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MML, statistically consistent
invariant Bayesian probabilis-
tic inference and the elusive
model paradox

Statistical invariance

Statistical consistency

— Fixed number of parameters

— Amount of data per parameter bounded
above
e Neyman-Scott problem

Statistical likelihood function
Inference: Maximum likelihood, etc.



— Statistical inference
— Machine learning

— Econometrics

— Inductive inference
— “Data mining”

Inference
One model (typically)

Prediction
Possibly more than one model
Models can be averaged

— non-weighted (equal weights), or
— weighted (different weights)



Easy problems

— Known likelihood function f(D|H),
Prob(Data|Hypothesis), f(x|0)

— Fixed number of parameters
Amount of data per parameter un-
bounded

— Little noise

Intermediate problems ...

Hard(er) problems

— (Unknown likelihood function)
— Much noise
— Amount of data per parameter bounded
above - e.g.,
e Neyman-Scott problem (with known
likelihood function) (e.g., Dowe
2010, sec. 6.4)



Desiderata (in inference)
Statistical tnvariance
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Statistical consistency

As we get more and more data, we
converge more and more closely to
the true underlying model

(But what if data-generating source
is outside our model space?)

Efficiency

Not only are we statistically consis-
tent, but as we get more and more
data we converge as rapidly as is
possible to any underlying model.



Some methods of inference
Maximum Likelihood: Given data
D, choose (probabilistic) hypoth-
esis H to maximise f(D|H) and
minimise — log f(D|H).

— Statistically invariant —  but
tends to over-fit, “finding” non-
existent patterns in random noise

— Also, how do we choose between
models of increasing complexity
and increasingly good fit e.g., con-
stant, linear, quadratic, cubic, ...”7

— Also, maximum likelihood chooses
the hypothesis to make the already
observed data as likely as possi-
ble.

But, shouldn’t we choose H so as
to maximise Pr(H|D) ?



Bayesianism, prior prob’s, Pr(H|D)
Prior probability, Pr(H)

Pr(H).Pr(D|H) = Pr(H&D) =
Pr(D&H) = Pr(D).Pr(H|D)

801 Pr(H|D) = 7“<H]g-7!(35<)D|H> _
Pr(D) (Pr(H).Pr(D|H))

: rior(H) . likelthood(D|H
posterior(H|D) =¥ ( n)v,arginal(D) (DIH)

Probability vs probability density

What is your (friend’s) height? weight?
Measurement accuracy - used in
MML in lower bound for some pa-
rameter estimates, but overlooked
and ignored in classical approaches



Information Theory

Given data D already observed,
mazxyg Pr(H|D) =

maz gy PT%D)(PT(H).PT(D|H)) =
maxp Pr(H).Pr(D|H) =

ming —log Pr(H) —log Pr(D|H)

Can do this if everything is a proba-
bility and not a density, whereupon
l; = —logy p; is the binary code-

length of an event of probability p;
1
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Bayesian Maximum A Posteri-
ori (MAP) maximises prior den-
sity multiplied by likelihood

This is not statistically invariant.
It also suffers the inconsistency and
other problems of Max Likelihood.

Minimum Message Length (M ML)
s statistically invariant and has gen-

eral statistical consistency proper-

ties (which Maximum Likelihood and
Akaike’s Information Criterion (AIC)
don’t have).

— MML is also far more efficient than
Maximum Likelihood and AIC

— MML is always defined, whereas
for some - or many - problems
AIC is either undefined or poor



Turing Machine
f : Statesx Symbols — {L, R} U Symbols.

With binary alphabet,
f . Statesx{0,1} - {L, R} U{0,1}.

Any known computer program can
be represented by a Turing Machine.

Universal Turing Machines (UTMs)
are like a compiler and can be made
to emulate any Turing Machine (TM).



Recalling from information theory
that an event of probability p; can
be encoded by a binary code-word
of length I; = logy p;, and recall-
ing from MML that choosing H to
maximise Pr(H|D) is equivalent to
choosing H to minimise the length
of a two-part message,

—log Pr(H) —logPr(D|H),

we can see the relationship between
MML, (probabilistic) Turing machines
and (two-part) Kolmogorov complex-

1ty.



Kolmogorov complexity

The Kolmogorov complexity ot a
string, s, relative to some (Univer-
sal) Turing machine, U, is the length,
1|, of the shortest input ! to U such
that

U(l) = s and then U halts.

MML is Bayesian, and the choice of
UTM 1s Bayesian.

But does this appeal to UTMs and
Kolmogorov complexity give us a
(fairly?) objective(?) Bayesianism?

In practice, use approrimations to
MML, typically quantising (round-
ing off) in parameter space:



Approximations to (Strict) MML
For discrete variables, relatively easy.

For continuous variables (note mea-
surement accuracy):

MMLD J[or I1p| ({1999,} 2002, ...)
minp —log(ip h(0) d§) —B h(0).1og f(z|0) do

Wallace- Freeman (J RoyStatSoc 1987)
— log(h(8). ) —log f(x]6) + 3

\/K,D Fzsher

Example (slightly hybrid): Uni-
variate Polynomial Regressmn (x known)
y=(= g—Oaz )+ N(0,0 )

15% part of message (hypothesis, H):

a?; ao, ..., g, 02

24 part of message: Data|H.



Neyman-Scott problem (1948)
We measure N people’s heights J
times each (say J = 2) & then infer

—the heights pq, ..., up of each of
the N people,

— the accuracy (o) of the measuring
instrument.

We have JN measurements from
which we need to estimate NV + 1
parameters.  JN/(N +1) < J,
so the amount of data per parame-
ter is bounded above (by J).

~2 J—1 2

O MazimumLikelihood —7 ~J 0
and so for fixed J as N — oo
Maximum Likelihood is statistically
inconsistent - under-estimating o and

“finding” patterns that aren’t there.



Variants on Neyman-Scott prob-
lem (e.g., Dowe (2010))

What makes Neyman-Scott difficult

1s that the amount of data per pa-
rameter 18 bounded above.

This 1s awtul for Maximum Likeli-
hood and Akaike’s Information Cri-

terion (AIC).

Other examples include

— latent factor analysis (I.Q., etc.)
— tully-parameterised mixture mod-
elling

By acknowledging uncertainty (or
quantising) when doing parameter
estimation, MML is statistically con-
sistent on all of these problems.



MML is about inference, seeking
the truth.

— It gives a statistically invariant -
and statistically consistent - Bayesian
method of point estimation.

— It gives general consistency results
where classical non-Bayesian ap-

proaches are known to break down.

— It is also efficient, working well on
all range of real inference prob-
lems.

Conjecture (1998, ...) that only
MML and very closely-related Bayesian
methods are in general both statis-
tically consistent and invariant.
Back-up Conjecture: If there are
any such non-Bayesian methods, they
will be tar less efficient than MML.



Some of MML’s many “friends”
Scoring probabilistic predictions

MML and Efficient Markets Hypoth-
esis: markets not provably eflicient

MML, Kolmogorov complexity and
measures of “intelligence”

MML and Econometric Time Series

MML, Entropy and Time’s Arrow

MML and Linguistics - inferring “dead”
languages



MML, cosmological arguments and
“Intelligent Design” (I.D.)

N. Goodman’s “grue” (paradox or)
problem of induction

fictionalism (77)



MML in medicine, psych’ & bio’:
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