6)}'/> and —log(h(6)f(z|)/{F(6)}'/*) are invariant.

More complete expressions for the message length, such as on section 4.4, involve dimen-
sionless constants (such as the number of parameters, n).

It therefore follows that the message length, and the minimum of the message length, are
invariant under 1-to-1 re-parameterisation.

A sketchy alternative argument for the invariance of MML appeals to directly to infor-
mation theory, saying that information and information content are independent of the
framing of the problem, and so the message length and its minimum should not change
just because we transform the parameter axes.

7.2 Interpreting the Fisher information in MML estimation
7.2.1 Interpreting the Fisher information in one dimension

Recalling Section 4.3, we have that the optimal “spacing” or precision to which we state
our parameter estimates is given by

—

s(6) o< 1/{F(6)}'/>.

For a problem where we only wish to estimate one parameter, the Fisher information
qualifies an intuitive wish to choose the posterior mode of the likelihood maximum. The
second derivative of a function measures how quickly the first derivative is changing, or
how tight a bend or peak is. The Fisher information is an expected second derivative. If
the Fisher information is large, then our uncertainty region is small, and it makes sense
to aim for a tight peak. If the Fisher information is small, then it is difficult to justify
aiming for the highest point in the likelihood or the posterior without considering that
we are looking for a broad peak.
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7.2.2 Interpreting the Fisher information in several dimensions

Let us suppose now that we have a parameter estimation problem in several dimensions.
If the variables are independent, then so, too, will be the parameters being estimated.
This will result in the Fisher information matrix being diagonal, and so its determinant
will simply equal the product of the diagonal elements.

On the other hand, it is possible that, instead, the variables are highly correlated, or
have a high degree of collinearity. Such high interdependence will intuitively make the
uncertainty region large and the Fisher information small, because changing the value of
one parameter could still get us to an almost identical point in the likelihood function if
we changed the values of some highly correlated variables - sort of like how a flattenned
rhombus has a smaller area than a square with the same side length. In case it is a bit
confusing to try and picture the meaning of the Fisher information when the Fisher infor-
mation matrix is not diagonal, the invariance of MML under 1-to-1 re-parameterisation
is useful.

If the Fisher information matrix is not diagonal but the determinant is non-zero, then a
suitable 1-to-1 transformation will take us to a parameter space (say 6‘e ©' ) where the
Fisher information matrix now is diagonal. We can in principle do the MML estimation
in this space and then, by invariance, transform back to the original problem, #¢©.

7.3 Motivation of MML and other estimation methods

Statistics, econometrics, machine learning, “data mining” and other disciplines are con-
cerned with trying both to model the world around us based on any observations we have
made or any data we have observed and to predict the future based on these observations.
Many other disciplines are also concerned at least to some degree with those objectives
of modelling the world and predicting the future.

7.3.1 Relevance of modelling data

Given how vast the number of areas is in which we wish to model or predict, let us list
but a few which people might do professionally at work, recreationally or as part of their
private lives:

Economics, financial trading strategies, optimal portfolio balance, trying to predict the
housing market in your preferred part of town, trying to predict the value of the Aus$
before your next overseas holiday.

Meteorology, weather, safety of fishing on the bay, safety of an aeroplane taking off if it
has to land somewhere overcast in one hour, choosing when to declare a cricket innings
in light of incumbent weather.

Astronomy, trying to infer the formation of the solar system.

Physics, collecting data to try to infer various physical laws.

Medicine, psychology, trying to infer causal effects of smoking, trying to infer relevance
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of various drugs to treat various conditions, trying to infer good diet, exercise and envi-
ronmental options for a long and healthy life.

Bushfire prediction and protein structure prediction.

Trying to infer an opponent’s poker strategy.

Observing an expert in some discipline who can’t or won’t tell us what they do, but whose
method we hope to eventually learn to some degree.

Clustering and mixture modelling, so as to find clusters within proteins.

Compressing and aligning DNA either to discover genes or to discover ancestry.

Trying to identify the authorship of an ancient art work.

Trying to find a simple but useful model of how chess-players play.

Coming up with a better ranking system for (e.g.) tennis players.

Although modelling the world and predicting the future are related and very similar, we
emphasise that these tasks are not identical.

7.3.2 Issues in modelling data

The discipline of fitting models to data and prediction entails more than just running
a data-set through some software package. This is true in part because, as we have ar-
gued, fitting models (inference) and prediction are not identical. It is also true because
statistical modelling in the 1990s is far from unanimously “solved”. Many classical point
estimation techniques abound which we would contend are both philosophically and em-
pirically flawed — and we will provide examples to advocate this point. One could go as
far as saying that before using some statistical, econometric, machine learning or “data
mining” software, the data analyst will do well to first determine whether she indeed feels
that this software is likely to produce a reliable result.

Sometimes we wish to infer just one model or one set of parameter estimates from the
data. For example, some data comes from a Gaussian distribution with mean, y, and
standard deviation (s.d.), o, such as, e.g. :

1 =12, 19 =4.0, x3 = 3.7, x4 = 5.6;

and we wish to estimate p and o. Such attempts to summarise the data by the values of a
few parameters are known as point estimates. The Maximum Likelihood (ML), Minimum
Message Length (MML), minimum Expected Kullback-Leibler distance (MEKLD) and
posterior mean estimators are all point estimates.

It should be noted, though, that there is a school of Bayesian statisticians who essentially
refuse to do point estimation, claiming that their work is essentially finished when they
have calculated the functional form of the posterior distribution.

This position seems not altogether unreasonable when considers loss functions, as in the
following example :

Consider a company which holds stock of some good in a warehouse. The company

has a cost in either depreciation or storage space rental for every stock item it holds in
warehouse storage, but it loses more in terms of disgruntled customers and lost sales if an
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order comes in when the company is out of stock. Rather than use a point estimate (such
as Maximum Likelihood, MML or MEKLD) for the expected number of customer orders
to come in during a month, the company might do well to have a (posterior) probability
distribution on the expected number of customer orders and then to choose an amount
optimising the expected company profit.

7.3.3 Desirable features of point estimation methods

Two desirable features for an estimation method are invariance under 1-to-1 parameter
transformations and consistency. One can also argue cases for other desirable properties
of estimators — such as performing well on small sample sizes — but, for the time being,
we consider just these two.

Invariance

We have discussed invariance in Section 7.1 (and possibly earlier). It basically says that
if we transform a problem and then transform it back, we get the same estimator. So, if
we are looking at a cube whose side length, /, and volume, V', we wish to estimate, we
would like our estimator to return V = (13) = (I)3.

If point estimation without a loss function is to mean anything at all, then invariance
seems like a very reasonable property to require.

We recall that Maximum Likelihood and MML are invariant.
Question :

In the definition of invariance, why do we insist that parameter transformations have to
be 1-to-17

Exercise :

Show that the posterior mean is not invariant by

(i) finding a 1-1 transformation for which it is not invariant

(ii) arguing about the notion of dimension (see Section 7.1)

Exercise (fairly difficult):

Show that the MEKLD estimator is invariant.

Consistency

Informally, we say that an estimator is consistent for a certain problem if, as the amount

of data grows arbitrarily large, the estimator will converge with probability 1 to the cor-
rect answer.
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Whenever we use an estimation method, we would like to think that increasing the amount
of available data will be expected to bring us closer to the underlying model. Furthermore,
if the model generating the data is in the class of models that we are choosing from, we
would like to think that increasing the amount of available data will permit our estimator
to get arbitrarily close to the correct answer.

For problems where the number of parameters to be estimated is fixed, all the estimation
methods discussed so far and many others will be consistent. However, many inference
problems involve a very large number of variables which could increase as the amount of
data increases. Mixture modelling (see Section 9) and factor analysis are cases in point,
and these lead to inconsistencies in both Maximum Likelihood and the related Akaike
Information Criterion (AIC) method, both of which are non-Bayesian.

We will later mention the Neyman-Scott problem, for which Maximum Likelihood and
AIC are inconsistent but for which MML is consistent.

7.3.4 Invariance and consistency conjecture

Conjecture (Dowe, 1997) :[1]2, p 282]
Any estimation method which is universally both invariant and consistent must use a
subjective Bayesian method.

FEzercise (open research question, difficult):
Prove the above or find a counter-example.

Further Comments :
Strict MML (Wallace and Boulton, 1975) and MML (Wallace and Boulton, 1968; Wal-
lace and Freeman, 1987) are subjective Bayesian methods shown to be invariant in these

papers and also shown to be consistent (Wallace and Freeman, 1987; Barron and Cover,
1991; Wallace, 1996).

Maximum Likelihood and other classical methods are known ot have difficulties with
problems where the number of parameters to be estimated increases with the sample size
: e.g., the Neyman-Scott problem, factor analysis and fully-parameterised mixture mod-
elling.
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8 Applying MML to parameter estimation

Given all the claims that we have made about MML, it is time to apply the formulae from
Sections 4.3 and 4.4 initially to the problem of single parameter estimation for a variety
of distributions.

When we advance to problems of model selection, such as whether to use a mixture model
with one component or two components, or whether to use a cubic, quadratic or constant
polynomial, we use the message length as our metric.

MML is concerned with minimising the length of a two-part message, the first part of
which states the hypothesis and the second part of which states the data given the hy-
pothesis. Our model utilising more variables will have a more expensive theory than one
with less variables, and will only be able to justify this by quantitatively being able to
account for a saving of at least as much in the second part of the message.

For the Bernoulli, Gaussian, Poisson and Geometric distributions, we will see below that,
for the chosen priors, the Maximum Likelihood (ML) and MML estimators are quite
similar. For the multi-state Bernoulli distribution, we also note that the ML and MML
estimators are similar to the posterior mean. However, the von Mises distribution is not
so friendly, and we see the Maximum Likelihood estimator perform very poorly for small
sample sizes.

8.1 Bernoulli distribution
8.1.1 Binomial distribution

Let p; = p and p, = 1 — p be the respective probabilities of the two outcomes of a binary
Bernoulli trial.

If we were not interested in which particular outcomes were from class 1 and which
particular outcomes were from class 2 but were only interested in the unordered cumulative

total (z, N — z) in both class 1 and class 2, then the likelihood function would be given
by

el = ()=

However, given that we are interested in the encoding of the particular individual out-
comes, the likelihood function is given by

f(zlp) = p*(1—p)"* (49)

and

L = —logf(zlp) = —zlogp— (N —z)log(l—p)
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OL

P = —zx1/p + (N—2z)x1/(1-p) (50)
So, the “observed Fisher information”, F(z,p), is
0%L x N —z
F = — et —_—
(z.7) op? P {i=pp
So,
0%L x N—zx E,x N -—E,x
Fp) = E F(z,p :Ew—:Ew<_+7) = +
(v) (@) op? P (1-p) p»  (1-p)p?
_ Np N-Np _N_ N _ Na-p)+Np
p  (1-p)? p 1l-p p(1—p)
- = 61)
p(1—p)

It follows from differentiating the log-likelihood, L, that pyr = .
Let us now assume a uniform prior h,(p) = 1.
To calculate the posterior mean, we first note in general that

Loy 8 _ a! g
/op(1 p) dp = (a+B+1)

In calculating the marginal probability r(z) of the unordered cumulative total z, we use
the version of the likelihood function preceding equation (49) which?* uses (];7 )

o) = s o =[x (Vra-nve = (V)IES - v
So,

The posterior mean is thus

/Olpg(p‘x) dp = (N+1) <N>/ pa:+1 N z dp
-l -

Since h(p) is uniform and

1
— p1/2 (1 . p)1/2

Fip) VN

4although the presence of this term will have no effect in the normalisation shortly to be used to
calculate g(p|x).
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it should be an easy exercise to show that

. oz +1/2
PuvmL = N1l

Exercise :

Consider the mapping p = m(p) = 5.

Verify that there is a 1-to-1 mapping from p to p.

Show that if p is the probability of a white ball and 1 — p is the probability of a black

ball, then - is the (long term) ratio of white balls to black balls.

Suppose that = white balls are selected from N drawings. Assume a uniform prior on p.

Derive the posterior mean estimates of p and of p.
Is the posterior mean invariant for this problem?

8.1.2 Multinomial Bernoulli distribution

The above results generalise quite nicely, as we show in the exercises below. Let p1,po, ..., py
be the respective probabilities of the M outcomes of a multinomial Bernoulli trial, with

pr+p+...4+py =1 and p; >0

and suppose we observe x; outcomes in state i.
Exercises:

Show that (ﬁz)ML =

2]

Let h(p) be the uniform prior h(p) = ﬁ over the (M — 1)-dimensional simplex.
Show that the posterior mean of p; is %ﬁ

This distribution is useful not just for probabilistic prediction, but also for MML mixture
modelling, clustering and unsupervised learning (Snob), MML decision trees and MML
probabilistic finite state automata (PFSAs).

8.1.3 Kullback-Leibler distance between two Multinomial distributions

M i M M M
> pilog P = > pi(logp; —logg;) = > pilogp; — D _ pjlogg; (52)
=1

? =1 =1 j=1

72



8.1.4 Kullback-Leibler distance between two Binomial distributions

The Binomial distribution, (7), is a special case of the Multinomial distribution, corre-
sponding to the case when there are two states.

2 2 2 2
p.
> pilog= = > pi(logp; —logg;) = Y pilogp; — Y pjlogy;
i=1 i i=1 i=1 j=1

= pbg§+(l—mk%1 (53)

—4q

where p=p;,pp=1-pi=1—-p,andg=q;,o=1-q =1—gq.
Given data x and a posterior probability distribution ¢g(p|z), what is the Minimum Ex-
pected Kullback-Leibler distance (MEKLD) estimator of p ?

8.2 Negative Binomial distribution

Not a lot to say just now :-) .

8.2.1 Kullback-Leibler distance between two Negative Binomial distributions

This problem is defined for 0 < p < 1.

© fitr—1 (e =
—p)"p' log —

l-p P R fiAr=1\. ;4. P
— 7“log1 q+(0+(1—p)pZ<T )szIIOgg)

B i=1 -1
_ 00 ; 1
= rlog +(1—p)’"p2r<l+r )z_llog—
i=1
1-p Tp p X fi—=1+(r+1) -1\ , ;4
= rlo + log=) (1 —p)* ’
s+ (o) 0 3 (17 T
l—p o . p 1o (i (r+1) =1
= rlo + log=) (1 —p)"* :
BT, (l—p gﬂ( p) Z% rr1)-1 )?
1—
= rlog p-|— P 10g]_9
l-q¢ 1-p "¢
T p 1-p
= ——(plog=+(1—p)log
L (plog? + (1-p)los L)
r . .
= 7 xdre(Bin(p,1 - p), Bin(¢,1 — q)) (54)

This problem is defined for 0 < p < 1, and not defined for p=1. Forp=0,1—-p =1,
and so the distance is r times that for the Binomial distribution.
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8.3 Gaussian distribution

The Gaussian, or Normal, distribution, is used often in statistical modelling. It is specified
by two parameters. These are pu, the location parameter or mean, specifying the middle
of the distribution, and o, the dispersion or standard deviation, which specifies the spread
of the distribution.

The functional form i§

flalm0) = Femm @,

and this is sometimes written X ~ N(u,0?).

To carry out parameter estimation, we can do Maximum Likelihood quite straightfor-
wardly.

MML estimation requires the use of a Bayesian prior distribution. MML also requires us
to take expected second derivatives of the log-likelihood function, thus giving the Fisher

information.

8.3.1 The Maximum Likelihood Estimator for the Gaussian distribution

The log-likelihood function, L, is given by:

N 1 2
1 $j-m)
L = —log{H S —— o }

=i (2o

N N 1 &
= —log(2m) + = log(c®) + =—= > (z; — p)’ (55)
2 2 202 =+
Differentiating, we have
oL _ 1 0 N(x._uy _ Np—(@t.. +an) (56)
ol 20% Op |5 ! o?
and
oL N 1 X )
- 2 _ - 57
6(0'2) 20_2 2(0_2)2 ;(x] ,U,) ( )
Setting g—ﬁ = 0, we get




where 52 = YNV, (z; —2)°.

We continue, below, to derive the MML estimator.

8.3.2 The MMUL Estimator for the Gaussian distribution

Given parameters 0, (Bayesian) prior density h(@) likelihood function p, and negative of
log-likelihood function, L = —log f (considered in Section ?7?), and expected Fisher infor-
mation, F', the MML estimate of § is the value of § which maximises h(8)p(z|0) /{F(6)}'/2.

We already have the likelihood function from the previous section, from which we can
derive the Fisher information.

We must choose a prior on both 4 and o. It is fairly common practice in Bayesian statistics
to assume that the prior in g and the prior in o are independent of one another.

We assume a uniform prior, h, on u over some range, [L,,U,]; so h,(pn) = U#i 7 over
this range. We assume a “conjugate” prior, h,(0) o 1/0, over some finite range. The
effect of the conjugate prior is for it to make no difference whether we measure in cen-

timetres, metres or kilometres.

All that remains before we obtain the MML estimate is for us to calculate the Fisher
information, which we now do.

The Fisher Information for the Gaussian distribution

From (56),
L _ Np—(z1+... +zn)
Oud(0?) (02)?
where 7 = 224N apd so
O*L 0*L Ny — (Np)
E(-22 ) =p(- 22 ) = -2V
(aua(ﬁ)) <8(02)6u) (02 0 (59)

This tells us that the off-diagonal elements in the Fisher information matrix will be zero,
thus simplifying later calculations.
Returning to look at the diagonal elements, from (56) and (57),

0%L N
o T o (60)
and
”L N 1§:($_)2
e T o E GO i~
So,
0°L N 1 , N
B\ote) = "o * G = oy



Hence, since (59) gives that the Fisher information matrix is diagonal, from (60) and (61),

F= (@) P lae)

N
- (g) (202)2

N2
2(02)3

Minimising the message length for the Gaussian distribution

To within a constant, from (55) and (62),

—

MessLen = —logh(f)+ L+ logF + constant
~ N 1 N?
= —logh(d) + 5 log(2m) + log(*)
N 3
—1 — =1
+ 5 log(o?) — 3 log(o”)
al 2
+ ﬁ;(% 1)
N 1 N? 5~ N-3
= 510g(27f) +§10g(7) —log h(0) + log(o?)
202 Z
OMessLen O(log h N ~
OMessken - Ologh) | N s)
ou o o
where
i = X1+ 2o+ ... +2TN
B N
and N
OMessL d(log h N-3_
essLen (log h) N Z
d(0?) do? 202 ot
With our prior h(q) x %, we have that g—z = 0 and not surprisingly, that
(Wmmr = (Wur = 2
and
O0MessLen J(log h) N
2(52)2 — _9(52)? N — 302 — N2
(U ) 8(0'2) (G ) 6(0'2) ( )G ng(xj M)



At (0?)ararz, the above expression in (66) equals 0.

Substituting (14;)mmz = Zi from (65) and using the improper prior h(o?) = - (with
logh(0?) = —log(c?)) gives

120 (N =3)0? — (- 7) = 0

o? =
and so
SN (z; — 7)? s?
2 — ==\ — .
(0" ) mmr N1 N1 (67)

We note from (65), (58) and (67) that (u)ymr = (Wur = T, (0°)ur = % and
(UQ)MML = Nsil

52

Statisticians often talk of -7— as being the unbiased estimator. We see here a small sample
bias in the Maximum Likelihood estimator that has people over-rule its value to return
the unbiased estimator, the value which popped out from the MML estimator with the
conjugate prior h, ,(1,0) %

This small sample bias of the Maximum Likelihood estimator of the standard deviation,

Gmr, will be seen to form the basis for the Neyman-Scott problem (Neyman and Scott,
1948).

The Gaussian distribution is a fairly simple statistical distribution as far as they go. We
will see an even worse small sample bias of the Maximum Likelihood estimator for the
von Mises circular distribution in Section 8.7.

8.3.3 Choice of Gaussian parameterisation: ; and o2

In sections 8.3.1 and 8.3.2, we obtained the Maximum Likelihood and MML estimates
with respect to p and o?.

Since both the Maximum Likelihood and MML estimates are invariant under 1-to-1 twice
continuously differentiable re-parameterisations, if we re-parameterise our co-ordinate
space to p and o, we should find that the likelihood function and its maximum remain
invariant, and we should likewise find that the message length function and its minimum
remain invariant.

Exercise(s):

Re-derive the Maximum Likelihood estimator from section 8.3.1 for the parametisation
(i1, 0). sections 8.3.2

Re-derive the MML estimator from section 8.3.2 for the parametisation (u, o).
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8.3.4 Kullback-Leibler distance between two Gaussian distributions

|7 e o [ L@~ 1)? + 1086 + —— (2 — i)
x e - —logo — —(z — ogé —
—00 2mo & 202 H & 262 H
o o0 1 1 (z—pw)? 1 1
og( )+ [ dv——c 5,20~ W)+ o5 (@ —p) + (b= )]
Y o0 1 (z—p)?
= log(g)+ dzx e TSt
o —0 2wo
]. 2 1 2 ~ A\ 2
—T‘Q(x—u) +262{(w—u) + (o — ) (e — 1) + (p — f1)°}]
o 1 o 1 1 (a—p)?
= log(—) + —0)? + —A/ dz e 2 o2 X (x-—
og(a) 557 (1 — i) (1 — i) . T (x—p)
1 1 o0 1 _1@w? 9
— o2 X —
+ (262 202)/700 27r0€ (=)
o 1 1 0?2
= log(= — )40+ (= -1
o 1 1 o2
- log(~ P e S
og(0)+2&2(u 1) 2(5_2 )

(68)

Let us now differentiate with respect to i and & to find the minimising values of i and &.

0 1 1 , 02
— = —— =p—n)"— = 69
- (69)
This equals 0 when 6% = 0%+ (u— )2
0 1
- _ — 70
5 = () (70)
This equals 0 when 4 = pu.
The joint optimum occurs when g = p and so 6 = o.

8.4 Poisson distribution

The Poisson distribution is often used to model counts, such as the number of radioactive
decays in a certain time period given a certain half-life or the number of traffic accidents
occurring along a certain stretch of road in a certain time period. This has also been used
to try to identify the authors of 17th century texts, where we might try to model how
frequently certain authors use certain words in certain of their works.

Let r be the rate at which the event (radioactive decay, word usage, etc.) occurs, let ¢; be
the ith time period (or length of document) and let ¢; be the ith number of occurrences.
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The log-likelihood function, L, is given by:

N e (pt ) N |
L = —log{]] —r (= > 1ty — ¢;log(r) — ¢;log(t;) + log(c;!)

i=1 Tt i=1

Differentiating, we have

5 = 2= (71)

and
0%L N cZ
o2 X; r2 72 4 Zcz
1=
So,
1 Y 1 Y 1 Y 1
F = E(_ZZCZ) = _QZE(CZ) = _QZTtZ = —th
r =1 r =1 r =1 r =1
From some data, {(¢;,t;),i =1,..., N}, we wish to infer an estimate 7 of r.
. N N . SN c
Clearly, from (71), letting C = Y.\ ¢ and T = >0 4,  Tun = ﬁ = 7.
In order to infer the MML estimate, we ﬁrst need a prior on r.
For some «, let this prior be h(r) = le a.
Then, to within a constant,
1
MessLen = —logh+ L+ - logF + constant
= loga+ — —|—th - logTZcZ Zczlog —i—Zlog cl) — —logr—i- —loth
i=1 i=1
TaramL occurs when W =0, i.e., when

- i 2. G5 =
@ = Ii=1 2r
Solving this (Wallace and Dowe, 1994, 1997) gives
1Y 1 1
“Na+s) = —+ >t
r(;c * 2) o} ;
and so
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8.4.1 Kullback-Leibler distance between two Poisson distributions

oo )\Z e—)\lA'_li 0 /\ A
a2 i A 1
ge il loge/\z’\i—%i € ;) { )\1+/\2+zlog)\}
= —)\1+)\2+67’\IZZ.'1 og =L
i=0 v A2
by o 3 i—1
= - 1 1

A1
= —)\1 + )\2 + ( M IOg /\ ))\16)‘1
= —)\1 + )\2 -+ Al (lOg )\1 log )\2)
(72)

In the special limiting case of A\; = 0, we can obtain either directly from the Taylor series
expansion with Ay = 0 or from I’ Hépital s rule in the limit as A — 0 that for Ay = 0, the

Kullback-Leibler distance is log - A2 = Aa.
0 A
— =1-—= 73
0o Ao (73)

The optimum occurs for Ay = A;1.

8.5 Geometric distribution

Consider a coin which is possibly not fair, and then consider the probability distribution
of the number of consecutive heads from such a coin.

If the probability of throwing a Head with this possibly biased coin is p, then the proba-
bility of getting = consecutive heads (given that z > 1 is):

f(zlp) =p" ' (1 - p).

Now, imagine we sample N different runs of Heads, which have lengths z; for ¢ =
1,2,...,N. Then, with data ¥ = {z1,z9,...,25},

al N
f(i:‘p) = pri_l(l - p) = (1 - p)N pzi=1($i—1)
i=1
Exercise(s):
Calculate the log-likelihood, L = —log f(Z|p).

Let X == Ei:l ;.
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Work out the Fisher information, F(p).

E(z) = (1-p)(1+2p+3p°+..))
dl dp dp?* dp?

= (1-— —t——+—— 4+ —+...
=P+ ot T

- (1—p>(%(1+p+p2+p3+...»

N (1_p)(1—p)2 ~ (1-p

F(p) = N/((1-p)*p)
Calculate the Maximum Likelihood estimate of p, pasr.-
Assuming a uniform prior on p, h(p) = 1, calculate
the posterior mean of p,

the MEKLD estimate of p and
the MML estimate of p, parasr-

Pumr = (X — N +1/2)/(X +3/2)

Also, calculate the message length at its minimum, when p = Pz

8.5.1 Kullback-Leibler distance between two Geometric distributions

The Geometric distribution, G(p), is a special case of the Negative Binomial distribution,
corresponding to the case when r = 1. G(p) ~ Nb(L,p).
In this case, the Kullback-Leibler distance is given by

1 P —p
= — (plog = 1—9p)1
1_p(pogq+( P)Ogl_ )
1 . .
= 1 X dir(Bin(p,1 — p), Bin(q,1 — q)) (74)
8.6 Logistic distribution
fly=0z,6,0) = T a9
1 (1 + e_ﬂ(x_c)) —1
f(y = 1|.T, ﬂ,C) = 1- f(y - O‘xvﬂa C) = 1- 1 + e—B(z—c) - 1 + e—Blz—c)
¢—Bla—c) 1

1+ eheoa 1 4 etbao
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We wish to estimate the constant, ¢, and the “gradient”, 3.

The logistic distribution is relatively simple and ranges from 0 to 1, so it is good for
modelling behaviour.

It is useful in neural networks (as a sigmoid activation function) and for modelling com-
putational or economic “agents”.

Let
_ 1
P e Ao
and so
1 _ 1
P T ewo

Then (1-p)’ —p* = (1-p)—p)(1-p)+p)=1-2p=(1—p)—p.

Note: Chris Wallace’s comment (Mon 10/5/99 - Tue 11/5/99) that this stuff is better
done in terms of the state probabilities : p and 1 — p if binary, and pq, ..., p; if k-state.
This refers to all the calculations in this section, 8.6.

N
L = —long(yA:m,ﬂ,C)
=1
= —log[ H f(y,\xz,ﬂ,c) X H f(yz|xzaﬂﬂc)]

2:y;=0 By;=1
1 1
= - log[—————F—+] — log[———75——]
i:yiz_o 1 4+ e Bl@i—0) z':yiz_l 1 4+ etBlzi—c)
= > logll + e PlEi-a] 4 3 logll + ethlEi=o)]
i:y; =0 iy =1
oL z; — c)e P@i=o) z; — c)eP@i=c)
aﬁ 2:y;=0 1 + e ¢ iy =1 1 + e ¢
(x;i —¢) (x; —c¢)
= - T Gm—a T T Bz_o
i:yizzo]' + eblzi—c) i:in:11 + e B(zi—c)
0*L z; — c)?ef@i=) z; — ¢)2ePl@ic)
932 = Z ( ),B(w-c) 2 + Z ( ),B(w-c) 2
op im0 (1 + ePia)2 = (1 4 e Plaia)

= Z (i — 0)2 Z (z; — 0)2
gm0 4 cosh”(XE=) 0=, 4 cosh?(HE)
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1
= Z Z:ZI Cosh2(ﬁ(zl—c))
N
= i Z(.’L'z —c)? x sechz(iﬁ(xzé_ C))

0?L 0L 1Y (z;—c)? 1Y B(z; —c)
E —_— = — = - ? - _ h2
(aﬁz) 032 4 z:ZI COShQ(ﬂ(w;_C)) 1 ; c) 2 x sec ( 5 )
oL Z ﬂe—ﬁ(zi—c) Z Be B(z;—c)
oc im0 1 + e—ﬂ(ﬂvi—c) ot 1 + e—ﬂ(w,-—c)
e Bzi—c) eBlzi—c)
a ﬂ[zg:o 1 + e_ﬁ(zi_C) i:%:l 1 + eﬁ(zl—c)]
1 1
B ﬂ[zyzl;()l + ePlzi—c) Zg;l 1 + e—ﬂ(wz—C)]
0%L ﬂeﬂ(mi_c) e—Blzi—c)
e - ﬂ[z’-yZ_O (1 + eB(zi—c))? +Zyz + e—B(@i—c))? 7]
2 2
= X 2ﬁﬁ(w'—6) + 2 fﬂ(w'—C)
im0 4cosh™(555—2) iy dcosh™ (55)
0?L 0’L 1Y B(z; — ¢
F(—) = —— — - 2 h2 S A
(602 ) oc? 4 izzlﬂ x sech™( 2 )
0?L 0?L 0 ,0L 0 1 1
6caﬂ = aﬂac = %(%) = %(ﬂ[z 1 + eB(zi—c) - Z 1 + e‘ﬂ(mi—c)])
i:y; =0 iy =1

1
[th 1+ eﬂ w=e) _i:wZ:l 1+ 6_'3(5”_0)]
(z; — c)ef@i=e) (z; — c)e PEi=c)
+ 6= i 5oz
i:yizzo (1 + eBlxi c))2 z':yizzl (1 + e—Bl=i c))2
1 1

[Zyzol + eflaic) _i;ll - e*ﬂ(wz‘*C)]

8Ly (x; — ¢) sech®(B(xi — ¢)/2) n Z — ¢) sech”(B(x; _c)/g)]

S 4 —~ 4
2:y; =0 =1
1 1 N (x; — ¢) sech?(B(x; — ¢)/2)
[ Bwi—c) 2 m oaro ] >
g0 L T ePl g1 L TP i=1 4
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0L

E(Gﬂac)
) E([Z—oﬁ " WD —E(ﬁi(%—@ sechi(ﬁ(xi—c)/z))
) E([Zzoﬁ - ﬁl) —E(ﬂg(x"_c) Sechjl(ﬂ(xi—c:)m))
I P R e LU L L
- (X T} =0 00) (X g X = L )
_ ﬂg} (7 — ¢ sechil(ﬁ(xi —0)/2)
- (i:yzi;01 + elﬁ(a:,-—c) 1T el_ﬂ(a:,-—c)) - (i:yXiil — 61_ T KT iﬂ(xi_c))
_ ﬁg} (z; — ©) sechi(ﬂ(xi —)/2)
_ & (2 —¢) sechzw(xi —¢)/2)

- (:1(%(9” — o) x Sech<W»2) x (é(%ﬁ x sech(w)y)

_ (52 (z; —¢c) sech4(5(xi - C)/Q))Q

By the Cauchy-Schwar(t)z inequality, F'(8,c¢) > 0. Again, by the Cauchy-Schwar(t)z
inequality, F'(3,c) = 0 only in the cases that 3 = 0 or all the z; — ¢ are identical and all
the z; are identical.

8.6.1 Priors




. Op e _ 1 _ sechQ(g)
hﬂ(ﬂ) - % - (1+67ﬂ)2 4cosh2(§) - 4
1 1
T (+eP)+eP) T p(l-p)
hge(Bic) = he(c) x hg(B)
0 0 1
G5O = ()
. 0 2 . 2 —e?), (e —eP)/2 _ sinhfp _ tanhp
B ‘%(eﬂ#—e*ﬂ” = 1= (P +eP)2  ((ef4+eF)/2)2  cosh?f  coshp
= sechf@ tanhpf
8.6.2 Derivatives of Fisher information
Recall that
B 0?L %L L , &L 0*L B 0L
0 oL 01 B(x; — c)
%(E(a—ﬁ?)) = %(Z;(%_C)stechz(T)
1 Xj — Xj —
= ZZ.:ZI(xi—c)3se(:h2(ﬂ( 5 C))tanh(ﬂ( 5 C))
0 oL e 5, B(x; —c)
HEGE) = g5l L s )
= 1225 X sechz(ﬂ(xi —_ C))
2 & 2
+ %iﬁx—(%_ )sech(ﬁ( _C))tanh(ﬂ(Xi C))




8E8L

ape)
0 oL
¢ F5500)
8.6.3 Derivatives of priors
oh 1 1 1
\ aﬁéﬁ)\ = 12 sech(g) X §SeCh(§) tanh(g) = ZsechQ(g)tanh(g)
dloghs(8), _ “g5> _ sech’@tanh(§)/4 B
| op = hs(B) sechQ(g)/4 B tanh(z)

8.7 von Mises circular distribution

The von Mises circular distribution is a circular analogue of the Gaussian distribution. It
is specified by two parameters. These are p, the location parameter or mean, specifying
the middle of the distribution, and x, the concentration parameter, which specifies how
tightly the distribution is concentrated. k can also be thought of as the ratio of magnetic
field strength and the temperature. A weak field and high temperature will cause a wobbly
compass needle, and a strong field at a low temperature will cause a tight distribution.
The 2-dimensional von Mises density, My(u, k) or V.M (u, ), is an analogue of the Gaus-
sian density for angles in the plane. The density of the angular variate 6 is given by
f(0) = 1/(2mIy(k)).ecos0-m),

The 2-dimensional von Mises density, My(u, k) or V.M (u, k), is an analogue of the Gaus-
sian density for angles in the plane. The density of the angular variate 6 is given by

f(0) = 1/(27Iy(k)).ex*=H) where Iy(k) is a normalisation constant.
Let Io(k) = o JZ"er@ dg = 2, G and for p> 0,
let I,(k) = Io(k) x E(cos(pf)) = Io(k) X o [o" cos(pf)em <@ df = 2, %

This functional form

@l k) = sepy €@

is sometimes written X ~ My (p, k).
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(ﬁ)2T+1

So, I1(k) = Iy(k) x E(cos(8)) = X2, P = d {i‘;(“), which we shall soon use.

The functional form of the likelihood is thus

fOlp, k) = QW[E(K,) encoswi“)a

and this is sometimes written 6 ~ Ms(u, k).

It looks something like the empty figure immediately below (for you to draw in by hand):

Just as the Gaussian distribution is a (maximum entropy) distribution on a line, so, too,
the von Mises circular distribution is a (maximum entropy) distribution on the circle.

8.7.1 Motivation of the von Mises circular distribution

Richard von Mises, a mathematician and philosopher, was interested (circa 1918) in the
distribution of atomic weights modulo unity. Other angular data which this distribution
can be used to model include data pertaining to (e.g.)

dihedral angles (¢ and 1) in proteins,

arrival times at hospitals around a 24-hour clock,

R. von Mises’s original data of atomic weights modulo unity,

magnetic fields,

oceanography,

etc.

(See N.I. Fisher’s 1993 book for more examples.)
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8.7.2 Parameter estimation for the von Mises circular distribution

P 9y (k)
Let A(k) = E(cos(f— ) = EEK; - o = %(loglo(n))

which we shall need to estimate «.
For small k, A(k) = 5(1— %2 + % + O(x%))
and for large k, A(k) = 1— +

The log-likelihood, L, is given by :

AR |
L = —1 = prcos(G; - _ ncos(9¢—u)
° (1;[1 2ny(r) © ) Z o8 (%IO (%)
= Nlog(2r) + Nlog(ly(r)) — KZCOS (0; — (75)

For notational convenience, let z = YV | cosf; and y = Y% sin6;, and R = /22 + ¢2.

oL O N cos(f; —p) 0 (cosuzij\il cos 0; + sin SN | sin Hi) B —na(m cos 1 + y sin j)
dp o B o oL
N N
= —kY_sin(f; — p) = —k(—sinp ) cosb; +cospy_sinb;) = —k(—xsin p + y cos )
= i=1 i=1
So,
R (Y (N sin6;
= — frd t _—
HatL tan (m) an (ZfL cos 01-) (76)

It follows immediately from this and our definition of R that

cos(j1 )—L—E and  sin(/z )—L—X (77)
N T Ty TR
Also from equation (75), and using the definition of A(k),
log In(
3—L = N(9 og of Zcosﬁ —u) = NA(k) — (z cos pu+ ysin p) (78)
K

To determine Ky, we use equation (77):

oL x Y
= — = NA(k) - (z—= =
0 P (k) (xR+yR

) = NA(k) -
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So, letting R = %,
b = A7 (§) = A7) (79)

This gives us the Maximum Likelihood (ML) estimates, jip, and &1, of 4 and & respec-
tively.

The MML estimator needs the Fisher information, F', and a (subjective) Bayesian prior,
h(), as well as the log-likelihood function, L. Since the Fisher information involves ex-
pected second derivatives of the log-likelihood function, it is no detour for us to derive
the first derivatives of the log-likelihood function. It is at most a slight detour for us
to use these first derivatives to determine the Maximum Likelihood estimates, since it is
always at least a good diagnostic check to compare the MML estimator to the Maximum
Likelihood estimator.

8.7.3 The Fisher information for the von Mises circular distribution

From equation (78),

0L ul
= — ) sin(f — p)
ook z:zl
Therefore,
0?L 0?L N .
=1
1 2w .
= —NW /0 6!%(:05(0—#) Sln(e — ,U,) d9
N 2 0
— _ ~ [ _kcos(6—p)
211y (k) /0 59 (¢ )
N 2w N
— _ K cos(0—pu) - _
211y (k) [e ]0 211y (k) x0
= 0 (80)

This means that the Fisher information matrix will be diagonal. We recall in passing
that this was also the case for the Gaussian distribution in Section 8.3. This is no coinci-
dence. The Gaussian and von Mises distributions are both symmetrical distributions with
a (central) location parameter, u, and a second parameter (o or k) measuring dispersion.
Such distributions will typically tend to have a diagonal Fisher information matrix.

Knowing that the Fisher information matrix, F', is diagonal, we now calculate its other
terms.
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From equation (75),

0?L N
— = Kk cos(b; — p)
ou? Z:ZI
and
0?L
E a2 = kNE (cos(d —u)) = NA(k) (81)

and, from equation (78),

E<a2L> L PL AR N<1_A(K)_(A(K))2)

K2 OK? dk
So,

F = E (g%) E (g%’) - (E (5;/{))2 = kNA(k) x N (1 — @ - (A(n;))2> -0

Alr)

= W (1= 2 o)

8.7.4 Choice of prior for the von Mises distribution

Unless we have reason to do otherwise, it makes sense to choose a uniform prior on p,
hu(p) = 5= on the range [0,27).

Since this is such a “natural”, “obvious” prior, let us take this as given and focus (below)
on an appropriate prior for k.

For the prior on &, we elect (somewhat arbitrarily) to choose

he(k) = ranprz On the range [0,00). Call this hs(k).

One might consider also the improper prior hi(k) & + or the prior hy(k) = ﬁ

On a variety of simulation experiments (Wallace and Dowe, 1993) summarised in the
following pages, each of these priors and particularly hs(k) W were shown to
out-perform Maximum Likelihood (ML) and a variety of other classical estimators.

8.7.5 The message length for the von Mises distribution

The message length is what Minimum Message Length seeks to minimise.

Recall from Section 4.4, (minus a typo or two) that, in general,
the message length is

h(parameters)
k2 \/ F(parameters)

MsgLen = —log( ) + (—logf(data|parameters))+g (83)

log (h(parameters) f(data|parameters)

\/F(parameters) ) ) (1 +logky) (84)
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where n is the number of parameters to be estimated and k, is a lattice constant® which
depends on n.

Since we know that wish to estimate nothing more and nothing less than p and k, we
have that n = 2.

From equations (75) and (82) and Section 8.7.4, we can now calculate the message length.

Since hy,(p) is uniform, note from equation (82) and Section 8.7.4 that u occurs neither
in A() nor in F. So, by equations (84) and (76),

N .
. . e _1 [ Xi=p sinb;
19398789 MML an = an (Z z]i cos 91') ( )

The message length can then be minimised numerically for .

If we recall the ML and the MML estimators for the multinomial, Gaussian and Poisson
distributions, we see that the ML and MML estimators for these distributions are very
similar.

However, the von Mises distribution is slightly “harder” than these distributions, and the
small sample bias problems of Maximum Likelihood really start to show.

8.7.6 Kullback-Leibler distance between two von Mises distributions

Observe that

k1 ¢08(0 — 1) — K cos(0 — po) = kKycos(f — py) — kacos((0 — pr) + 1 — p2))
K1€oS(0 — 1) — Ko cos(f1 — pe) cos(0 — ) + Ko sin(pg — po) sin(0 — 1)

= (k1 — kg cos(py — pg)) cos( — 1) + Ko sin(py — po) sin(f — 1) (86)
So,
2 1 K1 cos(f—p1)
o mem cos(0=1) ¢ [log %{:;; @ )}
— /Ozn do %Ijmem cos(f—p1) o [log In(k2) — log Iy(k1) + K1 cos(0 — p1) — ko cos(O — us)]
= logly(k2) — log Ip(k1)
. 0271' " %Iolmem cos(0—p1) (K1 — Ko cos(p1 — pa)) cos(d — 1)

5k = 1/12 ~ 0.083333 and ks = 5/(36v/3) ~ 0.080188. See (Conway and Sloane, 1988; pp59-61) if
you would like to know more about lattice constants.
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27 1
+ o db m@nl cos(6—pu1) X K9 Sin(,ul — /,62) Siﬂ(e — ,U,l)

= log In(ks) — log Iy(k1)

2T 1
: _ do K1 cos(6—p1) in(f —
+  Kosin(u ug)/o 72710(&1)6 X sin(f — 1)
2 1
+ (K1 — Kocos(uy — po)) ; db m@’clcos(@*m) x cos(f — )

IOgI()(KZQ) — log I()(Iil) + Ko SiIl(,Ll,l — /,1,2) X0 + kKo SiIl(,LLl — /,62) X A(Hl)
= log In(kg) — log Iy(k1) + Kosin(p — pu2) X A(k1)

(K=K, K= Ko, b= pun, L = po.)

0 .
55 = Ar2) —cos(p— )A(k1) (88)
R
0 - _ Rsin(py — pg)A(ky) (89)
i = M1 — M2 1
In the event that x; # 0, this equals 0 when i = p. The joint optimum occurs when

g = pand so A(kg) = A(ky) and kg = K1.
We present below some results from simulation runs (Wallace and Dowe, 1993; pages 14
- 19).

8.7.7 Simulation results for the von Mises circular distribution

These results were obtained by pseudo-randomly generating data of various sample sizes
from known distributions, and then estimating p and k.

Estimation of p is straighforward, with all the methods considered giving i = [iaL.
The estimators considered for x include Maximum Likelihood (ML), marginal Maximum
Likelihood (R. A. Fisher, 1953; G. Schou, 1978), a method we call “NF” due to N.I. Fisher
(1993), and MML with the three priors h;(k), ho(k) and hz(x) from Section 8.7.4.

The results reported pertain to mean bias (mb), mean absolute error (mae), mean squared
error (mse) and mean Kullback-Leibler distance (KL).

Values of N of 2, 5, 10, 25, 100 and 500 were chosen.

The number of simulated runs are reported (in brackets) at the top of each column.
Values of « (true value) of 0.0, 0.25, 0.50. 1.0, 2.0, 5.0 and 10.0 were chosen.
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The entries in the table are the mean value (and, in brackets, the standard deviation)
of respectively the bias, absolute error, mean squared error and mean Kullback-Leibler
distance.

From (Wallace and Dowe, 1993) :
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From (Wallace and Dowe, 1993) :
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From (Wallace and Dowe, 1993) :
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From (Wallace and Dowe, 1993) :
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From (Wallace and Dowe, 1993) :
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From (Wallace and Dowe, 1993) :
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8.8 Wrapped Normal circular distribution

Re-cap on the Normal distribution

Recall that the functional form of the Gaussian - or Normal - distribution is

flaln,o) = Fe ),

and this is sometimes written X ~ N(p,0?).

Wrapped Normal distribution

Swapping from z to 6, for a Wrapped Normal distribution
fOlp,0) = L2 7—e 2 (0+2m—p)?) Lyt e a2z (O+257—4)?)

and this is sometimes written § ~ WN(u,o?).

For several pieces of data 64, ...,6;, ..., 0y,
N

L = —logf(lu,0) = > —log( Z e~z (O 2im=u)?))
i=1 je—oo V2TCO
N +00
= NlOg(v )—i—NlOgO'—Zlog Z e — 5oz (0 +2jm—p)? ))
=1 J*—oo

Notice that for both a von Mises distribution and a wrapped Normal distribution, adding
to or subtracting from # an amount of 27 or any integer multiple of 27 does not change
the value of the likelihood function or any of its derivatives.

First and second derivatives and Fisher information for the Wrapped Normal

The only differences between the likelihood function for the Normal distribution and the
likelihood function for the wrapped Normal distribution are the appearance of the sum-
mation EJ, « and the replacement of every occurrence of # in the Gaussian distribution
by 6 + 2jm.
So, along somewhat similar lines to the Gaussian distribution, the wrapped Normal dis-
tribution gives us
9; T—
8_L N 9log(Xt o e 5oz (0 4+2jm—p)? ))
a/’[’ i=1 a/“l’

g pe” mz Wit
j=—

N

= _Z o
i 12 o€ 507 ((0i+2jm—p)? ))

N oyFe 777 oy s {0 (y — )}

= blahz L= gy blah
= plapME )y,
g
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and

> (z; — p)*blah (90)

8.9 Choice of prior

We have discussed above various methods of point estimation for a variety of distributions
— multinomial, Gaussian, Poisson, von Mises circular and geometric. If we wish to use a
Bayesian method, we must necessarily use a prior.

MML and MEKLD are but two Bayesian methods of point estimation. These two happen
to be invariant and consistent, but there are also other Bayesian methods for point esti-
mation (e.g., posterior mean). In choosing to use a Bayesian method, it is best to spend
some time at least early in one’s career considering the philosophical and pragmatic is-
sue of choice of priors. Classical (i.e., likelihood-based) statisticians do not opt to use
Bayesian priors. At the time of writing, probably less than 20% of statisticians would be
willing to describe themselves as Bayesian.

8.9.1 A classical objection to Bayesian priors

The debate between classical (non-Bayesian and “anti”-Bayesian) statisticians is an old
and sometimes heated one. Classical statisticians would prefer an “objective” method
which neither requires nor takes advantage of prior information, and they might also
draw attention to the subjectivity of a prior and one’s difficulty in formulating a prior.

8.9.2 The data swamps the prior, anyway

Some will point out that, whatever your data is, you could then choose a prior which
would make your inference as close as one liked to some wished conclusion. While this is
true, priors are meant to come before the data, and the following is true. As long as your
prior does not make something a priori impossible, as the amount of data increases, your
data will start to “swamp” the prior.

8.9.3 A further Bayesian response to such a classical objection

We have argued earlier (I think) and we argue again now that it is very rare for some-
one to have total ignorance about a data-set. If our prior knowledge gives us additional
insight into the underlying model other than what was available to us from the data
alone, then it makes pragmatic good sense to quantify this as well as possible and then to
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use it. Better to make a decent job of quantifying something useful than not to use it at all.

Furthermore, by the Conjecture in Section 7.3.3 and Section 7.3.4, it would appear to
follow that if we want our point estimation technique to both invariant and consistent,
then it will have to be Bayesian.

8.9.4 “Mathematically convenient” priors and genuine subjective priors

We have argued earlier that Bayesian inference is necessary if one wants invariant consis-
tent estimators (although this is not (yet) a theorem).

We have also argued the case for the use of a subjective Bayesian prior. However, there
are some who support Bayesianism but who prefer to avoid subjective Bayesian priors
and instead use what we shall call “mathematically convenient” priors.

We discussed in Section 7.1 that the square root of the Fisher information, F(0_>1/2, has
the same mathematical form as a prior. Indeed, some refer to it as the Jeffreys prior (H.
Jeffreys, 1946). It is an example of what we mean by a “mathematically convenient” (or
non-subjective) prior.

However, the Jeffreys “prior” is not a prior in the sense of coming before the data and
representing some prior beliefs. Rather, it comes from the likelihood function, and hence
from the data. It is not a genuine subjective prior, but rather a “mathematically conve-
nient” prior, undoubtedly motivated by an understandable (and laudable?) wish to try
to take subjectivity out of Bayesian inference.

The Fisher information turns out to be some sort of measure of the expected information
gain in conducting an experiment. For example, for the binomial distribution, the Fisher
information o< 1/p(1—p), which is largest for extreme values of p (near 0 and 1) and small
near p =1 —p = 0.5. When p is not very extreme, we don’t expect to learn a great deal
from conducting our next experiment (or sampling our next datum), whereas we expect
to learn a lot for extreme p. For the Gaussian distribution, F oc 1/0?% x 1/(0?)? o< 1/(5?)3,
and for the Poisson distribution, F' oc 1/r.

The point is made most clearly by considering the von Mises distribution.
From equation (82), F'(u) ~ 0 for small x, and F(k) =~ 0 for large x; and F(u,x) =
F(p) x F(k) = 0 for both small and large «.

So, the Jeffreys prior says that our prior is to expect the field strength parameter, s, to
be most likely in the region where our needle is most suited (not too weak a k, lest we
notice nothing amidst the noise, and not too strong a «, lest we notice nothing because
the distribution is so tight that the needle doesn’t move). So, our Jeffreys prior says that
we a priori expect k to be most likely where our particular chosen compass is most likely
to notice a difference. However, if we choose a different measuring implement, either
a more sensitive compass or a less sensitive compass, this will see us having a different
Jeffreys prior. Since priors are meant to come before the data, this example (from Dowe,
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Oliver and Wallace, 1996), which suggests that our prior depends upon our measuring
instrument, does not auger well for the Jeffreys prior.

Perhaps a better criticism of the Jeffreys prior is (Wallace, private communication, 1997):
Imagine a watch-tower in pitch black darkness somewhere on the interior of a circle, but
not at the centre of the circle. The guard hears sounds coming from the perimeter, and
wishes to estimate the location of their source. A uniform prior on the circle seems most
appropriate. However, since the Jeffreys “prior” assigns higher probability to parts of
the parameter space that can be measured more accurately, the Jeffreys prior will see
estimates biased towards being closer to the watch-tower.

Exercise

If one uses the Jeffreys “prior” to do MML inference, what does one get as the MML
estimator?

Is such an estimator subjective Bayesian?
(Hint: The answer to this question immediately above is “No”.)
Is it invariant? Is it generally consistent?

8.10 MDML, square root of Fisher information and Strict MML

Recall the expression for the Message Length in equation (84) and Section 4.4, (minus a
typo or two):

h(parameters) f(data|parameters)

\/ F(parameters)

Msglen = —log( ) + g(l—i-logkn)

Recall (Sections 4.3 and 4.4) that the expression for the MML estimator comes from a
quadratic Taylor expansion whose assumptions include the assumption that the prior,
h(.), is fairly flat around the estimator and the assumption that the log-likelihood is twice
(continuously) differentiable.

It may well happen that only one or even none of these is true.

So, the bad news is that we must make the caveat that MML (as defined by minimising
the expression in equation (84)) is not always guaranteed to work in the cases that either
of the assumptions fails.

The good news is that there is a modification called Strict MML (Wallace and Boulton,
1975; Wallace and Freeman, 1987) which does not need the above assumptions or make
any approximations. Strict MML can be quite intractable in practice, but it is invari-
ant and consistent. For many typical estimation problems, MML is a good, tractable,
approximation to Strict MML.
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9 Classification, Clustering, Mixture modelling

Mizture modelling is® variously known as mixture modelling, clustering, numerical taxon-
omy, unsupervised learning and intrinsic classification. It has so many names as it is of
so much interest to so many different communities.

The problem of mixture modelling is one of partitioning data into a previously unknown
number of clusters (or components) and then describing each cluster. We must decide
upon the number of clusters and their relative abundances. For each cluster, we need to
specify distributional parameters such as, for example, means and standard deviations. A
somewhat moot point, which we shall return to discuss further, is whether we also need to
specify for each data thing which class it is assigned to. In the case where we do specify
this, the problem is often known as mixture modelling with latent class assignment or
fully-parameterised mixture modelling.

Mixture modelling is a fundamentally important problem in Artificial Intelligence, where
it is variously known as clustering or unsupervised learning. It is important and much
studied in statistics, where it is variously known as mixture modelling or clustering and
the clusters are generally called components. Philosophers talk of intrinsic classification
and natural kinds. Medicine has “symptom clusters”. Botanists talk of numerical taxon-
omy.

The problem of mixture modelling” is important in that, given a new body of data, such
as a child discovering the world around it or a botanist visiting a new land or a new
jungle, we wish to infer a theory of which things are (in some sense) similar so that we
can more concisely represent this new world around us.

The MML approach to mixture modelling was first developed by Wallace and Boulton
(1968) in their Snob program. Some good expositions are (Wallace, 1986), (Wallace, 1990)
and (Wallace and Dowe, 1997).

See http://www.csse.monash.edu.au/~dld/Snob.html .

9.1 MML mixture modelling : constructing a two-part message

In order to do mixture modelling using MML, we want to construct a two-part message
conveying the mixture model, where the first part of the message encodes the model (or
hypothesis) and the second part of the message encodes the data given the model.

Given the nature of a mixture model, the first part of the message will need to specify the
number of classes (components), the relative abundances of each class (using a multinomial
distribution) and then, for each class in turn, the parameter estimates. This is most of

6©David L. Dowe 1997-1999
"see http:/ /www.csse.monash.edu.au/~dld/cluster.html .
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the first part of the message. A moot point arises as to whether first part of the message
should also include a statement of which data things® are assigned to which components.
When we settle upon the form of the hypothesis to be conveyed in the first part of the
message, the second part of the message will encode the data in light of this hypothesis.

Related to this apparently moot point of whether the model needs to state which com-
ponent each thing is assigned to is the issue of whether such an assignment must be
(deterministic or) total or whether it can instead be (probabilistic or) partial.

9.1.1 Stating the message — a first draft

Let us imagine our hypothesis, H, conveying:

1 a) No. of classes or components (say k).

1 b) The relative abundance of each component.

1 ¢) For each component, the distribution parameter estimates to describe the component.
1 d) For each data thing, the component that it is estimated to belong to.

Having sent such an hypothesis, H, we can now transmit the second part of the message
— the data, D, given H, by specifying for each thing in turn which class it is most likely
to belong to and then encoding the thing given the parameters for that class.

This was the coding mechanism used in the seminal (Wallace and Boulton, 1968) paper.
Let’s think about what our priors are and how to send our message.

In 1 a), we need to specify the number of components.

This could (e.g.) be uniform from 1 to (say) 100, with each value assumed equally likely.
Suppose we have k components (or classes).

This would have message length —log(1/100) = log(100).

(We should note here that the order in which the classes are transmitted is irrelevant to
the model, so we look out for a k! term.)

In 1 b), we specify the relative abundance of each component.

Call these relative abundances py, po, . . ., p.

These must satisfy py +ps+...+pr =1 and for all 7 p; > 0.

These are exactly the conditions of the multinomial distribution in Section 8.1.2 and, as
such, the p; could be stated appropriately.

Doing the exercises in Section 8.1.2

or citing (Wallace and Boulton, 1968; p187 (4), p194 (28)), we get
pi = (n; +1/2)/(N + k/2), with a message length of
(k—1)log(N/12+1)/2 — log((k —1)1) — ¥ (ni +1/2)logp:.

8the word thing or the term data thing is chosen because, e.g., “item” is simply the Latin word for
“thing”.
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In 1c), we do something that we have done repeatedly throughout Section ?? earlier.

Whatever the distribution is for a component, we cost the first part of that message, as
given in equation (83).

In 1d), we then encode the chosen component (say component ) with code-word of length
— log, pi.

The above then encodes the hypothesis, H.

To encode the second part of the message, D|H, conveying each data thing given its
component, we do as with the second part of the message in equation (83).
9.1.2 Stating the message more concisely using partial assignment

The original (Wallace and Boulton, 1968) coding scheme assigns things totally to classes.
As such, it is a bit inefficient, for consider the possible savings when two classes overlap
substantially.

Furthermore, if such an inefficiency is not corrected, then the coding scheme will result
in inconsistent estimates (with the difference between class means over-estimated and the
class standard deviations under-estimated).

The trick is to assign things partially to classes (Wallace, 1986).
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Parts 1 (a), 1 (b) and 1 (c) of the message can remain unchanged, but we have to re-
consider Part 1 (d) and Part 2 of the message.

In the first draft, in Part 1 (d), for each datum z and each component j = 1,...,k, we
considered p(j,z) = p;f(z|class j) and assigned z to the class with max; p(j, z).

To encode more concisely, let P(z) = E§:1 p(Jj, x),

and probabilistically assign x to class j with probability p(j, z)/P(x).

This gives a more efficient coding, and is consistent.

9.1.3 Some comments about parameter estimation in Snob

The original (Wallace and Boulton, 1968) Snob dealt with multinomial and Gaussian dis-
tributions, but did not use partial assignment. (Wallace, 1986) and (Wallace, 1990) used
partial assignment.

This work was extended (Wallace and Dowe, 1994, 1997) to allow Poisson and von Mises
circular distributions.

Although Maximum Likelihood gives similar values to MML for the multinomial, Gaus-
sian and Poisson distributions, it does not do so for the von Mises distribution. But,
Maximum Likelihood has another problem regarding mixture modelling. While it is easy
to assign a likelihood to one component, how does one choose the number of compo-
nents to use? A popular method for penalising Maximum Likelihood for having too many
components, called the Akaike Information Criterion (AIC), is inconsistent® for mixture
modelling.

A problem for many methods in dealing with problems like mixture modelling (such as
estimation of polynomials, factor analysis and the Neyman-Scott problem) is that the
number of parameters to be estimated can increase with the amount of data. Most
methods have little or no trouble for a fixed number of parameters, but some methods
will stumble or even become inconsistent when the number of parameters to be estimated
can grow with the data.

9.1.4 Underlying assumptions in Snob

We are assuming that the various attributes are independent in each component (although
work is being done on using MML to model correlation within mixture components). We
also assume that the data is not serially correlated (although work is also being done on
using MML to model correlation in sequential data).

9t is invariant but not Bayesian — see conjecture in Section 7.3.4.
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Perhaps most subtly, we have also assumed that the parameters from one component
do not interact with the parameters from any other components, i.e., that the relevant
second cross-derivatives in the Fisher information matrix will be zero. This assumption is
reasonable when components are well-separated, but there is some slight inefficiency here
when components overlap.

9.1.5 Snob and Missing data

Given the above assumptions of independence between attributes, missing data does not
pose a problem in Snob’s message length framework. The missing data can be assumed
to have a fixed, constant cost which will not impact on the minimisation of the message
length.

9.1.6 Applications of Snob

Wallace and Boulton (1968) applied Snob to some data from the British museum on seal
skulls.

Other studies include

sportsperson /surfer personality profile (J. Patrick?, 1977),

using the Poisson and Gaussian distributions to look at word counts to identify authorship
style (unpublished),

clustering of data on grieving families (Kissane et al., 1996).

More recently, Dowe, Allison, Dix, Hunter, Wallace and Edgoose (1996) used the von
Mises clustering in Snob to look at protein dihedral angles.

Proteins consist of a chain Nitrogen-(alpha-Carbon)-(beta-Carbon)- ... with an amino
acid attached to the a-Carbon. Around the a-Carbon, proteins have two dihedral angles
¢ and v, which almost totally determine their 3-dimensional structure at that point.

Snob was the first program (and we are not yet aware at the time of writing of another
such program outside Monash) to be able to deal with clustering of angular data.

Earlier attempts to cluster protein data in search of structure involved trying to use the
Euclidean co-ordinates and then model these as coming from a Gaussian distribution.
We were able to reduce 3 X 3 = 9 non-rotationally-invariant Euclidean co-ordinates into
2 invariant angles, ¢ and v, which we were then able to use the von Mises distribution in
Snob to cluster.

Why?

Recall the uses of the von Mises distribution.

People might wish to analyse hospital arrival times around a 24-hour clock to look for
clusters.

In proteins, people often talk of Extended, Helix and Other; or Extended, Helix, Turn
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and Coil.

Given that others have worked in this area but had not been able to apply angular data,
this was a natural problem for us to address, especially as we had the only angular cluster-
ing software and we knew from simulation runs that MML out-performed rival estimators
when there was only one component and we know that MML has no difficulty in making
a transition from one component to many components.

So, what did we find?
See (Dowe, Allison, Dix, Hunter, Wallace and Edgoose, 1996) and (Edgoose, Allison and
Dowe, 1998).
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From (Dowe, Allison, Dix, Hunter, Wallace and Edgoose, 1996) :
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From (Dowe, Allison, Dix, Hunter, Wallace and Edgoose, 1996) :
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From (Edgoose, Allison and Dowe, 1998) :
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From (Edgoose, Allison and Dowe, 1998) :
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From (Edgoose, Allison and Dowe, 1998) :
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From (Edgoose, Allison and Dowe, 1998) :
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9.2 Inconsistency from total assignment in mixture modelling

We recall from Section 9.1.2 that the method of Section 9.1.1 of using total assignment
to estimate class membership in mixture modelling gave rise to a simple inconsistency.

It is worth examining this inconsistency a bit more closely. We are estimating p; and
1 — py, the relative abundances of two overlapping 2-dimensional Gaussian distributions,
and their respective means and standard deviations, 11, fi12, t21, Moo and o1, 012, 091
and 09. The inconsistency will remain even if we assume that p; = 1 — p; = 1/2 and
011 = 019 = 091 = 099 = ¢ and thus reduce the problem to one of estimating p11, 19,
Ha1, Ho2 and o.

The cause of the inconsistency is the total assignment (in Section 9.1.1), which is due in
turn to the rather questionable use of Maximum Likelihood to do the estimation of the
¢; (i =1...N), the probability that thing ¢ is in Class 1.

Let thing ¢ be in class C(7), and let N; and N, respectively be the number of things in
class 1 and class 2, with N; + Ny = N.

Consider the likelihood function

f(f‘lj'lla/j’127/j'21:u227o-7 qiy---5Gi5 - - - an) (91)
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as the likelihood function for data, Z, in terms of such a 2-component mixture specified
by 11, M12, fo1, 22, and o and membership probabilities ¢y, ..., gy for Class 1.

Let us estimate p11, 12, fo1, fo2, and o by whatever means and then consider the esti-
mation of ¢, ..., qn.

Looking at the likelihood function above shows that the Maximum Likelihood estimator
of each ¢; will be either 0 or 1.

For the discrete binomial distribution, we recall from Section 8.1.1 that py = &,
giving rise to small sample bias of Maximum Likelihood estimation, particularly so for
N =1.

It is this small sample bias of Maximum Likelihood for the binomial distribution that
insists upon total assignment and in turn gives rise to the relevant inconsistency in esti-
mating fi11, f12, Ho1, Moo, and o.

Note that Maximum Likelihood has difficulty in estimating all the parameters, 11, 12,
[o1, M22, O, q1,-..,qy simultaneously. As the reader might have anticipated, MML is
consistent for this exercise. Whereas Maximum Likelihood brings about its downfall by
stating estimates with greater certainty than is warranted, MML obtains consistency by
using the Fisher information to acknowledge an appropriate degree of uncertainty in the
parameter estimates.

10 The Neyman-Scott problem — another inconsis-
tency in ML

The example above shows an inconsistency in Maximum Likelihood estimation due to
Maximum Likelihood’s over-fitting in estimating the parameter(s) of a discrete distribu-
tion — namely the binomial distribution. Neyman and Scott gave an example (Neyman
and Scott, 1948) of Maximum Likelihood being inconsistent in estimating a parameter
from a continuous distribution, namely the variance, o2. As in the mixture modelling
inconsistency above, Maximum Likelihood falls victim to stating estimates with greater
certainty than is warranted. Once again, MML obtains consistency by using the Fisher in-
formation to acknowledge an appropriate degree of uncertainty in the parameter estimates.

The Neyman-Scott problem concerns M Gaussian distributions with unknown means

J1y -eey iy -5 fhas TESPectively and identical but unknown standard deviation, 0. Two data,
x;1 and x;9, are sampled from each distribution, N (u;, 02). We then let M tend to infinity.
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10.0.1 The likelihood function for the Neyman-Scott problem

The log-likelihood function, L, is given by:

L = log{HH 1/2 e }

i=17=1
1

M
tonY

i=1j

= M log(27) + M log(o

Z Tij — z

2
j=1

Differentiating, we have

oL 2 2 — Tkl — Tk2
g = 92
O {; i } 20? (92)
and
oL M
— = — - Tij — i) (93)
d(0?) 02 2 zzljzl 7
As observed by Neyman and Scott (1948), this gives
Tit + Tio
(,Ui)ML = T = T
and
1 M 2
(OQ)ML = mzz Tij — ,Uz ML} (94)
i=1j=1
_ Ez 1 (wzél/fgﬂ)
2M
2
— % (95)

as M — oo. This shows the inconsistency in Maximum Likelihood.

We now outline the derivation (Dowe and Wallace, 1997) of the MML estimate, showing
its (asymptotic unbiasedness and) consistency.

10.0.2 The Fisher Information for the Neyman-Scott problem
From (92),

82L 82L
FE = _ oy o
<a:u’ka,ul> 8ukam 7é ( )
and - 1 2
e B e e
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where T, = EWFTI@, and so

This tells us that the off-diagonal elements in the Fisher information matrix will be zero,
thus simplifying later calculations.
Returning to look at the diagonal elements, from (92) and (93),

0L 2
o~ =
and , v
0“L . M 1 9
0(02)2 (02)2 + (02)31221 ]Zl(xzy i)
So,
0L M 1 9 M
E{a(UQ)z} - (02)2 + (02)3'M'20 - (02)2 (99)

Hence, since (96) and (97) give that the Fisher information matrix is diagonal, from the

definition of F', (98) and (99),
M GQL)} { 0?L }
F = El— ES ———
(e (G} -+ {ae

- (&)

oM \T
(02)M+2

Since the Fisher information is independent of y;, choosing a uniform prior on the p; will

give that the only dependence of the message length on y; will be via the (log-)likelihood,
giving that

A _
(,Uz')MML = (,uz')ML = % = I

Any choice of prior on o (except a prior which has a value of 0 over some interval and
thereby making some estimates impossible) leads (Dowe and Wallace, 1997) to a consis-
tent estimate.

The “conjugate” prior, h,(0) xx 1/0, gives

2 2
9 ZM Zi1—Ti2 M (zi—z4
=1 2 =1 21/2

2
’ = = = N(o?, — 1
(o) mmt 7 i (%, 37) (100)
So, (6*)mmL — MTH = 0% as M — oo, and plim((0?) ynp) = o2
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The inconsistency of Maximum Likelihood in doing mixture modelling was due to Max-
imum Likelihood’s inability to acknowledge an appropriate degree of uncertainty in the
parameter estimates of a discrete distribution.

The inconsistency of Maximum Likelihood in the Neyman-Scott problem is due to Max-
imum Likelihood’s inability to acknowledge an appropriate degree of uncertainty in the
parameter estimates of a discrete distribution — namely, its not acknowledging the uncer-
tainty in estimating the u; of the Gaussian distribution.

The Neyman-Scott problem is one of estimating a number of parameters that increases
as the data increases. Mixture modelling has an element of this problem to it in that we
do not know in advance how many components to fit to our data.

A classical method known as Akaike’s Information Criterion (AIC) which uses Maximum
Likelihood for estimation but penalises the number of parameters used in an attempt
to avoid over-fitting is inconsistent for both the Neyman-Scott problem and for mixture
modelling.

MML was and is consistent for both problems, as it'° always is.
Exercise

If you know what Akaike’s Information Criterion (AIC) is, show that it is inconsistent in
estimating o for the Neyman-Scott problem.

We note in passing and might show later that Maximum Likelihood has similar problems
with single factor analysis and multiple factor analysis, both of which have been done by
MML (Wallace and Freeman, 1992; Wallace, to appear) with rather impressive results.

or an improved approximation to Strict MML (Wallace and Boulton, 1975; Wallace and Freeman,

1987)
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11 Decision trees, decision graphs and applications

A binary tree can® often be defined recursively in terms of its root, its left sub-tree and
its right sub-tree. Any tree with a root can similarly be recursively defined.

11.1 Decision trees

A decision tree (or “classification tree”) can be defined to be a tree with a root such that
every interior (non-leaf)® node has a test conducted at it and every leaf has a class (or
probability vector of the classes) in it.

For example (please draw your second-favourite decision tree) :

5©David L. Dowe 1997-1998
6interior nodes are also known as non-leaf nodes. For a decision tree, these are also known as “split”

nodes.
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Now, please draw your favourite decision tree :

Decision tree induction is an example of the regression problem in that, given the values of
several explanatory variables, we wish to have a model of another variable, a goal variable.
Linear regression, polynomial regression and decision tree induction are all examples of
the regression problem.

For decision tree induction and other regression problems, we typically assume that the
values of all the explanatory variables are known to both sender and receiver and that
it remains to transmit as concisely as possible a two-part message conveying a (decision
tree) hypothesis, H, and then the data (D) given H.

The encoding of a decision tree (hypothesis) includes an encoding of the structure of the
tree and an encoding of the leaf probabilities. The encoding of the data given the hy-
pothesis includes, for each datum? xeD, encoding the datum given the leaf probability.

Whereas mixture modelling is often referred to as unsupervised learning because we do
not know in advance how many components there are or what things go into each com-
ponent, decision tree induction is often referred to as supervised learning because we give
examples of what goes in which class and then try to learn the theory.

Forest example.

Decision tree inference has been studied by many, perhaps first by Quinlan (1986), also
by Quinlan and Rivest (1989) using Minimum Description Length (MDL) and Wallace
and Patrick (1993) using MML.

J. R. Quinlan has a more recent (1992) popular program called C4.5, which has recently
been updated.

"having followed it through the decision tree to the relevant leaf node
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11.1.1 Coding of binary decision trees with two leaf classes

We recall that we assume that both sender and receiver have the values of the regressor
variable, and that it remains for the sender to send the receiver a two-part message convey-
ing the decision tree theory, H, and then for each datum, the value of the desired attribute.

The encoding of data from the two leaf classes is as for a binomial distribution®.
The encoding of the structure of the tree is as in (Quinlan and Rivest, 1989) :

< root node >< left sub — tree >< right sub — tree >,

where each interior? node is encoded by a “1” and each leaf node is encoded by a “0”.

Encoding of the structure of the tree

A finite sequence of Os and 1s which has

(i) at least as many 1s as Os until its last symbol,

(ii) a “0” as its last symbol, and

(iii) which has 1 more occurrence of 0 than of 1

can be used to encode the structure of a decision tree.

Example

< 0 > encodes the tree which has one node, the root. Call it Tj.

< 100 > encodes the tree which has a leaf as each child of the root. Call it 17¢g.

< 10100 > = < 1(0)(100) > encodes the tree with T, as its left sub-tree and T as
its I'lght sub-tree. Call it T10100.

Exercise

Draw the structures of these three binary trees, Ty, Ti90 and Tig100-

8and, indeed, the encoding of data for M classes is as for an M-state multinomial distribution.
9or non-leaf or “split”
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Recall your second-favourite and favourite binary tree structures from Section 11.1.
Exercise

Using our prefix code for binary tree structures, for both of these binary trees in turn,
state the binary string encoding the structure.

Random walks, prefix codes and codes of binary tree structure

Recall the requirements above for a finite binary sequence to encode the structure of a
binary tree.

Now, consider an arbitrarily long random sequence with Os and 1s chosen equi-probably.
For any such sequence, with probability 1, there will be a time when the symbol 0 has
occurred exactly once more than the symbol 1 and, furthermore, there will be a first such
time. Let us now consider the first time that the tally of Os exceeds the tally of 1s, and
store in our code-book the binary string which stops just as the count of Os over-takes the
count of 1s.

Fact 1:

All such initial sub-sequence binary strings end with a 0.

Fact 2 :

The set of all such initial sub-sequence binary strings forms a prefix code.
(Why?)

Exercise

Generate a random string of Os and 1s from the toss of a fair coin or a fair
(pseudo-)random number generator or some such.

Using our prefix code for binary tree structures, draw out the tree structure corresponding
to this binary string.
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Hint : Use the fact that the tree structure is encoded recursively.

Exercise :

Use Facts 1 and 2 immediately above to explain that

Z 21ength of binary code of tree structure _ 1 (101)

all binary tree structures

Encoding of the split attributes and leaf probabilities

The code for the decision tree hypothesis includes

1 (i) the code for the structure of the tree (as above),

1 (ii) for each split node, a code for which attribute is being split on, and
1 (iii) for each leaf node, a code for the class probabilities.

We have dealt with 1 (i) above.

The encoding for 1 (ii) depends upon the number of regressor attributes.

If there are K of these, then we could encode the choice of attribute with a message of
length log,(K) bits. However, if we look above the current node to the root node and see
that (say) k splits have already been done above us (where 0 < k < K), then only K — k
attributes are available to be split on, and we encode the choice of split attribute with a
message of length log, (K — k) bits.

The encoding for 1 (iii) is identically the same as for a binomial distribution (as in Section
8.1.1).

This completes the encoding of the decision tree hypothesis, H.
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Encoding the data given the decision tree

To encode the second part of the message, the data, D, given H, follow each datum, xeD),
through to its relevant leaf node. Each leaf node can be treated as a separate binomial
distribution.
The cost of the binomial probability coefficients from part 1 (iii) of the message and the
cost of the second part of the message are given by equation (83) applied to the binomial
distribution.

11.1.2 Coding of binary decision trees with M leaf classes

This section is identical to Section 11.1.2 above except that we now change from the
binomial distribution!® to the multinomial distribution.

Analogously as with Section 11.1.2, the encoding for 1 (iii) and for the second part of the
message is identically the same as for a multinomial distribution (as in Section 8.1.2).

Note that here in Section 11.1.2 (and above in Section 11.1.1), by using a random walk
to encode binary trees, we are using the Quinlan and Rivest (1989) code of

1
Psplit = DPear = 5 s (102)

encoding each leaf as a “0” and each internal node as a “1”.

11.1.3 Coding of ternary decision trees

Above, in dealing with binary trees in Sections 11.1.1 and 11.1.2, we used the Quinlan
and Rivest (1989) code of equation (102), with
1

P, split = Heaf = 5
which assumed that split and leaf nodes are equally likely.
This relied on the fact pointed out in Section 11.1.1 (Facts 1 and 2 and equation(101))
that
any random sequence of Os and 1s has a unique prefix'! corresponding to a unique binary
tree.

This is not the case for a simple encoding of ternary tree structures, as the following
“exercise” is intended to help demonstrate.

Owhich is a special case of the multinomial distribution with M = 2
Hnamely, that prefix where the tally of Os first exceeds the tally of 1s by unity
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“Exercise”

Attempt, where possible, to draw a ternary tree structure given by the binary sequence
0.

Attempt, where possible, to draw a ternary tree structure given by the binary sequence
100.

Attempt, where possible, to draw a ternary tree structure given by the binary sequence
10100 = 1(0)(100).

Attempt, where possible, to draw a ternary tree structure given by the binary sequence
1000.

Attempt, where possible, to draw a ternary tree structure given by the binary sequence
1(0)(1000)(0).

Attempt, where possible, to draw a ternary tree structure given by the binary sequence
1(1000)(1000)(0).

The problem is this: for binary tree structures, we have one more 0 than 1,
and random walk theory guarantees that this will happen with a fair sequence.

However, for a ternary tree structure,

the number of 0s = 2 x (the number of 1s) + 1

There is no guarantee in random walk theory that any random walk must necessarily have
such a sub-sequence as a prefix. Basically, they have too many 0s.

Hence, this encoding of ternary trees and general n-ary trees by Quinlan and Rivest (1989)
is inefficient, in that

Z 21ength of Quinlan—Rivest binary code of tree structure < 1

all ternary tree structures

The correct way of dealing with ternary trees so as to avoid this inefficiency is (Wallace
and Patrick, 1993):

1 2
Py = 3 and Piear = 3

We generalise this in the next section, Section 11.1.4.

126



11.1.4 General coding of n-ary decision trees

The “arity” of an attribute is the number of values it takes.
So, a binary attribute is two-valued, and has arity of 2.

A ternary attribute is three-valued, and has arity of 3.

An n-ary attribute is n-valued, and has arity of n.

For any attribute, we certainly need to have
Poiit + Pear = 1 (103)
We also wish to have
Pyt X (arity of parent node) + Pler x0 = 1 (104)

because we can argue that we want the expected number of nodes at each level of the tree
to remain constant.
These two simultaneous equation lead us to the encoding probabilities:

1 (arity of parent node) — 1
F split — N and Pleaf = N
arity of parent node arity of parent node

(105)

An alternative justification for this goes along the lines of what we showed for ternary
trees in Section 11.1.3 — namely, for an n-ary tree,

the number of leaves = (n — 1) x (the number of splits) + 1

We note that this generalises equation (102) in Section 11.1.2 and the claim in Section
11.1.3.

Remark about MML and consistent decision tree inference

Spare some thought for Maximum Likelihood when looking at decision tree inference. For
many data-sets, sufficient splitting will lead us to some or all leaf nodes being very pure
or even totally pure in one class. Thus, Maximum Likelihood will enjoy splitting and

over-fitting unless it has some way of being penalised.

Recall also from Sections 8.1.1 and 8.1.2 that Maximum Likelihood will be a bit biased
for small samples or where the leaf is very pure in one class.

The message length keeps us honest and discourages us from over-fitting.
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(continued)

11.1.5 Continuous-valued attributes in decision trees

We begin by observing that

o 21 20 2t 22 23 1 2 4 8

Yo =Sttt = st o+

2%-1 2t 23 25 27 2 8 32 128

=1

and that this can be used to generate a code-book (as follows) :

0 1

100 011

101 010
11000 00111
11001 00110
11010 00101
11011 00100
1110000 or 0001111
1110001 0001110
1110010 0001101
1110011 0001100
1110100 0001011
1110101 0001010
1110110 0001001

128

1

2

1
4

1
8

1

tits Tt



1110111 0001000
111100000 000011111

Suppose we want to split on some continuous-valued attribute, say attribute j.
Sender and receiver know that it has (say) IV, values.
Then, we can use this code above to encode the various split percentiles'?.

Furthermore, we can do this by using the right-hand version of the code and putting
a decimal point at the end and then reading it back the front as binary “decimals” to
indicate the percentile at which the split occurs.

In other words :
the code-word 1 (corresponding to probability %) is used to designate a split at position
0.1 (5 of the way through the data);

the code-word 011 (corresponding to probability %) is used to designate a split at position
0.110 (% of the way through the data);

the code-word 010 (corresponding to probability %) is used to designate a split at position
0.010 (3 of the way through the data);

the code-word 00111 (corresponding to probability 31—2) is used to designate a split at po-
sition 0.11100 (% of the way through the data);

the code-word 00110 (corresponding to probability 31—2) is used to designate a split at po-
sition 0.01100 (2 of the way through the data);
etc.

Since attribute j has N; different values, there are N; — 1 different possible “cut-points”
between these values. (If N; =1, then there is no need to split on this attribute.)

Two alternative coding systems to that detailed above are as below:

(i) (Quinlan and Rivest, 1989)  uses the fact that there are N; — 1 different possible
cut-points and then encodes them all as being equally likely. These will have code-words
of length — log, (ﬁ) =log,(N; — 1)

(ii) (Quinlan and Rivest, 1989) proposes (but neither implements nor uses) as an alterna-
tive idea using the (Fisher information) uncertainty region (Wallace and Boulton, 1968)

to encode the cut-points. This is not elaborated upon.

With any luck, the above gives a thorough account of the information-theoretic encoding

12The first author was supported by Australian Research Council (ARC) Large Grants Nos. A49602504
and A49330656.
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of decision trees.

MML gives a good account of how inference might (and should?) be done in terms of
providing an objective function to optimise. However, knowing which function to opti-
mise is sometimes not much more than a good start in finding that optimum. We shortly
return to discuss this search problem, but we first set an exercise and then express an
afterthought re the choice of priors for the leaf distributions.

Exercise

1. Decide upon a small number of discrete (binary) attributes, and one continuous at-
tribute with 5 values.

1 (i) Draw (below) a fairly large decision tree into whose interior nodes it is possible
to split on various values of the above attributes.

1 (ii) Into each interior node, place a split on an attribute, making sure that this split
is legal given all the splits that have already taken place earlier'® in the decision tree
message. For a continuous-value attribute, we need to specify where we are splitting.

1 (iii) Think about some probabilities for each leaf class (but do not do anything more
yet than just think).

2 Place some data in the leaves according to a multinomial (binomial) distribution.

Bwe typically code recursively from left to right
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Exercise

Assuming a coding scheme for the above,
calculate a code-length for parts 1 (i) and 1 (ii) of the message.

Go further, and try and actually construct a code for parts 1 (i) and 1 (ii) of the message.

Part 1 (iii) of the message consists of the Bernoulli co-efficients of each leaf in turn. Part
2 of the message consists of the data given these Bernoulli probability estimates.
If you can, cost parts 1 (iii) and part 2 separately.

If you can not do that, at least give the total cost of parts 1 (iii) and 2.

What is the total length of your message conveying your decision tree and the data?

11.1.6 Afterthought re choice of priors for leaf distributions
Recall from Section 8.1.1 on the binomial distribution that, for o > —1 and g > —1,

L oair \B _ al g
fp - dp = (106)

If we were to use a prior on the categories in the leaves of
(2a+1)!
(a)?

of course, as Maximum Likelihood does not use priors, we still get (p)yr =

h(p) p*(1—p)®

Z
N -

We leave it as an exercise to show that we also would get

r+a+1 x+a+1/2

D rior mean — a7 . & o d D =
(p)poste o ea N+2a—|—2 an (p)MML N—|—2a—|—1

If there is more than one leaf, then it is possible to regard « as a parameter to be estimated.
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Wallace and Patrick (1993) discusses estimating o (with Maximum Likelihood) for the
leaves of decision trees.

For o« = 0, this corresponds to a uniform prior.
Exercise(s)

Draw this prior for —1 < a < 0.
Draw this prior for o > 0.

11.1.7 The search problem for (MML) decision trees

Re-cap on the search problem for mixture modelling:

the “Expectation Maximisation” (EM) algorithm for re-iterating
parameter estimation followed by partial (re-)assignment according to this;
and then re-estimating, etc. until convergence.

The search in mixture modelling for (e.g.) the number of components is messier.

As with the search problem for mixture modelling and in general, knowing the desired
objective function (in our case, the message length) is a good start to finding an optimum,
but it does not of itself give us an optimum. What it does give us is a way of comparing
two theories.

For most choices of prior, for the multinomial, Gaussian and Poisson distributions, we
can simply write down the MML estimator analytically.

For the von Mises distribution, the MML estimator and even the Maximum Likelihood
estimator can be specified by equations, but they still have to be solved for numerically.

For mixture models and decision trees, one is trying to select a model class (e.g. number of
mixture components or number and location of interior split nodes) as well as estimating
parameter values. This makes the search space discrete (or “gritty”) in places and then
continuous in other places. In short, it can and does in general lead to some messy search
problems.

In practice, we search for the optimum guided by the best heuristics we can muster.
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As for decision trees, there are many ways in which could rummage amongst possible
decision trees in search of the MML tree. One way might be genetic algorithms. A better
way way would probably be simulated annealing (which is a greedy algorithm modified
to sometimes take random steps “for the worse”, something which happens less and less
often as the “temperature” decreases).

The Wallace and Patrick (1993) decision tree program (available from Monash Computer
Science cs.monash.edu.au at ~csw/dtree/ ) uses a greedy algorithm combined with a
lookahead.

Lookahead

Before playing a move, a chess player will typically look ahead a number of moves to that
player’s “search horizon”, and then choose the current move subject to what was seen at
the various options available at the search horizon.

Imagine now a decision tree which is being grown from the root down. What we could do
with the current draft of the decision tree is to look at each node in turn which has not
yet been split upon, and consider for each of these in turn all the legal** splits that might
be performed at them. In addition to all these split options, we also include as an op-
tion declaring every unsplit node to be a leaf node and to complete the growing of the tree.

Having considered these various options, we could then take that option which gives rise
to the shortest message length.

This way of choosing a “move” in growing a decision tree is called lookahead 1, in that it
looks at all possible options 1 level ahead and then chooses the best one. We iterate the
lookahead 1 process until the tree is completely grown.

Lookahead n looks ahead n steps and then greedily chooses that single step which had
the shortest message length on the horizon of looking ahead n steps.

Looking ahead further has the advantage of being more likely to find a shorter message
length. However, as with chess, although we generally expect that looking ahead further is
preferable to not looking ahead very far, there is no guarantee that looking ahead further
will necessarily always lead to a better choice than a shallower search will. Furthermore,
looking ahead a long way generally slows the search down substantially.

4at any given node, we can only split on discrete attributes that have not been split on at an ancestor
node earlier in the tree or on continuous attributes
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11.2 Decision graphs
Recall equations (103) and (104) :

Psplit + Pleaf =1
and
Pyt X (arity of parent node) + Prs x0 = 1

in Section 11.1.4 expressing!® the fact that, in a decision tree, all nodes must be either a
split node or a leaf node'® and also the fact that the expected number of children is the
arity times the probability of a split node (plus 0 times the probability of a leaf node).

Decision graphs!'” are a generalisation of decision trees. Whereas all non-leaf interior
nodes in a decision tree are split nodes (corresponding to “and”), decision graphs permit
interior nodes to be join nodes (corresponding to “or”) as well as split nodes.

The upside of generalising something is that the language becomes more expressive and
some things can now be expressed more concisely than previously. For example, a decision
tree which has two or more identical or almost identical sub-trees will probably gain by
having the relevant nodes joined so that all the duplicated sub-trees can become one.

Exercise
Draw a decision tree with two (or more) identically replicated sub-trees, and then draw a

decision graph taking advantage of the fact that joining the roots of the replicated sub-
trees will make the encoding more efficient.

The downside of having a more expressive language is that the search for the optimum
typically takes longer.

In encoding a decision graph, the fact that we now have join nodes modifies decision tree
equation (103) to be

3apologies if the equation labels here might be a little bit out
6since, for a decision tree, all interior non-leaf nodes are split nodes
or “classification graphs”
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Popiit + Pioin + Pear = 1 (107)

with a decision tree being identical to a decision graph with Py, = 0.

Join

Py X (arity of parent node) + + Pl x0 = 1 (108)
The theory of (MML) decision graphs was first expounded in Oliver and Wallace (1991)8
and subsequently re-iterated in Oliver, Dowe and Wallace (1992) and Oliver (1993).

If one solves the two equations (107) and (108) above for the three unknowns, Pupiit; Pioin
and Pi,¢, one arrives at

1 e
Fopi = arity of parent node (109)
and
1 — Pioin
Pear = 1= Pyoin— Bpiit = 1 — Pjgin — 2 (110)

arity of parent node

Since two equations in three unknowns leave one variable undetermined, in encoding a
decision graph, it is necessary to (infer and) state a value for Pjyy-

11.2.1 Communicating a graph’s topology

If we recall from Section 11.1.1 the encoding of a two-part message entailing a decision
tree, we will note that part 1 (i) of the message now changes so that we encode (Pjoin
followed by) the topology of the graph.

The encoding of the topology of the graph goes along the following lines, but gets a bit
messy for reasons we shall shortly come to.

All split nodes and leaf nodes are quite easily coded as with decision trees.

The difficulty comes in the encoding of join nodes. Join nodes come in pairs. Imagine
growing a decision graph and coming to a join node whose partner has not yet been grown.
This seems like a problem, but we deal with it by perservering and growing the decision
graph in “generations” as follows:

8which was subsequent to the Wallace and Patrick (1993) decision tree journal article
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The first generation of a decision graph’s topology

Initially, grow the decision graph from the root as far as is possible until all nodes are
either leaf nodes or join nodes. Now, go through labelling the nodes which have a partner
they can join with. There will necessarily be an even number (say F) of such nodes. Now,
encode the pairing(s), of which there will be

x> x() 1 BE-) (Eo@-3) o 2x1
(E/2)! (E/2)! 2l 21 AT
E!

(E/2)! (2))E2

Subsequent generations of a decision graph’s topology

Any nodes which could have joined but did not are labelled as “Old’. For the next gen-
eration, we continue from having made all the possible joins above, until we are again at
a situation where it is not possible to do any further splitting without first doing one or
more joins (or possibly because we have already completely grown the tree). We now have
“New” nodes which have been created this generation and Old left-over nodes from the
last generation (or earlier). The only joins which can be done are between two New nodes
or between an Old node and a New node, since we assume that two Old nodes would have
been joined in an earlier generation at the first available opportunity.

The combinatorics gets messier, but there is a recurrence relation of the number of ways
in which the joins can be done.

We iterate through generation after generation of the graph until its topology has finally
been communicated to the receiver.

11.2.2 Communicating the decision graph

Having communicated the decision graph’s topology as in Section 11.2.1,

as in Section 11.1.1 it now remains only to transmit

1 (ii) for each split node, a code for which attribute is being split on, and
1 (iii) for each leaf node, a code for the class probabilities; and

2. The data, D, given the decision graph.
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11.3 Application of decision trees to bush-fire prediction

The data here!'? is from the Mallee region of North-West Victoria, Australia, for the 3833
days from 1 September 1979 until 28 February 1990.

The dependent (or goal) variable to be (probabilistically) predicted is the binary-valued
variable of whether or not a bush-fire occurred.

The data-set also included 10 explanatory variables.

Although it is now perhaps trivial that MML lends itself fairly natural to probabilistic
prediction, perhaps the first papers (other than those going back to 1952 concerning prob-
abilistic prediction and football) in which the connection between MML and probabilistic
prediction are made explicitly clear are (arguably) the Wallace and Patrick (1993) paper
on MML decision trees and the Dowe and Krusel (1993, 1994) applications to bush-fire
prediction.

Include Dowe and Krusel (1993) results.

19@©David L. Dowe 1997-1998
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11.4 Application of decision graphs to protein folding

We might recall from Section 9.1.6 that proteins consist of a repeating Nitrogen-(a-
Carbon)-(S-Carbon)- ... chain, with an amino acid attached to each a-Carbon?.

We might also recall that proteins are often considered as having 3 secondary structures,
Extended, Helix and Other: E, H and O, which are used to describe the local shape (or
secondary structure) at a point. The reason that this is done is that the goal of predicting
the tertiary (or 3-dimensional) structure of a general protein is from its primary amino
acid sequence is currently considered intractable, and it is thought that the study of sec-
ondary structure will provide some insight to assist the study of tertiary structure.

There are 20 naturally occuring amino acids (AAs), with their names, 3-letter abbrevi-
ations and 1-letter abbreviations (possibly) being given below or on the next page (as
taken from Schulz and Schirmer, 19837):

Recall that Section 11.3 considered the application of decision trees to bushfire data. Since
all the explanatory variables were continuous for this problem, we had to use the theory

20The first author was supported by Australian Research Council (ARC) Large Grants Nos. A49602504
and A49330656.
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from Section 11.1.5 on splitting on continuous-valued attributes in decision trees.

For this problem of protein secondary structure prediction, the explanatory variables here
are the Amino Acids (AAs). As such, we use the theory of decision graphs (from Sec-
tion 11.2) accompanied by the fact that all our attributes are discrete (see Section 11.1.4).

Assuming that both sender and receiver already have the amino acid values in sequence,
the idea is to try and infer a theory of which secondary structure conformation (E, H or
O) will appear at a certain site as a function of the surrounding amino acids :

An inefficiency in this model is the fact that it fails to take account of the serial correlation
in the secondary structure sequence. Correcting this inefficiency will shorten the message
length and almost certainly improve predictive accuracy. There is certainly room for
further research here.
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The data used in (Dowe, Oliver, Allison, Dix and Wallace, 1993) is listed below.
It comprised 75 GOR, (Garnier-Osguthorpe-Robson) proteins, totalling
2515 4 3790 + 6452 = 12757 =~ 13000 amino acids.

We split these into 8 non-homologous groups so as to make the prediction problem fairer.

Further below are the results obtained from this study.
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From (Dowe, Oliver, Allison, Dix and Wallace, 1993) :
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12 Probabilistic Finite State Automata (PFSAs)

Finite State Automata (FSAs), or finite state machines, are determined by
a fixed, finite number of states,

an alphabet of characters,

and a mapping  m : States x Alphabet — States ,

which tells the machine in the current state that if it encounters a certain symbol from
the alphabet then it should head to a new state as determined by the mapping.

FSAs can also be regarded as grammars.

Question and observation :

FSAs are not necessarily as computationally powerful as (Universal) Turing Machines.
True or False?

If not, why not?

Of course, just as we have FSAs, we also have probabilistic finite state automata (PFSAs),
for which the mapping m above is probabilistic.

And, of course, given a body of data which we suspect as having come from some (prob-
abilistic) grammar or language, the inference question arises of how best to infer such a

gramimar.

The inference of PFSAs using MML was first studied in Wallace and Georgeff (1983) and
Georgeff and Wallace (1984).
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From wherever it is attributed to being from :
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From wherever it is attributed to being from :

144



From wherever it is attributed to being from :
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From wherever it is attributed to being from :

146



From Wallace and Georgeff (1984) :
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13 DNA alignment

Consider an attempt to align some DNA fragments, as in the Figure?! following.

r(i,j) f(x,y)
123456
111

1 111000 1 xxx11
2 01100 2 xxxx1 2
3 0012 -> 3 X XXX XX
4 000 4 xxxx1
5 01 5 xxxx1
6 1 6 X X X X

Entry (7, j) gives the number of fragment stacks beginning in position ¢ and finishing in
position j.

The fragment match on the right is an example of something like the raw data that a
biologist might get from doing DNA restriction site mapping.

There is a 1-to-1 mapping between the stack on the left and the fragment match on the
right.

The problem arises if there is an error in the fragment match on the right, and we have
(e.g.) a hole :

£’ (x,y)

111

xx 11
xxx1 2
XXX XXX

>

X X x 1
xxxx1

D O W

X X X X

The inference problem which arises is, given that we have an error in our data, what
model was it most likely to have come from.

13.1 A message for DNA restriction mapping alignment

On way of encoding the fragment match with a hole in it, f’, would be to encode f followed
by a message saying that there is one hole and that the hole is in position (z,y) = (4, 3),

2lwhich was supplied by Daniel Loo, who we acknowledge and thank.
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i.e., the 4th row and 3 positions in from the left.
Then, to encode f’, we need to encode f and the error(s).

Since there is a 1-to-1 mapping between r and f, we can therefore encode f’ instead by
just encoding r and the error(s).

13.1.1 Encoding the stack, r

For those familiar with the problem or who study the stack matrix, r(i, j), long enough,
the shape of r is determined by beginning at the top-left hand corner (1,1) and making
successive moves of right, down, or down-and-right. Other than following these numbers
along, every other entry is a 0. And, we can encode the right, down, or down-and-right
as coming from a multinomial distribution (see Section 8.1.2).

Now, these numbers are all non-negative integers. As such, they could be encoded by
(e.g.) a Poisson distribution or a geometric distribution.

13.1.2 Possible encoding of the fragment match with errors

Encode the error-free stack, r, by encoding a trinomial distribution of the path of the
non-zero numbers.

Encode these non-negative numbers as coming from (e.g.) a Poisson distribution or (e.g.)
a geometric distribution.

The receiver now has the error-free fragment match, f.

Now encode the error(s), if any, to give f'.

14 Linear regression and Causal nets

14.1 Linear regression

(Baxter and Dowe, 1994, 1996; Wallace, 1996; Viswanathan and Wallace, 1999).
Recall the Gaussian distribution N(u,c?) from Section 8.3.
Letting ay = p, Gaussian regression can be regarded as finding a horizontal line,

y = ag + N(0,0?)
of best fit
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For linear regression, letting

ap be the constant term,

a; be the gradient and (as usual)
0?2 be the variance,

we wish to find a line

y = ay+ az + N(0,0%)
of best fit.
How do we do this?
We calculate the likelihood function,
f(y|a0’ ar, 02)'
We calculate the second derivatives of the likelihood function, and their expectations.
The determinant of the matrix of these gives the Fisher information.
We also need a Bayesian prior on the parameters, ag, a; and o2.
Recall equations (83) and (84), where £, is a lattice constant that can safely be assumed
to be L.
12

We choose the model which minimises the message length.

The simulation results in (Baxter and Dowe, 1994, 1996) show MML to be at least as
good as all the available classical rivals considered.

14.2 Quadratic regression

For quadratic regression, letting

ao be the constant term,

a1 be the coefficient of x,

as be the coefficient of 2% and (as usual)
o? be the variance,

we wish to find a curve

Yy = ag + a17 + ax? + N(0, 0?)

of best fit.

How do we do this?

By the methods above.
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14.3 Polynomial regression

(Wallace, 1997+; Viswanathan and Wallace, 1999).
y=ay+ az + agx? + ...+ agz? + N(0,0?)

We have to first encode the degree, d, of the polynomial.
We end up with the first part of the message encoding d, ag, a1, . . ., a4, 02

The slight tricks to bear in mind here are

(i) we must encode d so that the rest of the message makes sense

(ii) d comes from a discrete distribution (of range 0,1,2,...) whereas the a; are from a
continuous distribution.

(Wallace, 1997+; Viswanathan and Wallace, 1999) shows the MML approach to be supe-
rior to the recently developed V-C (Vapnik-Chervonenkis) dimension method, and vastly
superior to better known classical rivals.

14.4 Causal nets
(Wallace, Korb and Dai, 1996.)

A causal network is a directed acyclic graph (DAG) of (purported) (linear) causal rela-
tions between variables.

Where several variables are deemed to be causally affecting another, we do a linear regres-

sion (see Section 14.1) to model a variable as a function of those supposed to be causally
affecting it.

15 Factor analysis

A statistical factor is something which captures an underlying piece of behaviour in two
or more variables.

Example 1
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For example, taller animals tend to be broader (front to back) and wider (left to right).
This is not always true, but there is a trend for this to happen. Ditto amongst humans.

We could propose a factor called size. The factor loads would then consist of how much
each of height, breadth and width contributed to size. Each animal or human would have
a factor score, which would be a measure of its/her/his size.

Example 2

For the petrol heads, we could consider a variety of petrols and how well they perform on
a variety of engine. We could call such a factor octane rating. The factor loads would then
consist of how much each engine contributes to octane rating. The factor scores would
then be the octane ratings of the petrols, measuring how well (or badly) each petrol does
on the variety of engines.

Example 3

The following proposed factor can be emotionally charged. Imagine a variety of aptitude
tests in linguistic, mathematical, etc. abilities. One could propose a factor called 1.Q.

The factor loads in such a model would be the contribution of the various tests to I.Q).,
and the factor scores would be the various I.QQ.s of the various people.

When factor analysis is done, it is assumed (for simplicity) that the variables combine
linearly to form the factor. This probably makes sense when we combine height, breadth
and width to form the size factor, but it might make less sense if we also included weight.

Also, as well as assuming that variables combine linearly, it is also traditional (for sim-
plicity) to assume that the variables are Gaussian.

So, assume — as everyone else does — linear Gaussian factors.

15.1 Single factor analysis
(Wallace and Freeman, 1992.)

The simulation results comparing alternative methods are quite impressive.

15.2 Multiple factor analysis
(Wallace, 1995+, 1999.)

The simulation results comparing alternative methods are very impressive.
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16 Regression with the spherical von Mises-Fisher
distribution

(Dowe, Oliver and Wallace, 1996.)

17 MDL and MML: “one-part” messages and two-
part messages

This section briefly compares and contrasts Minimum Description Length (MDL) (J. J.
Rissanen, 1978, etc.) with MML (C. S. Wallace et al., 1968, 1969, 1970, 1973, 1973, 1975,
1975, etc.).

Recall Section 3.3 (General Inference scenario), ppl4-15 and following sections.

Let £ = D be some data.

Define

Io(#) = —logy(r(#) = —log, ( [ h(@)f (1) db)

and let I;(Z) be the length of the shortest two-part message conveying an hypothesis??,
H, and the data, 7.

L(#) = min (~logy(h(H)) ~ logy(f(Z/H))) = min (~logy(h(H)f(Z|H)))
= min (~log,(p(#, H)))

Iy(Z) is the length of the shortest one-part message for conveying the data, .

I, (%) is the length of the shortest two-part message for conveying an hypothesis followed
by the data given the hypothesis.

L&) - 1@ = min (- Tog, ol ) +log, () = (- log("

= min (~logy(9(H|D) > 0

22the MML hypothesis
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Rissanen’s motivation in his 1978 paper is partly the notion of Kolmogorov Complexity.
As we (should) see shortly, the information content in some data can be thought of as
the length of the shortest binary string needed by a Universal Turing Machine (UTM) to
construct the data.

The following example highlights a crucial difference between MDL and MML. Consider
the transmission of a two-part message in which the first part of the message is sent as
usual but a subtle change is made to the second part of the message. Since both sender
and receiver know the first part of the message after it has been sent, one could devise a
code in which the second part of the message was sent assuming that the first part of the
message contained the optimal inference.

(Note that this is not the way in which MML encodes the second part of the message.
The MML encoding of D|H assumes nothing about whether H is a particularly good nor
particularly lousy hypothesis for D.)

The original MDL criterion (Rissanen, 1978) minimised the log-likelihood function plus
the logarithm of the number of parameters, a principle usually referred to as “Bayes’s
Information Criterion” (BIC). For some problems (e.g. the Neyman-Scott problem of
Section 10), this MDL (1978) or BIC criterion is inconsistent.

The 1987 version of MDL (Rissanen, 1978) had coding blocks spiralling (anti-clockwise)
outward from the “natural’ origin. This is not invariant under re-parameterisation, partly
because it begs the issue of a “natural origin”, and partly because the notion of anti-
clockwise or some such order of the spiralling depends upon putting some sort of “natural
order” on the attributes. This will not be invariant if we inter-change two axes.

Exercise

Draw two axes with outwardly spiralling coding blocks in the available space.

Interchange the two axes, and see what happens to the direction of the spiralling of the
coding blocks.
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A more recent version of MDL (Rissanen, 1996) uses the Jeffreys “prior” from Section
7.1. This gives a presumably invariant but presumably inconsistent estimation method.

Rissanen’s work shows his laudable desire to find an estimation method which is invari-
ant and universally consistent but most definitely not Bayesian. While this approach is
laudable and perhaps a holy grail of inductive inference, we conjecture(d) in Section 7.3.3
that it is not possible.

For a longer discussion of the relative pros and cons of MDL and MML, see (Rissanen,
pp223-239, 1987), (Wallace and Freeman, pp240-252, 1987) and the ensuing discussion
(pp253+, 1987).

18 Turing Machines and Universal TMs as priors

Much of the material in this section is from Dowe and Wallace (SMML and Kolmogorov
complexity, 1997+), Section 1 and Section 2.2.2, and need not be absorbed in great detail.

18.1 Kolmogorov complexity

We define?® the Kolmogorov complexity (Kolmogorov, 1965)?* of a string z with respect
to some universal Turing Machine, U, to be the length, |¢|, of the shortest input string,
g, such that when ¢ is input to U, U reads all of ¢, then outputs all of =, and then either
stops or tries to read more input.

Given some Universal Turing Machine (UTM), U,

Ky(z) = mqln{|q\ :U(q) =2 and U halts or reads input} (111)

where U(q) denotes the output from machine, U, after it has been fed input, g.
Following on for each output string, x, we can define the marginal probability, (ry(x)
or) Py(z), of z, as follows:

Definition:
Py() = > 2(-la) (112)
q:U(g)=z and then halts or reads
= Pr(U generates x from random string) (113)

since we insist that U then halts or reads. The halting or reading of U in this definition
ensures that the set of our acceptable code-words, g, gives rise to a prefix code. It thus

Zthe notes here in Section 18.1 on MML and Kolmogorov Complexity are being revised from those
below to form and article by Wallace and Dowe to appear in the Computer Journal, 1999.
24defined independently, and apparently earlier, by R.J. Solomonoff (1964).
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follows (Kraft, 1949) that

ZQ—Ku(w) < Z Z 9(—lal) <1 (114)

T Ulg)==

where U outputs x and then halts or waits to read. = This natural and fundamentally
important concept of Kolmogorov complexity, Ky(.), has been well-studied - see, e.g., (Li
and Vitanyi, 1997).

18.2 One-part and Two-part messages

A one-part message is, as above, an encoding, ¢, of a datum, x.
We say that g gives a two-part message for x with respect to U if there exist strings ¢o and
¢; such that ¢ = goq; is their concatenation, U(qy) = {}, U(q) = z, and, for all strings ¢,

U(CICI2) = U(QOQ1Q2):U(QOQ1)U(QOQ2) (115)
= 2U(qoq2) = {}(U(q0))(q1)-(U(q0))(g2) (116)
= Ulqo)-(U(g0))(q1)-(U(q0))(g2) (117)

We take the first line as the definition, and the subsequent equations are consequences
of this definition. In a two-part encoding, the first part of the message (here, gy) contains
the hypothesis, and the second part contains the data encoded given the hypothesis. We
note that any data, zo (encoded using ¢2), is encoded without reference to g; - the only
reference to the encoding of x is to the first part of the message, gy, the encoding of the
hypothesis. Paraphrasing, the joint probability Pr(goqig2) can be written (adaptively) as
Pr(qqig:) = Pr(qo)Pr(glq)Pr(glqq).

Our definition above gives that Pr(gyq1q2) = Pr(qo)Pr(qi]g0)Pr(gz2|q0)

In the sense that we thus have that, for all ¢; for all g2, Pr(ga|qeq:) = Pr(gz|qo), it
follows that ¢y encodes an hypothesis.

18.3 SMDML inference re-visited
Recall the discussion on Strict MML in Section 4.5, pp25-26.

A related notion, MMLA (or Fairly Strict MML, FSMML), can also be defined.
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Re-printed from C. S. Wallace (1994), presuming kind permission :
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Re-printed from C. S. Wallace (1994), presuming kind permission :
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18.4 SMML and Two-part code-books

Statistical inference typically requires likelihood functions. Bayesian inference further
requires prior distributions on parameter values. In order to be able to make inductive
inferences, we further wish to restrict ourselves to distributions known to be totally com-
putable, i.e., distributions which return computable values (in the sense of Section 1)
given any finite input string.

Consider a totally computable Bayesian prior, h(.), over our parameter space and a totally
computable likelihood function, f(.|.), of the data given the parameters.

For each datum, z, define the marginal probability, r(x), of datum, x, as being given by

/h F(z]0)d8 (118)

or

ZP flz|H) = Xa:h(O)f(wW) (119)

with the former being the discrete case and the latter being the continuous case. This
also appears to be the logarithm of Rissanen’s stochastic complexity, SC(z) (Rissanen,
1989; Rissanen, 1996; Rissanen, 1978).

Since in finite time, we can only generate finitely many bit strings, in finite time we can
only generate finitely many x (and r(z)). In practice, 7(z) might be non-analytical or
numerical, so we might be willing to tolerate some agreed upon (and very small) tolerance
error in r(x).

Consider a machine, M, which takes an arbitrary h(.) and f(.|.) and generates for both
sender and receiver a code-book of two-part messages, < > < x|0 >, conveying 6 and
then x given 4. How might we choose M? We consider some alternatives below.

18.4.1 A universal two-part code-book

Whether or not we know a functional form for A(.), we can choose an arbitrary universal
distribution, d,, for the encoding of 6, since for all universal d,, for some constant, C,,
for all § h(f) < C,d,(0), and so

forall & —log, d,(0) < —log, h(0) + logy(Cy)-

So, simply choose any old Universal Turing Machine (Vitanyi and Li, 1996).

The scheme in this (universal) option tells us that if we ignore any available prior infor-
mation, we can choose a universal distribution which will enable us to have a code-book
whose expected length is within some fixed constant of the minimum possible expected
length.

Our objection to this option (Vitdnyi and Li, 1996) is that the choice of universal distri-
bution, d,, is arbitrary, and so leads to an arbitrary constant, log,(C,), which is possibly
larger than the size of the data-set under consideration.
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18.5 Strict MML and its code-book
18.5.1 Strict Minimum Message Length

In SMML, we wish to form data into groups via a many-to-one mapping, m, from the
data-set, X, to the estimator set?®. We choose this mapping to minimise the expected
length of a two-part message. The prior probability of an estimator (coding) block, 0, is

the sum of the marginal probabilities, r(x), of all the data, z, for which m(z) = 6. So,
(Prior probability of ) = p(f) = > or(x)
x:m(x)=0

By Bayes’s Theorem,
Pr(H|D) = (1/Pr(D)).Pr(H&D) = (1/Pr(D)).Pr(H) Pr(D/H) (120)

and so the posterior probability, Pr(H|D), of H given D, is proportional to Pr(H)Pr(D|H).
Appealing to Shannon’s information theory, an event of probability p can be encoded
(e.g. by a Huffman code) by a binary string of length — log, p, ignoring issues of possible
round-up to the next integer. (See (Wallace, 1968; Wallace, 1987), even (Wallace and
Dowe, 1994), where this is appealed to in an MML context.)

18.5.2 The SMML code-book

The SMML machine, Mgpsarr,, takes a computable probability distribution and designs
a code-book which is optimal for that code-book in terms of minimising expected code-
length. By Kraft’s inequality (Kraft, 1949), the length of the code-words generated will
be such that (within round-off error)

9~ (length of codeword for ) — prior probability of region encoded by .

The desirability of minimising the expected code-length can be thought of in either entropy
terms or minimum expected Kullback-Leibler distance terms.

In talking of SMML code-books (Wallace, 1975; Wallace, 1987), the point made explicitly
clear in this paper is that, in the Kolmogorov Complexity and UTM paradigm, we can®®
use a machine to be the code-book generator. We now describe how this can (in principle)
be done.

Choose a machine, M, for the two-part joint encoding of 6 and :c|§ S0 as to minimise
the expected length of this transmission. The reason for choosing our code-book so as
to minimise the expected length is that if we have events, ev;, of probability, p; and
code-word length, /;, minimising >, p;/; results in [; ~ — log, p;.

We call this machine Mgy, since it behaves according to the Strict Minimum Message
Length (SMML) criterion.

Mgnrar takes as input an encoding of the prior, A(.), and the likelihood, f(.|.). In the
event that either h(.) or f(.|.) is not total, then Mgspsr, might in turn not complete its
calculations (and produce a code-book); and hence we insist that h(.) and f(.|.) be total.

25which will be a subset of the parameter space
265ubject to some assumptions of total computability
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Given its input h(.) and f(.|.), Mgy then writes a code-book of minimum expected
message length. Both sender and receiver have this machine, Mgpsarr,, and they both also
have the prior, A(.), and the likelihood, f(.|.). Armed with these, they can both generate
the code-book.

Mg will (Wallace, 1975; Wallace, 1987) consider the marginal probabilities, r(x), of
all the (finite) possible data, x, and then search through the (possibly intractably many?)
partitions of the data into groups so as to minimise the expected message length?®,
When the sender inspects the data, x, the sender can then send a two-part code for z
from this code-book. The code which will be selected will be that 0 such that the two- -part
message transmitting < § >< :1:\0 > will be of the minimum possible length Armed with
the code-book, the receiver will be able to decode #, and, then (using 6) =

18.6 Computational complexity of SMML in inference
(Farr and Wallace, 1997.)

18.7 “Efficient” Markets

Optimal inference entails finding the shortest program for some data. In general, by the
halting problem, this is not decidable. Hence, it is silly to say that the markets are nec-
essarily efficient.

Furthermore, optimal prediction is even harder than optimal inference, since it entails
combining several models, not just the optimal. (Dowe and Korb, 1996).

SMML inference is difficult (Section 18.6), but combining predictions which use Universal
Turing Machines is undecidable.

19 MML, inductive learning and the Turing Test

The Turing Test is a finite behavioural test. It can be argued from MML principles that
inductive learning = compression. As such, the requirement of compression can be added
to the test as a non-behavioural enhancement (Dowe and Héjek, 1997, 1998).

Question (Dowe and Héjek, 1997):

Given two programs H; and H, respectively of lengths I, and I, I; < Iy, if H; and H,
perform equally well on a Turing Test (or if Pr(Data/H;) = Pr(Data|Hy)),

which, if either, should be predictively preferred for the future

for “right” /“wrong” prediction?

271t is the intractability of this search that leads us to say that the construction of an SMML code-book
can be done in principle.

28These probabilities could be (slightly) rounded off, such as to a factor of, e.g., 273°
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for probabilistic prediction?

Answer (probably):
Clearly, the theory which is more likely a priori will be more likely a posteriori. This will
almost certainly be the better of the two theories as a predictor.

20 (Further) Applications

20.1 (Further) Snob Applications

(Papp, Dowe and Cox, 1993), LandSat data.
Kissane et al. (1996a, 1996b), Melbourne family grief study; Prior et al. (1998), autism
data.

21 Discussion, Summary and Conclusion

If one wants to make sense of data, one can accept a pedestrian method will little question
or one can take trouble to try and get things right. From all the available information
available at the time of writing, it looks like the methods described here are the way of
the future.

If having mathematical or other difficulty, be encouraged that the trouble is worth the
effort. Difficult exercises are likely to be rewarded with due acknowledgment.

21.1 Quotable quotations

(about probabilistic prediction)

“Human beings are perhaps never more frightening than when they are convinced beyond
doubt that they are right.” Laurens van der Post.

(from desk calendar, 2 October 1997.)

cf. a quotation similar to that above from Jacob Bronowski in The ascent of man.

“The Master said, Yu, shall I teach you what knowledge is? When you know a thing, to
recognise that you know it, and when you do not know a thing, to recognise that you do
not know it. That is knowledge.”

Analects of Confucius (transl. by Arthur Waley), Book II, No. 17, circa 500B.C.

See also the Revision section.
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22 Revision

Anyone using this material to lecture is recommended and encouraged to leave some time
at the end of the course for revision.

Good luck.
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23 Examples sprinkled throughout

23.1 What now?

Any crucial typos?
Revision.
My many slides from many MML talks.

23.1.1 What now?

If getting stuck at this point, make a cursory discussion of the material below and return
to either earlier written glanced-over material or some of my published papers not yet
mentioned.

Chess stuff, logistic problem with it
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CSC423 LEARNING AND PREDICTION
Assignment 2

DUE: 12:00 noon, Friday 26 September 1997,
at the Computer Science General Office

This assignment is worth 15% of the total assessment for this subject.
Please read carefully the submission requirements on page 4.

Introduction

Somewhere on planet Earth, north of the tropic of Capricorn, there is a site measuring
several hundred square kilometres with a significantly high concentration of a radioactive
isotope!. Some would like to mine this site, others are concerned about the possibility of
contaminating the local river system and one entrepreneurial tour operator suggests that
a cool, refreshing drink of the tailings water will give an inner glow.

In a supposed attempt to bring some objectivity into the debate, it is desired to measure
the concentration of this isotope. The site has a divide running through it, with sub-sites
G and D to the left and right of the divide respectively. The concentration of the isotope
is (initially) assumed to be uniform around G and uniform around D, but by no means
necessarily the same for G and D.

An experiment is conducted as follows:

On Day 1, a number, Ng, of Geiger counters are placed at random sites around G for a
duration of {¢ = 18 hours, and counts cq1, . . ., cgn, are observed on these Geiger coun-
ters.

The Geiger counters are believed to have behaved with little or no fault on Day 1 but,
after their protracted exposure to extreme weather, it is believed that there might be
some problems - such as the following - with some of these Geiger counters for future use:
e Some of the Geiger counters (type “IQ”) could be “improperly quenched”, meaning
that? they are likely to return spurious readings roughly according to a geometric distri-
bution (whose probability parameter is not known).

e Some of the Geiger counters (type “SO”) switch off and fail to read if they have not
registered a count in the last one hour period. Working out the probability of a count
occurring in a one hour period, these can be assumed to return readings according to a
geometric distribution (whose probability parameter can be related to the relevant Pois-
son rate, r).

e There is a suspicion that a small portion (type “F”) of the results might have been fab-
ricated® using a geometric distribution with the same mean as the Poisson distribution,

'Rather than phrase this problem in terms of radioactive decays, we could have alternatively phrased
it in terms of counting arrivals of y-mesons from cosmic showers.

2in short

3by cost-cutters presumed to be less than scrupulous



Pn(rg), and it is also desired to carry out a routine check on this suspicion.

Since types “IQ”, “SO” and “F” are variations of the geometric distribution, we shall
assume for simplicity initially that only one of them (IQ) actually occurs.

At this point, miners and non-miners alike call for the “data miners”.

Question 1 (1 mark)

Assuming a Poisson distribution Pn(rgtg) of radioactive decays measured for each of the
Ng counters in the site G on Day 1, derive

1 (a) the mean of the distribution and

1 (b) the likelihood function for the observed counts cg1, - - ., Cang-

1 (c) Derive the Maximum Likelihood estimate, (rg)mr, of 7g.

1 (d) From 1(b), derive the Fisher information for this distribution.

1 (e) Give a brief justification for your choice of prior, h(rg), on 7g.

Use this prior, 1(b) and 1(d) to derive the Minimum Message Length (MML) estimate,
(re)mumr, of rg, and state the value of the message length at its minimum.

Question 2 (3 marks)

Consider a geometric distribution, Geom(q), with probability parameter, ¢ :
f(zlg) = ¢*(1 — q), for non-negative integers, x.

Assuming n, runs of length z, > 0, and a total number of runs given by N = > n,,
2 (a) derive the likelihood function and

2 (b) state the Maximum Likelihood estimate, (¢)az, of g.

2 (c¢) Derive the Fisher information for this distribution.

2 (d) Choosing the uniform prior, h(¢) = 1, or any other prior you wish to briefly justify,
derive the Minimum Message Length (MML) estimate, (§)aarz, of ¢, and

2 (e) state the value of the message length at its minimum.

Leading in to Question 3, Np of these counters are now placed around D on Day 2 for a
duration of ¢p = 18 hours. Counts cpy,...,cpy, are observed.



Question 3 (5 marks)

Let p; be the proportion of correctly operating counters operating when sub-site D is in-
spected, and assume that the remaining p» = p;g = 1 —p; of the counters are improperly
quenched. Assume further that the Poisson rate for correct counters is rp and that IQ
counters return a geometric distribution, Geom(qp) with parameter, ¢p.

Given the observed counts cps, ..., cpny,
3 (a) carefully state the likelihood as a function of p;, rp and ¢p.

3 (b) If data things were to be assigned totally (rather than partially) to classes, discuss
in general terms the effect that this might have on the estimates of p;, rp and ¢p.

3 (c) Stating a prior on the relevant parameters, state the length of a two-part message
length which conveys the values of the parameters and then the data given these parame-
ter values. Make explicit and clear any assumptions that might be made (such as, e.g.,
off-diagonal terms in the Fisher information matrix). Try to make as few assumptions as
possible, and try to justify any that have to be made.

Leading in to Question 4, we now wish to collect some data and test some hypotheses,
one comparing the G and D isotope concentrations and the other concerning the Geiger
counters used at D :

Measuring 7 and rp in decays per hour, the two hypotheses that we would like to test
(as in Question 4 below) are

(a) whether r¢ = rp, and (b) whether gp =1 — e~"2.

Question 4 (6 marks)
Do either Question 4 (a) or Question 4 (b), but not both.
Question 4 (a) (If attempting this, do not do 4(b).)

Generate data from Ng.Pn(rgtg) and from Np.(0.5 Pn(rptp) + 0.5 Geom(qp)) with
NG = 2ND, dp = 07, 'p = 1.25 and g = 30,

and Np varying through the range 3, 10, 20, 100, 1000.

Also generate such data with Ng = Np, qp = 0.7, rp = 1.8 and rg = 2.4;

and Np varying through the range 3, 10, 20, 100, 1000.

(See note on page 4 about random number generation.)

For each of these cases, from the test data generated,
4 (a) test whether r¢ = rp.



Hint (for Question 4 (a)):

For 4 (a), compare the cost of sending two two-part messages (one involving rg but not
rp and the other involving rp but not rg) with the cost of sending one two-part message
(somehow involving both rates).

Question 4 (b) (If attempting this, do not do 4(a).)

Generate data from Np.(0.5 Pn(rptp) + 0.5 Geom(qp)) with
Ng =2Np, qp = 0.7 and rp = 1.25;

and Np varying through the range 3, 10, 100, 1000, 2000.
Also generate such data with Ng = Np, qp = 0.7, rp = 1.8;
and Np varying through the range 3, 10, 100, 1000, 2000.
(See note on page 4 about random number generation.)

For each of these cases, from the test data generated,
4 (b) test whether ¢gp =1 — e~ "P.

Hint (for Question 4 (b)):

For 4 (b), in stating the two-part message to convey the data at sub-site D, try and cost
the message both (i) not using the hypothesised functional dependence between ¢p and
1—e"™ and; (ii) also, as accurately as possible, assuming the dependence.

Note (about random number generation) :

For the duration of the assignment, software will be available to generate multinomial,
Poisson and other distributions at

http://www.csse.monash.edu.au/~dld /random.numbers/ .

Submission requirements

Create the requested data-sets of various sizes as in Question 4, using or not using (as
you prefer) the available software for pseudo-random number generation.

Submit any source code written along with your assignment solutions and answers.
Make your data-sets readable from the time of submission until the assignment is returned,
and include the path and file names of the data-sets in your printed submission.



CSC423 LEARNING AND PREDICTION
Assignment 2, 2nd Semester, 1998 - and worth 30%.

DUE: 12:00 noon, Friday 23 October 1998,
at the Computer Science and Software Eng. (Clayton) General Office

This assignment is worth 30% of the total assessment for this subject.
Please read carefully the submission requirements on page 3.

Introduction

Machine learning and “data mining” have tended to be more interested in boolean and
discrete objects like decision trees, whereas statistics has traditionally tended to focus
more on continuous distributions, such as the Gaussian (or Normal) distribution. Decision
tree programs (Quinlan, 1986; Quinlan and Rivest, 1989; Wallace and Patrick, 1993; etc.)
have usually had binomial or multinomial distributions in the leaves. In the 1980s and
1990s, we have seen such programs as CART (Classification And Regression Trees), MARS
and! J. R. Quinlan’s M5, which endeavour to do Gaussian or linear regressions in the leaf
nodes.

In this assignment, we try our own hand at using Minimum Message Length (MML) to
grow decision trees with Gaussian distributions in the leaf nodes.

About the questions

Let x1, zo, x3, 74, x5 and zg be binary boolean attributes, and
let 27 be a ternary (3-valued) attribute.
Let zg and x9 be Gaussian attributes.

Assume that (pseudo-)random number generator generates each binary attribute as being
equally likely to be 0 (false) or 1 (true).

Similarly assume that (pseudo-)random number generator generates each ternary at-
tribute as being equally likely to be 0, 1 or 2.

IFor what it’s worth, J.H. Friedman, who is involved with at least one of CART or MARS, is expected
to be visiting Australia and Melbourne in November 1998.



Question 1 (worth 19 marks)

Using the (pseudo-)random number generators, generate data of sample size N for varying
values of N : N = 10,100, 300, 1000, 3000.

Include the binary attributes z1, x2, z3 and x4, and the Gaussian attribute xs.

The tree will have four leaves :
T

not(z1) and xo;

not(z1) and not(zy) and z3;
not(z;) and not(zy) and not(zs).

In each the four leaves, there will be one Gaussian distribution, N(u,0?). This will be
T1 2 ~ N(=5,15?)

not(x;) and z, : xg ~ N(+5,15?)

not(z;) and not(zy) and 3 : x5 ~ N(—5,5?)

not(z;) and not(zy) and not(z3) : zg ~ N(+5,5%).

For the 5 given values of N above, now run the experiment of (pseudo-)randomly gener-
ating a data-set of size NV with the distribution specifications above.

Repeat this data generation process two (2) times, so that for each value of N, you have
two (2) data-sets.

Use MML inference with your appropriate choice of priors on p and ¢ to infer the MML
decision trees and the appropriate leaf regressions for each of your 2 x 5 = 10 data-sets.

Question 2 (worth 6 marks)

For the two trees and leaf distributions you inferred when N = 300, use the Kullback-
Leibler distance to estimate the distance from the true distribution (as specified in Ques-
tion 1 and pseudo-randomly generated by you) to the distribution inferred by your tree
structure.



Question 3 (worth 5 marks)

Modify Question 1 to include all of the variables 1, zo, x3, 4 and zg from Question 1
and also at least either the ternary attribute x; or the second Gaussian attribute x,.

If using x9, make sure that both xg and x9 occur in leaf nodes.

If using x3, expand the tree so that the former leaf node x; now becomes three leaf nodes:
z1 and (z3 = 0); z; and (z3 = 1) and z; and (z3 = 2).

Generate 2 x 5 = 10 data-sets with N = 10, 100, 300, 1000, 3000 and some choice of Gaus-
sian distributions in the leaves.

Use your MML inference program from Question 1 to try and infer what the structure of
the tree was. Only a short comment need be made here about goodness of fit.

Note (about random number generation) :

For the duration of the assignment, software will be available to generate multinomial,
Gaussian, Poisson and other distributions at

http://www.csse.monash.edu.au/~dld /random.numbers/ |

although you should feel free to use any decent (pseudo-)random number generator that
you like.

Submission requirements - please read carefully

Submit any source code written along with your assignment solutions and answers.
Make your data-sets readable from the time of submission until the assignment is returned,
and include the path and file names of the data-sets in your printed submission.



CSC423 LEARNING AND PREDICTION
Assignment 2, 2nd Semester, 1999 - and worth 30%.

DUE: 12:00 noon midday on Friday 8th October 1999,
at the Computer Science and Software Eng. (Clayton) General Office

This assignment is worth 30% of the total assessment for this subject.
Please read carefully the submission requirements on page 4.

Introduction

Machine learning and “data mining” have tended to be more interested in boolean and
discrete objects like decision trees, whereas statistics has traditionally tended to focus
more on continuous distributions, such as the Gaussian (or Normal) distribution.

Some linguists and some others interested in grammar or syntax will sometimes be inter-
ested in inferring a (probabilistic) grammar from some data. In the style of Dr Doolittle,
the grammar being inferred could be that of animal communication. One model of a
(probabilistic) grammar is a probabilistic finite state automaton, or PFSA.

In this assignment, we try our own hand at using Minimum Message Length (MML) to
cost PFSAs. We then use various search heuristics to search a rather large search space,
and try to find the MML PFSA. The detailed assignment will follow below.

About the questions

Consider the following two Probabilistic Finite State Automata (PFSAs):

“a b c d (PFSA I)
1 3(0.60) 2(0.40) 0 (0.00) 0 (0.00)

2 3(0.45) 3(0.25) 1(0.30) 0 (0.00)

3 4(0.55) 5(0.45) 0 (0.00) 0 (0.00)

4 0(0.00) 0(0.00) 1 (1.00) 0 (0.00)

5 0(0.00) 0(0.00) 1 (1.00) 0 (0.00)

and

‘a b c d (PFSA II)
1 3(0.52) 4(0.48) 0 (0.00) 0 (0.00)

2 0(0.00) 0(0.00) 1 (1.00) 0 (0.00)

3 5(0.59) 2(0.41) 0 (0.00) 0 (0.00)

4 3(0.35) 3(0.30) 1 (0.349) 4 (0.001)

5 0(0.00) 0(0.00) 1 (1.00) 0 (0.00)



These machines, PFSA-I and PFSA-II, correspond to the true data generation processes
of two speakers (I and II), be they human, other animal, mechanical, extra-terrestrial or
etc. It is probably worthwhile drawing both these PFSAs.

The transition table entry in row j and column s is the (output) state that the machine
will go to if it sees the symbol s when in (input) state j. The number in brackets is the
probability of the machine seeing the symbol s when it is in state j. If it is impossible
(probability 0) for the machine to see a certain symbol from a certain state, then we
denote the output state as being 0.

In both Questions 1 and 2, when we generate the data, we use the two PFSAs PFSA-I
and PFSA-II, but when we come to do inference, we do not know what the true PFSAs are.

Question 1 (worth 24 marks)

Using some (pseudo-)random number generator (see the note at the end of the assign-
ment), generate data of sample size N for varying values of N : N = 40, 100, 250, 500, 1000.
The data-set(s) should be generated as follows.

Your data-set should have two attributes, the first of which is an index (or time) value,
i, ranging from 1 to N. Select a (pseudo-)random number, 71, which is an equally likely,
50%-50%, choice out of the two numbers 1 and 2. Select a second (pseudo-)random num-
ber, ro, from a distribution uniform between 1 and N.

If r; = 1, then speaker 1 speaks first using PFSA-I, followed by speaker 2 using PFSA-TI.
Otherwise, if r; = 2, then speaker 2 speaks first using PFSA-II, followed by speaker 1
using PFSA-I. So, r; tells us who speaks first.

And 7y tells us how long the first speaker speaks for, speaking from time from 1 up to and

including 79, and then the second speaker speaks from time ro + 1 up to and including
N.

You should record the values of r; and 75, and then (pseudo-)randomly generate symbol
data (’a’, 'b’, ’¢’, 'd’) from PFSA-I and PFSA-II for each time point ranging from 1 to
N. Each PFSA will initially commence in State 1 and then generate data according to
its probabilistic grammar, which is described on the previous page before the question.
Between times 75 and ro + 1, the speakers will change. The data generated by the PFSAs
is the second attribute in the data-set.

For the 5 given values of N above, now run the experiment of (pseudo-)randomly gener-
ating a data-set of size NV with the distribution specifications above.
Repeat this data generation process two (2) times, so that for each of your five (5) values



of N, you have two (2) data-sets; thus making a total of 2 x 5 = 10 data-sets.

Use MML inference with your appropriate choice of priors and coding schemes for the
PFSAs to infer whether it was most likely that there was one speaker (ro = N) or two
speakers (1 < ro < N). If one speaker, use MML to infer the structure of the PFSA. If
two speakers, then use MML to infer the value of r; (who spoke first), the value of 7y
(how long this person spoke for) and the structures and details of the two inferred PFSAs.

Do this for each of your 2 x 5 = 10 data-sets.

Question 2 involves a model which is a generalisation of that in Question 1.
Question 2 (worth 6 marks)

This time the data-set has one additional attribute. Again, the first attribute is an index
value, 7, ranging from 1 to N. The second attribute, T', is temperature, since we have
reason to believe that at some crucial, threshold, temperature, it might be possible that
there will be toggle changes from PFSA-I to PFSA-II!. The second attribute, the temper-
ature, 7', will be distributed (randomly and) uniformly between 10.00 and 30.00 degrees
Celsius.

Select a (pseudo-)random number, 7y, which is an equally likely, 50%-50%, choice out of
the two numbers 1 and 2.

If ro = 1, then the data-sets will be generated as in Question 1, except for the fact that
the second attribute will be the temperature, 7. The value of the symbol (’a’, 'b’, ¢’ or
'd’) will be the third attribute and will be generated as in Question 1, being independent
of the temperature attribute, and depending only upon the values of r; and 7s.

However, if 7y = 2, then select r; randomly and uniformly from the range such that
10.00 < r; < 30.00. Select a (pseudo-)random number, 75, which is an equally likely,
50%-50%, choice out of the two numbers 1 and 2.

If o = 1, then the speaker uses PFSA-I for 10.00 < T < r; and uses PFSA-II for
r1 < T < 30.00 . Otherwise, if ro = 2, then the speaker uses PFSA-II for 10.00 < 7T < ry
and uses PFSA-I for r; < T < 30.00 . It can be assumed that each PFSA will initially
commence in State 1 and it can also be assumed? that, when the speaker toggles to, from

!Perhaps there are two speakers who play tag-team every time the temperature passes through this
threshold, or perhaps there is one speaker who changes his/her style of speaking depending upon whether
it is hot or cold.

2if you like and you also state this.



and between PFSA-I and PFSA-II, that in returning to PFSA-j from PFSA-(3 — j), it is
as though the intermittent time spent in PFSA-(3 — j) and the symbols generated there
are (temporarily) forgotten.

You should record the values of rq, 1 and . Generate the second attribute, the temper-
ature, T, (randomly and) uniformly between 10.00 and 30.00. Depending upon the value
of 7y, then (pseudo-)randomly generate symbol data (’a’, ’b’, ’c’, ’d’) accordingly as the
third attribute for each time point ranging from 1 to N.

For the 5 given values of N above, now run the experiment of (pseudo-)randomly gener-
ating a data-set of size NV with the distribution specifications above.

Repeat this data generation process two (2) times, so that for each of your five (5) values
of N, you have two (2) data-sets; thus making a total of 2 x 5 = 10 data-sets.

Use MML inference with your appropriate choice of priors and coding schemes for the
PFSAs to infer whether it was most likely that there was:

one speaker (ro =1, 7o = N),

two speakers with a single change-over (rp = 1,1 <7y < N)

or toggling speech patterns (1o = 2) toggling at temperature 7.

Also use MML to infer the structure(s) and details of the PFSA(s).

Do this for each of your 2 x 5 = 10 data-sets.

Note (about random number generation) :

For the duration of the assignment, software will be available to generate multinomial,
Gaussian, Poisson and other distributions at

http://www.csse.monash.edu.au/~dld /random.numbers/ , although you should feel free
to use any decent (pseudo-)random number generator that you like.

Submission requirements - please read carefully

Submit any source code written along with your assignment solutions and answers.
Make your data-sets readable from the time of submission until the assignment is re-
turned, and include the path and file names of the data-sets in your printed submission.

Very crude outline of marking scheme
Generating the data-sets should be relatively easy. Costing the message length will be far
more important than the search heuristics. You might be called upon to demonstrate your
working code. Possible bonus marks for any sensible comments about Kullback-Leibler
distance(s) (from true to inferred).

(End of Assignment.)



CSC423 LEARNING AND PREDICTION
Assignment 2, 2nd Semester, 2000 - and worth 30%.

DUE: 12:00 noon, Wednesday 11 October 2000,
at the Computer Science and Software Eng. (Clayton) General Office

This assignment is worth 30% of the total assessment for this subject.
Please read carefully the submission requirements on page 3.

Introduction

Machine learning and “data mining” have tended to be more interested in boolean and
discrete objects like decision trees, whereas statistics has traditionally tended to focus
more on continuous distributions, such as the Gaussian (or Normal) distribution. Deci-
sion tree programs (Quinlan, 1986; Quinlan and Rivest, 1989; Wallace and Patrick, 1993;
etc.) have usually had binomial or multinomial distributions in the leaves. In the 1980s
and 1990s, we have seen such programs as CART (Classification And Regression Trees),
MARS and J. R. Quinlan’s M5, which endeavour to do Gaussian or linear regressions in
the leaf nodes.

In this assignment, we try our own hand at using Minimum Message Length (MML) to
grow decision trees with Gaussian distributions in the leaf nodes.

About the questions
Let x1, x5, x3 and z4 be binary boolean attributes, and let x5 be a Gaussian attribute.

Assume that (pseudo-)random number generator generates each binary attribute as being
equally likely to be 0 (false) or 1 (true).



Question 1 (worth 25 marks)

Using a (pseudo-)random number generator (see page 3)!, generate data of sample size
N for varying values of N : N = 40,200, 500, 1000, 2000.

Include the binary attributes z1, x2, z3 and x4, and the Gaussian attribute xs.

The tree describing the data will have four leaves :
T

not(z1) and xo;

not(z1) and not(zy) and z3;

not(z;) and not(zy) and not(zs).

In each of the four leaves, there will be one Gaussian distribution, N(u, 0?). This will be
Ty @ T5 ~ N(—6,15?)

not(x;) and z, : x5 ~ N(+4,15?)

not(z;) and not(ry) and 3 : x5 ~ N(+8,5?)

not(z;) and not(zy) and not(z3) : x5 ~ N(+16,5?).

For the 5 given values of N above, now run the experiment of (pseudo-)randomly gener-
ating a data-set of size NV with the distribution specifications above.

Repeat this data generation process two (2) times, so that for each value of N, you have
two (2) data-sets.

Use MML inference with your appropriate choice of priors on p and o to infer the MML
decision trees and the appropriate leaf regressions for each of your 2 x 5 = 10 data-sets.

lsee page 3



Question 2 (worth 5 marks)

For the two trees and leaf distributions that you inferred from the data in Question 1
when N = 200, use the Kullback-Leibler distance to estimate the distance from the true
distribution (as specified in Question 1 and pseudo-randomly generated by you) to the
distribution inferred by your tree structure.

Note (about random number generation for Question 1) :

For the duration of the assignment, software will be available to generate multinomial,
Gaussian, Poisson and other distributions at

http://www.csse.monash.edu.au/~dld /random.numbers/ ,
http://www.csse.monash.edu.au/~dld/Hons/2000/dldprojects (under “(13)”)

and http://random.mat.sbg.ac.at/links/rando.html ,

although you should feel free to use any decent (pseudo-)random number generator that
you like.

Comment about search heuristics for Question 1 :
We will discuss search heuristics, ideally in the lecture slot.

Submission requirements - please read carefully
Your program should be written in a Linux/Unix environment at Monash CSSE and
should use one of the languages C, C++ or Java.

Submit any source code written (both in hard copy and in soft copy) along with your
assignment solutions and answers. The hard copy of your source code should appear as
an Appendix to your assignment submission. The soft copy of your source code should
be sent with Subject line: ”CSC423 Assignment 2” to dld@cs.monash.edu.au . It should
be sent from one of the Linux/Unix machines at Monash CSSE on which you did your
work.

Make your data-sets readable from the time of submission until the assignment is re-
turned, and include the path and file names of the data-sets in your printed submission.

End of Assignment 2.



CSE423 LEARNING AND PREDICTION
Assignment 3, 1st Semester, 2001 - and worth 10%.

DUE: 12:00 noon, ?day ? ? 2001 (to be decided in class - Mon. 7th May 2001),
at the Computer Science and Software Eng. (Clayton) General Office

This assignment is worth 10% of the total assessment for this subject.
Please read carefully the submission requirements on page 3.

Introduction

This assignment asks student to use the Snob program (C. S. Wallace and D. L. Dowe,
MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions,
Statistics and Computing, Vol. 10, No. 1, Jan. 2000, pp73-83) to analyse dog-bite data,
DNA micro-array data and some “secret” but not unfriendly data.

Snob software

The Snob software is available from

http://www.csse.monash.edu.au/~dld /Snob.html and also from
http://www.csse.monash.edu.au/research/mdmc/software .

It is also installed on the machines in the CSSE Clayton Bldg. 26 Hons lab, and on the
CSSE indy’s.

It is capable of analysing at least the statistical distributions described in the title of
the abovementioned (Wallace and Dowe, 2000) paper.

Data: sdl.raw, dog-bites and DNA micro-arrays
The sdl.raw data is available from http://www.csse.monash.edu.au/~dld/Snob.html ,

the dog-bite data is available from
http://www.csse.monash.edu.au/~lloyd/tilde/CSC4/CSC423/Local /dog

and the DNA micro-array data is available from
http://www.csse.monash.edu.au/~lloyd/tilde/CSC4/CSC423/Local /Micro-Arrays/ .



Question 1 (worth 2 marks)
Analyse the data-set sdl.raw . State the number of components (classes), relative abun-
dances (mixing proportions) and component distributional parameters for the theory you

find with the shortest message length.

State this shortest message length in both nits and bits.

Question 2 (worth 4 marks)
Use Snob to analyse the dog-bite data.
A lunar month is approximately 29 days 12 hours 44 minutes, or 29.53 days.

Hint: The Poisson distribution could be used to model (counts and) rates. Regarding
phases of the moon as angles, the von Mises distribution could be used to model these.

Does your analysis suggest anything at all about whether or not the phase of the moon
is relevant to the probability of dog-bite occurrence?

If so, what does it suggest?

Question 3 (worth 4 marks)
Use Snob to analyse the DNA micro-array data.
Read the paper and the README file.

You should experiment with some scaling and data transformations because
(i) Snob may not accept the raw data,

(ii) there are correlations between the experiments/attributes,

(iii) low levels have been set to zero, and

(iv) biologists are interested in the ratios of expression levels.

What do you find?



Note (about random number generation) :

For the duration of the assignment, software - should you need it (you might need it for
Ass’t 2, but you might well not need it for this assignment, Ass’t 3) - will be available to
generate multinomial, Gaussian, Poisson and von Mises distributions at
http://www.csse.monash.edu.au/~dld /random.numbers/ ,
http://www.csse.monash.edu.au/~dld/datalinks.html ,
http://www.csse.monash.edu.au/~dld/Hons/2001/dldprojects (under “(16)”)

and http://random.mat.sbg.ac.at/links/rando.html ,

although you should feel free to use any decent (pseudo-)random number generator that
you like.

Comment about search heuristics using Snob :

See snob.doc and sample files typically called *.control for guidelines on search heuristics.
We could discuss search heuristics further in the lecture slot.

Submission requirements - please read carefully

Any programs should be written in a Linux/Unix environment at Monash CSSE and
should use one of the languages C, C++ or Java.

Submit any source code written (both in hard copy and in soft copy) along with your
assignment solutions and answers. The hard copy of your source code should appear as
an Appendix to your assignment submission and be submitted as on page 1 of this as-
signment. The soft copy of your source code should be sent with Subject line: “CSE423
Assignment 3” to dld@cs.monash.edu.au . It should be sent from one of the Linux/Unix
machines at Monash CSSE on which you did your work.

Make your data-sets readable from the time of submission until the assignment is re-
turned, and include the path and file names of the data-sets in your printed submission.

End of Assignment 3, 2001.



CSE423 LEARNING AND PREDICTION
Assignment 4, 1st Semester, 2001 - and worth 20%.

DUE: 12:00 noon, Monday 28th May 2001,
at the Computer Science and Software Eng. (Clayton) General Office

This assignment is worth 20% of the total assessment for this subject.
Please read carefully the submission requirements above and on page 4.

Introduction

Students have previously seen an MML analysis of the Poisson distribution and the von
Mises circular distribution, and have also (in Assignment 3) used the Snob program, which
contains these distributions. Students have also seen an MML analysis of decision trees

with multinomial distributions in the leaves.

This assignment asks students to develop a decision tree program with Poisson and von
Mises regressions in the leaves. Students are then asked to test their program(s).

The assignment then asks students to re-analyse the dog-bite data from CSE423 Semester
1, 2001, Assignment 3.

DTreeProg software

The Wallace and Patrick (Coding Decision Trees, Machine Learning Journal, Vol. 11,
pp7-22, 1993) DTreeProg software (and documentation, dtree.doc) is available from
http://www.csse.monash.edu.au/research/mdmc/software .

Snob software

The Snob software is available as in CSE423 Semester 1, 2001, Assignment 3.

Data: dog-bites

As in CSE423 Semester 1, 2001, Assignment 3, the dog-bite data is available from
http://www.csse.monash.edu.au/~lloyd/tilde/CSC4/CSC423/Local /dog .



Question 1 (worth 2 + 4 + 4 = 10 marks)

Write a decision tree program that will cost the length of a two-part message of a decision
tree program with a multinomial leaf attribute. (2 marks)

Extend your decision tree program so that it does two of the following three options: 1A,
1B and 1C (worth 4 marks each). If one of your choices is option 1C, then your program
should able to do simultaneously both 1C and your other choice.

1A: Modify your decision tree program so that it can have, in each leaf, a univariate
Poisson distribution.

1B: Modify your decision tree program so that it can have, in each leaf, a von Mises
circular distribution.

For option 1C, recall discussions on continuous-valued cut-points in decision trees.

1C: Modify your decision tree program so that it can have internal split nodes on angular-
valued cut-points.

Question 2 (worth 5 marks)

Test your program from Question 1 by first specifying two decision tree functions that
you think are appropriate. Make sure that your two decision tree test functions include
the two options that you chose in Question 1.

Draw in machine-readable form or in clear and legible hand-writing your two decision
tree functions. Clearly describe:

e the arity of all multinomial attributes,

e which attributes are split on (and, for continous- or angular-valued attributes, what the
cut-point is),

e the type of distribution (multinomial, Poisson or von Mises) in each leaf node, and

e the distributional parameters (probability for multinomial, rate for Poisson, p and & for
von Mises) in each leaf node.

Put as much of this description in machine-readable form as possible.

For each of the two decision functions in turn, (pseudo-)randomly generate five data-sets
of size N = 50, 100, 250, 500 and 1000 respectively.

For each such data-set, draw and describe the inferred decision function, and describe
how different or similar it seems to the underlying function used to generate the data.



Question 3 (worth 4 marks)

Recall your analysis of the dog-bite data from CSE423 Semester 1, 2001, Assignment 3,
Question 2.

Now, use your program from Question 1 above to re-analyse the dog-bite data.

Does your new analysis suggest anything at all about whether or not the phase of the
moon is relevant to the probability of dog-bite occurrence?

If so, what does it suggest?

Question 4 (worth 1 mark)

Include your earlier analysis of the dog-bite data from CSE423 Semester 1, 2001, Assign-
ment 3, Question 2. This should be identical to what you submitted then.

Compare and contrast your analysis from Question 3 immediately above with your earlier
submitted analysis from CSE423 Semester 1, 2001, Assignment 3, Question 2.

Which analysis do you prefer, if either, and why?

Note (about random number generation) :

For the duration of the assignment, software - should you need it - will be available to
generate multinomial, Gaussian, Poisson and von Mises distributions at
http://www.csse.monash.edu.au/~dld /random.numbers/ |
http://www.csse.monash.edu.au/~dld/datalinks.html ,
http://www.csse.monash.edu.au/~dld /Hons/2001/dldprojects (under “(16)”),
http://random.mat.sbg.ac.at/links/rando.html ,

and http://www.csse.monash.edu.au/research/mdmc/software/random/index.shtml |
although you should feel free to use any decent (pseudo-)random number generator that
you like.



A comment about search heuristics for decision trees :

See

e the section regarding Lookahead in the Wallace and Patrick (1993) paper,

e from dtree.doc (which comes with the DTreeProg software), section “Running the pro-
gram”, sub-section “<0-9>", or

e material on decision trees distributed in lectures (or recall any discussions that may
have taken place in the lecture slot).

Submission requirements - please read carefully

Any programs should be written in a Linux/Unix environment at Monash CSSE and
should use one of the languages C, C++ or Java.

Submit any source code written (both in hard copy and in soft copy) along with your
assignment solutions and answers. The hard copy of your source code should appear as
an Appendix to your assignment submission and be submitted as on page 1 of this as-
signment. The soft copy of your source code should be sent with Subject line: “CSE423
Assignment 4” to dld@cs.monash.edu.au . It should be sent from one of the Linux/Unix
machines at Monash CSSE on which you did your work.

Make your data-sets (such as those in Question 2) readable from the time of submis-

sion until the assignment is returned, and include the path and file names of the data-sets
in your printed submission.

End of Assignment 4, 2001.



CSE455 LEARNING AND PREDICTION II: MML “Data Mining”
Assignment 1, 1st Semester, 2002 - and worth 20%.

DUE: 12:00 noon, Wednesday 22nd May 2002,
at the Computer Science and Software Eng. (Clayton) General Office

This assignment is worth 20% of the total assessment for this subject.
Please read carefully the submission requirements above and on page 5.
Total marks: 24+3+2+2+0+3+4+4 = 20.

Introduction

Recall the Snob program (C. S. Wallace and D. L. Dowe, MML clustering of multi-state,
Poisson, von Mises circular and Gaussian distributions, Statistics and Computing, Vol. 10,
No. 1, Jan. 2000, pp73-83 ; http://www.csse.monash.edu.au/~dld/Snob.html ), which
was used to analyse dog-bite data in CSE454 Prac’ 1 2002

( http://www.csse.monash.edu.au/~lloyd/tilde/CSC4/CSE454/Local /2002 /pracl.html ).
Snob uses the von Mises circular distribution, Ms(u, %), to analyse angular data. An-
other possible model for angular data is the wrapped Normal distribution, W N (u, 0?).
Of course, there are other distributions for angular data.

Snob software

The Snob software is available from

http://www.csse.monash.edu.au/~dld /Snob.html and also from
http://www.csse.monash.edu.au/research/mdmc/software .

It should be installed on the machines in the CSSE Clayton Bldg. 26 Hons lab, and on
the CSSE indy’s. It is capable of analysing at least the statistical distributions described
in the title of the abovementioned (Wallace and Dowe, 2000) paper.

von Mises circular distribution
The 2-dimensional von Mises density, My(u, k) or V.M (u, k), is an analogue of the Gaus-
sian density for angles in the plane.

Let Io(k) = o JZ e dg = 52, G and for p> 0,

k\2r+p
let I,(k) = Ip(k) x E(cos(pf)) = Ip(k) X %fg” cos(pf)ete? df = o, ((pi)r), -
K\2r4+1 .
So, I1(k) = Iy(k) x E(cos()) = X2, r(!2()r+1)! = 4 {&( ).

The density of the angular variate 6 is given by f(0) = 1/(27Iy(k)).e**~#) where
Iy(k) is a normalisation constant. The functional form of the likelihood is



fOlu, k) = 27“%(%) e®os@=1)  and is sometimes written 6 ~ My (i, k).

Wrapped Normal circular distribution
The wrapped Normal is interesting, but not directly relevant to this assignment.

Re-cap on the Normal distribution

Recall that the functlonal form of the Gaussian - or Normal - distribution is
f(z|lp,0) = ;ﬂge 27 (E=1)?) , and this is sometimes written X ~ N(u,o?).
Wrapped Normal distribution

Swapping from z to 6, for a wrapped Normal distribution

FOl.0) = Ti e =) e a0

™

and this is sometimes written § ~ WN(u,o?).

b

For several pieces of data 64, ...,6;, ...,0y,

N
L = —logf(0lu,0) = > —log( Z e~ 5o (it 2im=1)?))
i1 JR—— 2mo
N +00
= Nlog(v2 )+N10go—210g Z o 2.7 (0it2jm—p)? ))
=1 ]——oo

The wrapped Normal is interesting, but not directly relevant to this assignment.

sin? and cos? circular distributions

Let f(0lp) = L cos?(™Z#)) = 1 cos?(2(9 — ) for some positive integer, n.

Notice that for a von Mises distribution, for a wrapped Normal distribution and for the
distribution above, adding to or subtracting from # an amount of 27 or any integer multiple
of 27 does not change the value of the likelihood function or any of its derivatives.

L = —logm’, f(6i|p) = Nlog(m ZZlogCOS( (6 — 1))
=1
oL X2%sn(z(0-p) & N
oo MO S - ) = 03 G- 0)
aZL N n ) _ n2 N ) B I12 N 1
o2 = nz; 58eC (=(p—8)) = 7;866 (=(n—6)) El < cos?(Z (1 — 6y))

\)



2 2 2

o°L :Nn E( 2n1 )=N—n><l><27r:n2N.
cos (5(“ —6;))

1

) = o > %7
I will be amongst the first to admit that there maybe a missing factor of 2 or ; or a

floating minus sign, —, or some such in the above. So, please feel highly invited to check
the above mathematics and correct any possible such mistake.

F = K

Question 1 (worth 2 marks)
For this cos? model, obtain a (possibly implicit) formula for the maximum likelihood es-
timator of y, fipr, given data @ = {6y,...,60;,...0x}. Do this for general n.

Question 2 (worth 3 marks)
Assuming a uniform prior on g, use the above to derive a message length for the sin?
model and given data § = {6y,...,6;,...0y5}. Do this for general n.

Question 3 (worth 2 marks)
Minimise this message length expression to obtain the minimum message length (MML)
estimator, fiararr, of p.

Question 4 (worth 2 marks)
What can you say, if anything, about the relationship between the maximum likelihood
estimator, fias7, and the minimum message length (MML) estimator, fiasarr, ?

Your name and student id, etc. should be attached to the green sheet at the front of your
assignment. The second-last digit of your student id will be in the range from 0 to 9.
Add 2 to it so that it is now in the range from 2 to 11. Let this be your own personal n, 1.

Question 5 (worth 0 marks)
What is your value of n,,,?

Write a program which, given input n and data § = {61,...,0;,...0x} will be able to
give a message length for a specified /i and which will be able to infer the MML estimator
and give its message length - both in bits and in nits.

For both n =1 and n = n,,., generate one data-set each of size N = 50 with y = 0.
(See guide later in the assignment about random number generation.)



Question 6 (worth 142=3 marks)

For the data set generated with n =1 and N = 50,

Question 6a what is the message length and the MML estimate assuming n = 17
Question 6b what is the message length and the MML estimate assuming n = ne?

Question 7 (worth 242=4 marks)

For the data set generated with n = n,,, and N = 50,

Question 7a what is the message length and the MML estimate assuming n = 17
Question 7b what is the message length and the MML estimate assuming n = 1"

Question 8 (worth 4 marks)

For the dog bite data set from CSE454 Prac’ 1 at
http://www.csse.monash.edu.au/~lloyd/tilde/CSC4/CSE454/Local/dog , write a short
(absolute maximum 2 page) report on your analysis of just the angles from the dog-bite
data.

Hint for Question 8: How much would it cost to encode the phase of the moon data
using the uniform distribution around the circle?

Data: Dog bites

A lunar month is approximately 29 days 12 hours 44 minutes, or 29.53 days. The phases
of the moon can be regarded as angles.

Note (about random number generation) :

For the duration of the assignment, software - should you need it - will be available to
generate multinomial, Gaussian, Poisson and von Mises distributions at
http://www.csse.monash.edu.au/~dld /random.numbers/ |
http://www.csse.monash.edu.au/~dld/datalinks.html ,
http://www.csse.monash.edu.au/~dld /Hons/2001/dldprojects (under “(16)”),
http://random.mat.sbg.ac.at/links/rando.html ,

and http://www.csse.monash.edu.au/research/mdmc/software/random/index.shtml |
although you should feel free to use any decent (pseudo-)random number generator that
you like.



Submission requirements - please read carefully

Any programs should be written in a Linux/Unix environment at Monash CSSE and
should use one of the languages C, C++ or Java.

Submit any source code written (both in hard copy and in soft copy) along with your
assignment solutions and answers. The hard copy of your source code should appear
as an Appendix to your assignment submission and be submitted as on page 1 of this
assignment. The soft copy of your source code should be sent as plain ASCII text with
Subject line: “CSE455 Assignment 1”7 to dld@cs.monash.edu.au . It should be sent from
one of the Linux/Unix machines at Monash CSSE on which you did your work.

Make your data-sets (such as those in Questions 6 and 7) readable from the time of

submission until the assignment is returned, and include the path and file names of the
data-sets in your printed submission.

End of CSE455 Assignment 1, 2002.



CSE455 LEARNING AND PREDICTION II: MML “Data Mining”
Assignment 2, 1st Semester, 2002 - and worth 30%.

DUE: 12:00 noon, Wednesday 12th June 2002,
at the Computer Science and Software Eng. (Clayton) General Office

This assignment is worth 30% of the total assessment for this subject.
Please read carefully the submission requirements above and on page 6.
Note also that only one of the four parts of Question 6 is to be attempted.
Total marks: 74+ 0+1+3+12+7 = 30 marks.

Introduction

C5.0

Recall the decision tree program, C5.0 (due to J. Ross Quinlan, www.rulequest.com), a
copy of which is installed on nexus via /usr/local/lib/c5/bin/c5.0 . There are also some
accompanying data-sets at /usr/local/lib/c5/Data/ .

C) was used in CSE454 Prac’ 2, and some notes on C5 are given at

http://www.rulequest.com and at
http://www.csse.monash.edu.au/~l1loyd/tildeMML/Other/C5 .

Tan-Dowe multi-way join decision graph

At ~ptan/M1/verl.2 and ~ptan/M1/verl.2/sunos (these are directories, not WWW
URLs), you will find the Tan-Dowe multi-way join decision graph program, written by
Peter J. Tan. It has the same input format as C5.

Question 1 (worth 7 marks)

Use this above-mentioned multi-way join decision graph program to analyse one of the
data-sets in the /usr/local/lib/c5/Data/ directory from CSE454 Ass’t 1. You are assigned
as follows.

anneal - Doug

breast-cancer - Sarah

credit - Yvonne, Ryan

genetics - Brian, Di Wu

letter - Andris, Andrew, + anyone not listed

sonar - Susie

Whereas C5 can deal with continous-valued attributes, the slightly bad news is that the
current version of the above-mentioned multi-way join decision graph program currently
can not yet.



The data-sets breast-cancer, letter and sonar appear to have only continuous-valued at-
tributes. The data-set genetics has only non-continuous, discrete-valued attributes. Both
the others, anneal and credit, have both continuous- and discrete-valued attributes.

Recall that in an MML decision tree and decision graph framework, it is customary to
assume that both sender and receiver know the non-target attributes in advance and that
is the the job of the sender to trasmit the target attribute (to the receiver) as concisely as
possible using the known non-target attributes and some decision tree/graph hypothesis.

For each continuous-valued non-target attribute in your data-set, it will be necessary
to make some sort of discretisation in order that it can be used in a model by the cur-
rent version of the multi-way join decision graph program. For each continuous-valued
non-target attribute in your data-set, discretise the attribute as appropriately as you can.
Attempt to justify your approach.

In 1-page, draw the graph (micely!), or the top levels if the whole is too big. If you
had no continuous-valued attributes in your data-set, then draw the graph in a little ex-
tra detail. Describe what your inferred and drawn graph means for the data set.

Question 2 (worth 0 marks)

What, if anything, can you say about your model from Question 1 above as compared to
your model using C5 from CSE454 Prac’ 2, Question 17 (This question is worth 0 marks
on this assignment.)

Question 3 (worth 1 mark)

Given a true underlying multinomial model for generating the data, p, and an inferred
multinomial model from a relevant generated data-set, p, define the Kullback-Leibler dis-
tance from p’ to p.

Regarding Questions 4 and 5, recall the XD6 generation process from CSE454 Prac’
2 and http://www.csse.monash.edu.au/~lloyd/tildeMML/Other/XD6 . Also recall that
any XD6 data-set will have only discrete attributes.

Question 4 (worth 3 marks)

Given a true underlying tree/graph model for generating the data (such as that of XD6)
and an inferred tree/graph model from a relevant data-set (such as one obtained from
C5 or from the multi-way join decision graph), (generalise your answer to Question 3
to) describe how to calculate the Kullback-Leibler distance from the true model to the
inferred model.



Question 5 (worth 12 marks)
Recall CSE454 Prac’ 2 Question 4 concerning XD6 and C5. This question will be similar
(and verbatim in parts), but for multi-way join decision graphs (instead of C5).

Investigate the ability of the multi-way join decision graph to learn a good model, or the
true model, for XD6 as you vary

i. the size of the training data and

ii. the noise level (you will need to modify the generator).

Recalling C5’s performance at least in part, write a short report on the multi-way join
decision graph’s performance. You might like to include

i. Optionally, results on a reduced XD’ data set.

ii. Some example trees.

iii. Tables of results.

iv. Right/wrong scores on test data.

v. The “closeness” of true and inferred trees (recall your answer to Question 4).

vi. Other ?

Question 6 (worth 7 marks)

Attempt ezactly one and no more than one of Questions 6A, 6B, 6C and 6D. (If more
than one of these is attempted, then it will be at the discretion of the marker as to which
one is marked.)

Question 6A

Recall CSE455 Ass’t 1, Questions 3, 6 and 7 and likewise recall your models of the

= cos?(2(0 — p)) distribution with n =1 and n = 1.

Consider a 2-component mixture model of the form
ply cos®(5(0 — )] + (1 = p)[; cos*(5(0 — p2))]-

6A (i) What are the parameters of this mixture model?

For the next part of the question, you might possibly want to follow Wallace and Dowe
(2000): “MML clustering of multi-state, Poisson, von Mises circular and Gaussian distri-
butions”, Statistics and Computing, Vol. 10, No. 1, Jan. 2000, pp73-83

( http://www.csse.monash.edu.au/~dld/Snob.html ).

6A (ii) Write out the parts of the MML message and outline how you would cost - in
message length terms - each of them.

6A (iii) Write a program to do such 2-component mixture modelling.

6A (iv) Re-analyse the dog-bite data (from CSE455 Ass’t 1, Qu 8 and CSE454 Prac’ 1 at



www.csse.monash.edu.au/~lloyd/tilde/CSC4/CSE454/Local/dog ) using this program.

Question 6B (random coding)

Consider a form of MML inference (often reserved for intractable problems) called random
coding. Both sender and receiver have a prior, h(f), a (negative) log-likelihood function,
L(Z|0) = —log f(Z|f) and the same (pseudo-)random number generator with the same
seed.

Parameters 61, 6,, ..., 0;, ... are sampled from the prior. Using a code for the integers, such
as log®, 6; can be encoded using, e.g., the code for log* ().

The length of the second-part of the message would be —log f(Z]6;).

Using random coding, re-visit CSE455 Ass’t 1 Questions 3, 6 and 7.

Question 6C
Choose i a “random” integer between 1 and 20,000 by taking (the last 5 digits of) your
student_id modulo 20, 000.

6C (i) What is your value of ¢? (0 marks)

Consider the base 10 digits of 7 (listed in large part at

http://newton.ex.ac.uk /research /semiconductors/theory/collabs/pi/ )

and the 10, 000 base 10 digits of 7 from position 7 to position ¢ 4+9999. In a manner about
to be described, each of these 10, 000 base 10 digits is to be mutated with probability 0.6.
Seed your (pseudo-)random number generator with the last 5 digits of your student_id.
For each digit, d;, in turn, leave it as is with probability 0.4 and, with probability 0.6,
perform the following operation: use your (pseudo-)random number generator to choose
a digit, d’, from 0 to 9 and change the digit, d; (from ), to become d'.

6C (ii) What is your resultant list (or data-set) of 10,000 base 10 digits?

Assume that there exists a program of length 100 bytes (or 800 bits) which, given inputs
m and n, can output the base 10 digits of 7w from positions m to n. (Feel invited to
comment on this assumption.)

At this point, you might possibly want to examine Wallace and Dowe (1999), “Minimum
Message Length and Kolmogorov complexity”, Comp. J., Vol 42, No. 4 (1999), pp270-283
{ CSE455/DLD/2002/6 }.

6C (iii) Give an MML inference and a message length for your data-set. The message
length should include the cost of the first part (and any sub-parts) and the second part.



Question 6D

Quotation(s):

“(So-called) data mining is the supposed ‘art’ of making pretty graphics of over-fitting
and spurious correlations.” - Anonymous.

“If you can’t develop anything new, give something a new name.” - Anonymous.

6D (i) Graph the prior distribution on a single parameter, p, ho(p) = 0}—(!)!])0(1 -p)Pl=1
for 0 <p<1.

6D (ii) Graph the prior distribution, hy(p) = Sp*(1 —p)* = 630p*(1 —p)* for 0 < p < 1.

6D (iii) Using prior hg, generate (and record) a parameter, p.
Using p, generate 15 binary data points, and record this data set.
Using the prior, ho(p), and the generated data set, infer a value p for p.

6D (iv) Repeat 6D (iii) but replacing the prior ho(p) by hs(p) throughout:
Using prior hy, generate (and record) a parameter, p.

Using p, generate 15 binary data points, and record this data set.

Using the prior, h4(p), and the generated data set, infer a value p for p.

6D (v) Using the value of p generated from prior hg in 6D (iii), generate and record 100
data-sets each of size 15.

For which of these data-sets would you infer the largest/smallest value of p?

What is the largest/smallest value of p that you would infer?

6D (vi) Using prior h4(p), generate and record 100 different values of p.
What are the largest and smallest values of p generated?

For each value of p, generate and record 100 binary data-sets of size 15.

For which of these data sets would you infer the largest/smallest value of p?
What is the largest/smallest value of p that you would infer?

6D (vii) Feel invited to comment on your results from the four parts immediately above,
namely 6D (iii) to 6D (vi).

Make sure that you have attempted ezactly one and no more than one of Questions 6A,
6B, 6C and 6D. If more than one of these is attempted, then it will be at the discretion
of the marker as to which one is marked.



Submission requirements - please read carefully

Any programs should be written in a Linux/Unix environment at Monash CSSE and
should use one of the languages C, C++ or Java.

Submit any source code written (both in hard copy and in soft copy) along with your
assignment solutions and answers. The hard copy of your source code should appear
as an Appendix to your assignment submission and be submitted as on page 1 of this
assignment. The soft copy of your source code should be sent as plain ASCII text with
Subject line: “CSE455 Assignment 2” to dld@cs.monash.edu.au . It should be sent from
one of the Linux/Unix machines at Monash CSSE on which you did your work.

Make your data-sets (such as those in Questions 5 and 6) readable from the time of

submission until the assignment is returned, and include the path and file names of the
data-sets in your printed submission.

End of CSE455 Assignment 2, 2002.



CSE455 LEARNING AND PREDICTION II: MML “Data Mining”
Assignment 1, 2nd Semester, 2003 - and worth 20%.

DUE: 12:00 noon, Monday 1st September 2003,
at the Computer Science and Software Eng. (Clayton) General Office

This assignment is worth 20% of the total assessment for this subject.
Please read carefully the submission requirements above and on page 6.
Total marks: 4+4+4+1+14+14+0+5+0 = 20.

Introduction

Recall the probabilistic football prediction competition at
http://www.csse.monash.edu.au/~footy/ , noting both the probabilistic competition and
the Gaussian competition. We use this as a guide to comparing inference (to the one sin-
gle best explanation) with prediction (doing a weighted average of several explanations).
The data from this will be used for the first part of this assignment.

Note also the (Tan and Dowe, 2002) multi-way join decision graph program from:

Tan, P.J. and D.L. Dowe (2002). MML Inference of Decision Graphs with Multi-Way
Joins. Proc. 15th Australian Joint Conference on Artificial Intelligence, Canberra, Aus-
tralia, 2-6 Dec. 2002, Lecture Notes in Artificial Intelligence (LNAI) 2557, Springer-
Verlag, pp131-142.

This paper also gives comparisons with J.R. Quinlan’s decision tree programs, C4.5 and
(from www.rulequest.com) C5.0. The (Tan and Dowe, 2002) executable code is currently
available - solely for the purposes of this assignment - at www.csse.monash.edu.au/~ptan/
or www.csse.monash.edu.au/~ptan/dgraph.zip . A licensed version of C5.0 is available
from on (a machine called) nexus in /local/lib/c5/bin .

Decision tree/graph analysis will be used with some DNA micro-array data pertaining to
oncological (or cancer) data for the second (and last) part of the assignment. Unless we
find another data-set, the data-set I have in mind is the “van’t Veer” breast cancer data-
set, which is downloadable from http://www.rii.com/publications/2002/vantveer.htm . If
you are having trouble because of your InterNet browser, then this “van’t Veer” data-set
should also be obtainable from http://www.csse.monash.edu.au/~ptan/ or
http://www.csse.monash.edu.au/~ptan/ArrayData_less_than_5yr.zip . If you would rather
analyse a colon, rectal or colorectal cancer data-set and are also capable of finding and
obtaining such a data-set, please confer with me.

The “van’t Veer” data-set apparently has 25000 continuous input attributes, 1 binary
output attribute and 78 data things.



First part of the assignment - footy-tipping questions
Consider the data from the 2003 footy-tipping competition.
Question 1 (worth 4 marks)

Consider probabilistic tippers which, having seen the data from the first ¢ rounds, use
the following approach to do their tips in round (i + 1):
(i) the best tipper (so far)
(ii) the average (weighted equally) of all tippers (so far)
(iii) the weighted average of all tippers (so far)

Explicitly state and briefly explain or justify your choice(s) of prior probabilities.

For each of these three tippers, (i), (ii) and (iii), give the score of each game in each round.
Also, for each round up until the submission of your assignment, give the score from that
round and the cumulative score after that round.

Any comments or conclusions?

Leading into the Gaussian competition, note that if N Gaussian distributions N (y;, 0?),
i =1,...,N are weighted w;,i = 1,...,N where w; > 0 and ¥ w; = 1, then the

mean of the weighted sum is p,, = 2%, wiu; and the variance of the weighted sum is

‘71211 = 2ui=1 wz’(Ui2 + (pw — Mz‘)Q) =( z]'V:1 wiaf) + ( i]\;l Wi (o — Nz’)2)-

Question 2 (worth 4 marks)

Consider Gaussian tippers which, having seen the data from the first ¢ rounds, use the
following approach to do their tips in round (i 4 1):
(i) the best tipper (so far)
(ii) the average (weighted equally) of all tippers (so far)
(iii) the weighted average of all tippers (so far)

All tippers in Question 2 must be Gaussian.

For each of these three tippers, (i), (ii) and (iii), give the score of each game in each round.
Also, for each round up until the submission of your assignment, give the score from that
round and the cumulative score after that round.

Question 3 (worth 4 marks)

Re-visit Question 2 above where now tippers (ii) and (iii) are permitted to be mixture
models (with mixing proportions or relative abundances given by the weights) of Gaussian



distributions. To (attempt to) avoid confusion, refer to 3 (ii) as (iv) and refer to 3 (iii) as

(v).

Any comments or conclusions?

Second part of the assignment: dgraph, angular data and onco’ data-sets

2

sin? and cos?

circular distributions

Let f(f]p) = 2cos?(M54) = Loos*(2(0—p)) = Lcos?(2(6—p)) = Lsin®(2(6—p)—%)
for some n, presumably a positive integer; 0 < 6 < 27.

Notice that for a von Mises distribution, for a wrapped Normal distribution and for the
cos? distribution above, if n is a positive integer then adding to or subtracting from 6 an
amount of 27 or any integer multiple of 2 does not change the value of the likelihood
function or any of its derivatives.

L= —logn (0l = Nlogn) — Y logeos(5 (0~ 1)
oo oy ReelBO WO S a0 ) = 03 ten( -
- G0 = FYedGu-) = §Y s
By~ h =G gy~ <

(This result above also follows by symmetry.)

So,F(u)zNTﬁxix%r:NT"zx2=n2N. For n =2, F(u) = 4N.

I will be amongst the first to admit that there maybe a missing factor of 2 or % or a

floating minus sign, —, or some such in the above. So, please feel highly invited to check
the above mathematics and correct any possible such mistake.

0:))



The sender and receiver can agree by convention to scale the explanatory (or input) at-
tributes to range from 0 to 7 or to range from 0 to 27 or to be some (possibly asymmetric)
subset thereof. Having discussed hte sin? and cos? distributions, we now lead into a dis-
cussion of the von Mises circular distribution.

Snob uses the von Mises circular distribution, Ms(p, %), to analyse angular data. An-
other possible model for angular data is the wrapped Normal distribution, W N (u, 0?).
Of course, there are other distributions for angular data.

Snob software

The Snob software is available from

http://www.csse.monash.edu.au/~dld/Snob.html (and also from
http://www.csse.monash.edu.au/research/mdmc/software).

It should be installed on the machines in the CSSE Clayton Bldg. 26 Hons lab, and on
the CSSE indy’s. It is capable of analysing at least the statistical distributions described
in the title of the (Wallace and Dowe, 2000) paper:

Wallace, C.S. and D.L. Dowe (2000). MML clustering of multi-state, Poisson, von Mises
circular and Gaussian distributions, Statistics and Computing, Vol. 10, No. 1, Jan. 2000,
pp73-83.

von Mises circular distribution
The 2-dimensional von Mises density, My(u, k) or V.M (u, k), is an analogue of the Gaus-
sian density for angles in the plane.

Let Iy(k) = % JZmercos®) dp = oo % and for p > 0,

let I,(k) = Io(k) x E(cos(pf)) = Io(k) x 2= [§™ cos(pf)em @) df = Y22 (;%_F):;,Jr:,
K271 .

So, I1(k) = Iy(k) x E(cos(f)) = X2, 7"(!2()7'+1)! = 4 {i‘;( ).

The density of the angular variate 6 is given by f(0) = 1/(27ly(k)).e**~#) where
Iy(k) is a normalisation constant. The functional form of the likelihood is

fO|lp, k) = 27”%(”) e®eos@=1)  and is sometimes written 6 ~ My(u, k).

Note (about random number generation) :

For the duration of the assignment, software - should you need it - will be available to
generate multinomial, Gaussian, Poisson and von Mises distributions at
http://www.csse.monash.edu.au/~dld /random.numbers/ |
http://www.csse.monash.edu.au/~dld /datalinks.html ,

(maybe) www.csse.monash.edu.au/~dld/Hons/2001/dldprojects (under “(16)”) (maybe),



http://random.mat.sbg.ac.at/links/rando.html ,

and http://www.csse.monash.edu.au/research/mdmc/software/random/index.shtml |
although you should feel free to use any decent (pseudo-)random number generator that
you like.

Note (about random coding in MML) :

Please ask if you would like to know about random coding in MML.

Question 4 (worth 1 mark)

For this cos? model, obtain a (possibly implicit) formula for the maximum likelihood es-
timator of u, fiar, given data g = {61,...,6;,...0x}. Do this for general n.

Question 5 (worth 1 mark)
Assuming a uniform prior on f, use the above to derive a message length for the cos?
model and given data § = {6y,...,6;,...0y5}. Do this for general n.

Question 6 (worth 1 mark)
Minimise this message length expression to obtain the minimum message length (MML)
estimator, fiararr, of . What can you say, if anything, about the relationship between the

maximum likelihood estimator, fi5s;, and the minimum message length (MML) estimator,

P ?

Your name and student id, etc. should be attached to the green sheet at the front of your
assignment. Let this be your own personal seed, seed.

Question 7 (worth 0 marks)
What is your value of seed?

Question 8 (worth 5 marks and possibly bonus marks)

Consider your chosen data-set, which is possibly the “van’t Veer” data-set. (Please confer
with me if you have chosen a different oncological data-set.) Use your value of seed to
seed a random number generator and select appropriately a “handful” of attributes from
the approximately 25000 in the data-set. Give the numbers of the selected attributes. Use
the (Tan and Dowe, 2002) MML decision graph program, MML cos? regression and/or
any (other?) techniques you deem appropriate to analyse the data-set. Please give the
decision graph with the shortest message length you could find, clearly stating the deci-
sion graph and clearly stating the message length (in bits and nits). Please give the cos?
(and sin?) regression with the shortest message length you could find, clearly plotting a
graph of the function and stating the message length (in bits and nits).



Question 9 (worth 0 marks)
List some of your favourite colours and describe their suitability for data mining.

Submission requirements - please read carefully

Any programs should be written in a Linux/Unix environment at Monash CSSE and
should use one of the languages C, C++ or Java.

Submit any source code written (both in hard copy and in soft copy) along with your
assignment solutions and answers. The hard copy of your source code should appear as
an Appendix to your assignment submission and be submitted as on page 1 of this assign-
ment. The soft copy of your source code should be sent as plain ASCII text with Subject
line: “CSE455 Assignment 1”7 to dld@Qcsse.monash.edu.au . It should be sent from one of
the Linux/Unix machines at Monash CSSE on which you did your work.

Make your data-sets (such as those in Question 8) readable from the time of submis-

sion until the assignment is returned, and include the path and file names of the data-sets
in your printed submission.

End of CSE455 Assignment 1, 2003.



CSE455 LEARNING AND PREDICTION II: MML “Data Mining”
Assignment 2, 2nd Semester, 2003 - and worth 30%.

DUE: 12:00 noon, Monday 6th October 2003,
at the Computer Science and Software Eng. (Clayton) General Office

This assignment is worth 30% of the total assessment for this subject.
Please read carefully the submission requirements above and on page 4.
Total marks: 10+0+0+20 = 30.

Introduction

The notion of (logarithm of) probabilistic scoring dates back to I.J. Good (1952) and IL.J.
Good (1968) for binomial target distributions, and this has been re-iterated in Needham
and Dowe (2001). This has been extended in Dowe and Krusel (1993) (to multinomials),
Dowe, Farr, Hurst and Lentin (1996) (to Gaussian distributions), Tan and Dowe (2002)
(again to multinomials) and Tan and Dowe (2003) (once more again to multinomials).
Some fuller references are:

Needham, S.L. and D.L. Dowe (2001). Message Length as an Effective Ockham’s Razor
in Decision Tree Induction. Proc. 8th International Workshop on Artificial Intelligence
and Statistics (AI4+STATS 2001), pp253-260, Key West, Florida, U.S.A.; Jan. 2001

Tan, P.J. and D.L. Dowe (2002). MML Inference of Decision Graphs with Multi-Way
Joins. Proc. 15th Australian Joint Conference on Artificial Intelligence, Canberra, Aus-
tralia, 2-6 Dec. 2002, Published in Lecture Notes in Artificial Intelligence (LNAI) 2557,
Springer-Verlag, pp131-142 (this has been handed out in class, and was used in CSE455
Ass’t 1 from www.csse.monash.edu.au/~ptan or www.csse.monash.edu.au/~ptan/dgraph.zip)

and

P. J. Tan and D. L. Dowe (2003). MML Inference of Decision Graphs with Multi-Way
Joins and Dynamic Attributes, (to appear) In Proc. 16th Australian Joint Conference
on Artificial Intelligence (AT’03), Perth, Australia, 3-5 Dec. 2003 (which is downloadable
from http://www.csse.monash.edu.au/~dld/Publications /2003 /Tan+Dowe2003.ref as 12
pages of .pdf or .ps).

If anyone is interested in C5.0, a licensed version of C5.0 is available from (a machine
called) nexus.csse in /local/lib/c5/bin and both (Tan and Dowe, 2002) and (Tan and
Dowe, 2003) give empirical comparisons of MML decision graph schemes with both C4.5
and C5. More about C5.0 (for anyone wanting this) is at www.rulequest.com .



Some four-limbed biped primates have written and published papers with arguments sug-
gesting that Ockham’s razor (see, e.g., http://www.csse.monash.edu.au/~dld/Ockham.html)
is false. Closer examination of such writings tends to suggest that the authors actually
believed what they were writing at the time. In my own attempts to discuss such pub-
lished papers with the relevant authors, the only responses I have heard at the time of
writing have been either recanting or unclear.

The assignment shall be in two parts. Re-visiting the MML decision tree analysis of
(Needham and Dowe, 2001) using decision graphs will be the first part of CSE455 Assign-
ment 1. The second (and last) part of the assignment shall pertain to (decision tree/graph
or possibly other) analysis of some (DNA micro-array) data pertaining to (colon, rectal
or colorectal) oncological (or cancer) data.

In CSE455 Assignment 1, we used the “van’t Veer” breast cancer data-set, which is down-
loadable from http://www.rii.com/publications/2002/vantveer.htm . If you are having
trouble because of your InterNet browser, then this “van’t Veer” data-set should also be
obtainable from http://www.csse.monash.edu.au/~ptan/ or
http://www.csse.monash.edu.au/~ptan/ArrayData_less_than _5yr.zip .

The “van’t Veer” data-set apparently has 25000 continuous input attributes, 1 binary
output attribute and 78 data things.

If you would rather analyse a colon, rectal or colorectal cancer data-set for CSE455 As-
signment 2 and are also capable of finding and obtaining such a data-set, that would be
desirable. Here are the WWW URLSs of some such colorectal cancer data-sets:
(Notterham’s data) http://microarray.princeton.edu/oncology/

(Alon’s data) http://microarray.princeton.edu/oncology/affydata/index.html

(Agrawal’s data) http://cancer.tigr.org/c_pooling.shtml , and

(Ramaswamy’s data) http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi .

First part of the assignment - Ockham’s razor

Question 1 (0 + 2 + 8 = 10 marks)

1 (a)  Give a verbal, English-language, statement of Ockham’s razor.

1 (b)  Interpret and re-state this in a message length framework.

1 (c) Considering, e.g., the boolean function of 5 binary attributes X, Y, Z, A and B:
(X and Y and Z) or (A and B),

re-visit the decision tree study in (Needham and Dowe, 2001) using decision graphs.

Any comments or conclusions?



Second part of the assignment: oncological data-set(s)

Your name and student id, etc. should be attached to the green sheet at the front of your
assignment. Let your student id be your own personal seed, seed.

Question 2 (worth 0 marks)
What is your value of seed?

Question 3 (worth 0 marks)

3 (a) Which data-set have you chosen?

3 (b) How many attributes does your data-set have?
3 (¢) How many things does your data-set have?

Question 4 (worth 20 marks)
Consider your chosen data-set, which is probably one of the colorectal data-sets previ-
ously mentioned (on page 2) and probably not the “van’t Veer” data-set (unless you have
obtained permission from the lecturer). (Please confer with the lecturer if you have chosen
a different oncological data-set.)

If necessary, use your value of seed to seed a random number generator and select appro-
priately a “handful” of attributes from the your (colorectal) data-set. Give the numbers
of the selected attributes.

Use the (Tan and Dowe, 2002) MML decision graph program, MML cos? regression,
random coding (see CSE455 Assignment 1) and/or any (other?) techniques you deem
appropriate to analyse the data-set.

Of the models you use (decision graph or other), please give the model (decision graph or
other) with the shortest message length you could find, clearly stating the decision graph
(or other function) and clearly stating the message length (in bits and nits).

If appropriate, please give the cos? (and sin?) regression with the shortest message length
you could find, clearly plotting a graph of the function and stating the message length (in
bits and nits).



Note (about random number generation) :

For the duration of the assignment, software - should you need it - will be available to
generate multinomial, Gaussian, Poisson and von Mises distributions at
http://www.csse.monash.edu.au/~dld /random.numbers/ |
http://www.csse.monash.edu.au/~dld/datalinks.html ,

(maybe) www.csse.monash.edu.au/~dld/Hons/2001/dldprojects (under “(16)”) (maybe),
http://random.mat.sbg.ac.at/links/rando.html ,

and http://www.csse.monash.edu.au/research/mdmec/software/random /index.shtml |
although you should feel free to use any decent (pseudo-)random number generator that
you like.

Submission requirements - please read carefully

Any programs should be written in a Linux/Unix environment at Monash CSSE and
should use one of the languages C, C++ or Java or some other language (you can haggle
about Perl, PHP, etc.) which the lecturer has agreed to.

Submit any source code written (both in hard copy and in soft copy) along with your
assignment solutions and answers. The hard copy of your source code should appear as
an Appendix to your assignment submission and be submitted as on page 1 of this assign-
ment. The soft copy of your source code should be sent as plain ASCII text with Subject
line: “CSE455 Assignment 1”7 to dld@Qcsse.monash.edu.au . It should be sent from one of
the Linux/Unix machines at Monash CSSE on which you did your work.

Make your data-sets (such as those in Question 3 and 4) readable from the time of

submission until the assignment is returned, and include the path and file names of the
data-sets in your printed submission.

End of CSE455 Assignment 2, 2003.



CSE455 MINIMUM MESSAGE LENGTH
Assignment 1

DUE: 12:00 noon, Wednesday 5 April 2006,
at the CSSE (Clayton School of I.T.) Bldg. 75 General Office

This assignment is worth 20% of the total assessment for this subject/unit.
Please read carefully the submission requirements on page 3.

Introduction

This assignment asks students to use the Poisson distribution (C. S. Wallace and D. L.
Dowe, “MML clustering of multi-state, Poisson, von Mises circular and Gaussian distri-
butions”, Statistics and Computing, Vol. 10, No. 1, Jan. 2000, pp73-83) to analyse some
“secret” but not unfriendly data.

(It has previously been [and might again be] used to analyse word-count data, dog-bite
data and DNA micro-array data, and could be used to analyse radioactive decay data.)

The following two sets of points outline the progression throught the assignment and some
of the concepts and issues to be encountered.

e Brief justification of Minimum Message Length (MML)

e Poisson likelihood, Fisher information, Bayesian prior

e Wallace-Freeman (J. Royal Stat. Soc.) 1987 approximation to message length
e Maximum Likelihood estimate

e Wallace-Freeman 1987 MML estimate

e Data could be decays/transitions/changes of elements/structures
e Real-world data

e Data-set could be self-contradictory (e.g., same thing/item could have two contra-
dictory values)

e There could be outliers, such as transitions going in a seemingly impossible direction.

As such (from the last two points above), we might wish to generalise our model space.
Addressing this second set of points will form a substantial part of the assignment.

e The data could possibly be better summarised by a mixture of two or more Poisson
distributions than just one



e The data could possibly be better summarised by a mixture of an outlier distribution
(possibly uniform) and one or more Poisson distributions than just a lone Poisson
distribution

e The data could possibly be better summarised as having one or more changes/cut-
points into two or more segments.

By way of introducing questions 2 and 3, we introduce (a version of) the Poisson distri-
bution.

With rate r and duration (or length) ¢; [which you might choose to think of as the time
for the counted events] and count ¢;, the likelihood fuction of the Poisson distribution is
F@Er) = fle, o enlty, oy, m) =TI f(cilti,r) where f(cift;, r) = et ™

L; = —log f(ci|ti,r) = rt; — cilog(r) — c; log(t;) +log(c;!) and L = —log f = N, L; and
OLi — ¢, &,

P(?(;r some ozr> 0, assume a Bayesian prior on r of h(a) = ée

r
«,

Question 0 (worth 0 marks)
Given 7 (the rate) and ¢;, what is the “expected” value of ¢; ?

Question 1 (worth 4 marks)

Appealing to any/some/all of

(i) Bayes’s theorem,

ii) (Universal) Turing Machines and/or Kolmogorov complexity,
iii) file compression,

iv) Ockham’s razor, and

v) anything else,

give an intuitive justification of Minimum Message Length (MML).

(
(
(
(

Question 2 (worth 6 + 4 4+ 2 + possibly bonus = 12 + possibly bonus marks)
Calculate a likelihood, message length or other viable objective function for the problems
referred to above.

State or explain how you will minimise the message length.

Develop software to calculate the objective function(s) and find the optima.

Test your software using (see below) appropriate (pseudo-)random number generator soft-
ware.

Question 3 (worth 4 + possibly bonus marks)
Apply this to the relevant real-world data at the CSE455 courseware WWW page.
A sample of some of this is given below.



Note (about random number generation) :

For the duration of the assignment, software will be available to (pseudo-)randomly gen-
erate multinomial, Gaussian, Poisson and other distributions at
http://www.csse.monash.edu.au/~dld /random.numbers/ (or elsewhere),

although you should feel free to use any decent (pseudo-)random number generator that
you like.

Submission requirements - please read carefully

Submit any source code written along with your assignment solutions and answers.
Make your data-sets readable from the time of submission until the assignment is re-
turned, and include the path and file names of the data-sets in your printed submission.

Appendix - sample data

YearCon datel pcl pc2 pc3 pcd Entity No.
19751997 0 0 100 0 1
19751999 100000 1
1960 1999 98 2 0 0 2
1960 199998 200 3
1970 1996 0 80 20 0 4
1970 1999 50 50 0 0 4
19711996 100000 5
1971199998200 5
1971 1996 100000 6
1971 1999802000 6
1960 1996 0 40 50 10 7
1960 1999 2340307 7
1962 1996 70 30 0 0 8
1962 1999 90 10 0 0 8
1965 1996 80 20 00 9
1971 1996 70 0 30 0 10
1971 1999 80 20 0 0 10
1963 1996 80 20 0 0 11
1963 1999 80 20 0 0 11
1964 1996 0 75 25 0 12
1964 1999 7520 5 0 12
1962 1996 75 25 0 0 13
1962 1999 70 20 10 0 13



1961 1996 90 10 0 0 14
1961 1999 100 0 0 0 14
1960 1996 100 0 0 0 15
1960 1999 100 0 0 0 15
1979 1996 100 0 0 0 17
1979 1999 85 15 0 0 17
1961 1999 95500 18

1972 1996 90 10 0 0 19
1970 1999 100 0 0 0 20
1960 1996 80 20 0 0 21
1960 1999 100 0 0 0 21
1999 2000 100 0 0 0 22



CSE455 MINIMUM MESSAGE LENGTH
Assignment 2

DUE: 12:00 noon, Friday 28 April 2006,
at the CSSE (Clayton School of I.T.) Bldg. 75 General Office

This assignment is worth 30% of the total assessment for this subject/unit.
Please read carefully the submission requirements on page 4.

Introduction

This assignment asks students to use the Poisson distribution (C. S. Wallace and D. L.
Dowe, “MML clustering of multi-state, Poisson, von Mises circular and Gaussian distri-
butions”, Statistics and Computing, Vol. 10, No. 1, Jan. 2000, pp73-83) to analyse some
“secret” but not unfriendly data.

(It has previously been [and might again be] used to analyse word-count data, dog-bite
data and DNA micro-array data, and could be used to analyse radioactive decay data or
frequency of WWW page usage.)

The assignment then goes on to look at (circular) ring data.
To some degree, this assignment is a continuation of or an extension of Assignment 1.

The following three sets of points outline the progression throught the assignment and
some of the concepts and issues to be encountered.

e Poisson likelihood, Fisher information, Bayesian prior
e Wallace-Freeman (J. Royal Stat. Soc.) 1987 approximation to message length
e Maximum Likelihood estimate

e Wallace-Freeman 1987 MML estimate

e Data could be decays/transitions/changes of elements/structures, etc.
e Real-world data

e Data-set could be self-contradictory (e.g., same thing/item could have two contra-
dictory values)

e There could be outliers, such as transitions going in a seemingly impossible direction.

As such (from the last two points above), we might wish to generalise our model space.
Addressing this second set of points will form a substantial part of the assignment.



e The data could possibly be better summarised by a mixture of two or more Poisson
distributions than just one

e The data could possibly be better summarised by a mixture of an outlier distribution
(possibly uniform) and one or more Poisson distributions than just a lone Poisson
distribution

e The data could possibly be better summarised as having one or more changes/cut-
points into two or more segments

Of course, shifting to the rest of the assignment, the data could come from entirely
difference sources (again, with or without outliers), such as:

e Circles (or rings) of data

e Mixtures of circles (or rings) (or even ellipses) of data, with or without outliers -
such as the Olympic rings (www.olympic.org), with or without outliers.

Now, by way of introducing questions 1, 2 and 3, we introduce (a version of) the Poisson
distribution.

With rate r and duration (or length) ¢; [which you might choose to think of as the time
for the counted events] and count ¢;, the likelihood fuction of the Poisson distribution is

f(EIE: T) = f(cla B3 CN|t1a "'atNa r) = ?Ll f(cz|tla T) where f(cl|tla T) = eirti%'

L; = —log f(ci|ti,r) = rt; — cilog(r) — ¢; log(t;) +log(c;!) and L = —log f = N, L; and
=t - G

or ¢ r

For some « > 0, assume a Bayesian prior on r of h(a) = ée

Question —1 (worth 0 marks) [from Assignment 1]

Appealing to any/some/all of

(i) Bayes’s theorem,

ii) (Universal) Turing Machines and/or Kolmogorov complexity,
iii) file compression,

iv) Ockham’s razor, and

v) anything else,

give an intuitive justification of Minimum Message Length (MML).

(
(
(
(

Question 0 (worth 0 marks) [from Assignment 1]
Given r (the rate) and ¢;, what is the “expected” value of ¢; ?

Question 1 (worth 2 marks) [partly from Assignment 1, but now repeated|
Calculate a likelihood and message length for the inference of a single Poisson distribution
(no mixtures, no cut-points).

Give the Kullback-Leibler divergence (or Kullback-Leibler “distance”) from a Poisson
distribution parameterised by (the true) r to a Poisson distribution parameterised by
some estimate, 7.



Question 2 (worth 6 + 4 4+ 2 + possibly bonus = 12 + possibly bonus marks)
Calculate a likelihood, message length or other viable objective function for the other
problems (not in Question 1) referred to in the introduction above - this includes mix-
tures (at least two Poissons or an outlier distribution with at least one Poisson) and/or
cut-points.

State or explain how you will minimise the message length.

Develop software to calculate the objective function(s) and find the optima.

Test your software using appropriate (pseudo-)random number generator software.

Question 3 (worth 4 + possibly bonus marks)

Apply your answer and software from Question 2 to the relevant real-world data at the
CSE455 courseware WWW page. (A small sample of some of this is given below.) State
any and all assumptions explicitly and very clearly. Discuss your results.

Question 4 (worth 8 + 2 4 possibly bonus marks = 10 4 possibly bonus marks)
Changing the topic, consider the following distribution for points around a circle:

(2, 9) 0, yo, 7, ) = Norm(r, n).(((x — x0)? + (y — y0)?)/r?)"e (=) +y=y0))/* where
Norm(r,n) = 1/(7r?n!/(n®*!)) = n®* /(7r?n!) = n/(7r?(n — 1)!) = n®/(7r?T'(n)).

With > 0 and n > 0, the circle is centred at (xg, o) with radius r, and n gives a measure
of how tightly the data clusters around the circumference.

The things to look out for here (initially) are that

(i) this (the likelihood) has a minimum at (z,y) = (2, ¥o) (in the centre)
(ii) this peaks at (z — z¢)® + (y — yo)? = r? (on the circumference)

(iii) the value at the minimum is 0 and at the peak is Norm(r,n).e
(
(

. —n
iv) we have the normalisation constant correct, and
v) the peak gets tighter for larger n.

Zo, Yo and 7 > 0 are continuous whereas n could be either
4a) continuous, n > 0, or 4b) a positive integer.
Choose one of 4a) and 4b).

Develop formulas and software to calculate the Maximum Likelihood estimate of xg, yo,
r and n.
Choosing suitable Bayesian priors, do your best to calculate an MML estimate of xq, ¥o,
r and n.

4c) Cost an encoding of the data as background noise.

For both 4c) and your choice out of 4a) and 4b), give message lengths.



Question 5 (worth 2 + bonus marks)
5a) More generally, infer a way of modelling data as a mixture (model) (or cluster) of one
or more circles (and possible background noise). Give message lengths.

5b) Test your software from Question 4 and Question 5a) on artificially generated data.

Note (about random number generation) :

For the duration of the assignment, software will be available to (pseudo-)randomly gen-
erate multinomial, Gaussian, Poisson and other distributions at
http://www.csse.monash.edu.au/~dld /random.numbers/ (or elsewhere),

although you should feel free to use any decent (pseudo-)random number generator that
you like.

Submission requirements - please read carefully

Submit any source code written along with your assignment solutions and answers.
(Where possible, submit your written work in LaTeX.)

Make your data-sets readable from the time of submission until the assignment is re-
turned, and include the path and file names of the data-sets in your printed submission.

Appendix - sample data for Poisson distribution and variants

19751997 0 0 100 0 1
19751999 100000 1
1960 1999 98 20 0 2
1960 199998 200 3
1970 1996 0 80 20 0 4
1970 1999 50 50 0 0 4
1971 1996 100000 5
1971199998200 5
1971 1996 10000 0 6
19711999 802000 6
1960 1996 0 40 50 10 7
1960 1999 23 40 30 7 7

1960 1999 100 0 0 0 21
1999 2000 100 0 0 0 22
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