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Abstract. We propose a new model to quantitatively estimate the accuracy of artificial
agents over cognitive tasks of approximable complexities. The model is derived by
introducing notions from algorithmic information theory into a well-known (psycho-
metric) measurement paradigm called Item Response Theory (IRT). A lower bound
on accuracy can be guaranteed with respect to task complexity and the breadth of
its solution space using our model. This in turn permits formulating the relationship
between agent selection cost, task difficulty and accuracy as optimisation problems.
Further results indicate some of the settings over which a group of cooperative agents
can be more or less accurate than individual agents or other groups.

1 Introduction and Background

Turing’s imitation game [32] inspired a range of attempts to measure the intelligence of artifi-
cial agents [6]. More recently, a formal (machine) intelligence test [10] consisting of sequence-
completion exercises was devised. Later, fuzzy integrals were used [1] to measure intelligence
in machines by calculating a Machine Intelligence Quotient. Shortly after, a simple computer
program that succeeded in passing a variety of IQ tests was presented [26], raising questions
on the appropriateness of intelligence tests for machine assessment. After the definition of uni-
versal intelligence [18], many (algorithmic) information-theoretic studies were put forward to
formally quantify the intelligence of individual AI agents [12, 13] as well as AI collectives [4].

Independently, a series of measurement theories have been proposed in psychometrics and
applied to human intelligence. One of the earliest milestones in human intelligence testing was
Thurstone’s letter series completion problems [31] and, more recently, Raven’s Progressive
Matrices test [24] which recorded strong correlation with Spearman’s general intelligence
factor [30]. More general tests consisting of a variety of evaluation tasks were developed,
and they came to be known as “Intelligence Quotient” or simply IQ tests. Examples of such
tests are the Stanford-Binet test [25] and the Wechsler intelligence scales for adults and
children [33]. Another mainstream achievement in psychometrics was the development of
Item Response Theory (IRT) [22], also referred to as latent trait theory. IRT is among the
most popular measurement classes used in psychometrics for evaluating traits, or abilities, and
producing accurate rankings from test scores, by applying mathematical models to testing data.
In the context of IRT, a trait or an ability might be physical or psychological (cognitive and non-
cognitive, e.g., a personality or behavioural characteristic) [5]. Recently, IRT was successfully
adopted to analyse machine learning models by providing an instance-wise analysis of a series
of datasets and classifiers [23]. In this paper, we show how to adapt models from psychometrics



and IQ tests, based on notions from algorithmic information-theory, to artificial intelligence
in order to estimate the (cognitive) abilities of artificial agents and predict their accuracies.

2 Motivation and Main Contributions

Advances in psychometrics are not yet thoroughly applied for predicting the accuracy of
AI agents despite their success in evaluating human cognitive abilities. While the AI disci-
pline adheres to the mainstream concept of intelligence [9], general IQ tests might not be
appropriate in their current form for evaluating machine intelligence [7]. In fact, even test
batteries that might be suitable for practically evaluating AI (and knowledge based systems
[15]) show some caveats. For instance, such tests measure an average performance (of one
or more abilities) of AI agents over a set of tasks or environments but it is ambiguous how
the results from these tests can be used to predict the accuracy of an agent over a particular
task complexity without actually administering that task to the agent. In addition to many
theoretical studies discussed in [11], empirical studies such as [4, 3] demonstrated that task
complexity and the breadth of its solution space are major factors influencing the performance
of artificial agents. Hence, quantitatively predicting the accuracy of artificial agents across
different task complexities and solution spaces is clearly an important feature that has not
been addressed so far. Furthermore, intelligence test scores can be unreliable since agents
usually exhibit non-uniformity between their performances over different problems/settings.
This has implications for selecting agents to solve tasks, particularly when there is cost (e.g.,
processing time) associated with utilising agents, and understanding the collective accuracy
of cooperative agents of different (cognitive) abilities.

By merging notions from both psychometrics and (algorithmic) information theory, we
develop a hybrid model to quantitatively estimate the accuracy of AI agents over tasks of mea-
surable complexities. We demonstrate its functionality over a class of prediction and inference
problems as this class is considered as reflecting some of the principal traits of intelligence both
in psychometrics [9] and artificial intelligence [21, 8, 11]. Using the predictive model, we show
how to identify agents that can guarantee a lower bound on accuracy with respect to task com-
plexity and the breadth of its solution space. We analyse settings over which a group of (voting)
agents can be more or less effective than individual agents, or other groups, and identify cir-
cumstances that can be counterintuitive to the conclusions drawn from intelligence tests. In the
next section we outline important properties and constraints that our model needs to embrace.

3 Desirable Properties for Assessment

Given a subject (cognitive agent) to be evaluated over a task/problem:

1. The model must return a quantitative measure (on an interval scale) of the estimated
subject’s accuracy over this task without the need to administer it to the subject.

2. The accuracy of a subject (its probability of success in solving a task) predicted by the
model is expected to be proportional to its (relevant cognitive) ability over that task, and
inversely proportional to the difficulty of the task.

3. In order to conform to the limiting behaviour of real agents, the model should use the
asymptotic minimum (prand, which denotes the probability of correctly selecting a
random solution from the solution space) as a lower-bound on accuracy.



4. The model should be applicable over different tasks of measurable difficulties.
5. The difficulty measure should be general enough to accommodate a wide range of tasks.
6. The model should be applicable to different agent types and cognitive systems.

Earlier information-theoretic studies on (artificial) intelligence [12, 14] and inductive-inference
[29, 19] discussed (among others) two general dimensions of task difficulty, (i) Shannon’s
entropy [27] which is related to the uncertainty and breadth of the solution search space, and
(ii) the algorithmic information-theoretic (in particular the Kolmogorov) complexity [16, 21]
of the task. We take into account both dimensions of difficulty in the design of our model.

4 A Predictive Model of Agent Accuracy

Inspired by the 2-parameter logistic model [2] of IRT [22], we propose a mathematical model
for predicting a subject’s expected accuracy on a given task/problem of measurable complexity.

Definition 1. Let x denote a (classification) task/problem of a theoretical difficultyD such
that the solution to x belongs to the alphabet (or solution space) S = {s1,s2,...,sm}. We
define (an estimate of) the accuracy of an agent with ability α∈R+ over that task to be:

PD,α,m =
1

m
+ e
−D
α ·
(
1−

1

m

)
(1)

which corresponds to the probability of that agent guessing the correct solution to x.

The above model has the following important properties. For a given task of a (hypothetically)
negligible difficulty, the probability of solving this task is limD→0PD,α,m=1. The probability
PD,α,m of a subject with ability α>0 solving a task is (exponentially) proportional to the
subject’s ability, and inversely proportional to the difficulty of the taskD, and the breadth of its
solution spacem∈N+. Moreover, when task difficultyD is very high relative to α (or when
the subject’s abilityα is small), the probability of successPD,α,m converges to a random guess
equivalent to 1/m, which is the asymptotic minimum1. For instance, on a binary test problem
(e.g., coin toss problem with S={Heads, Tails}) withm=2, an agent with ability α has an ac-
curacyPD,α,m=0.5+e

−D
α (0.5). When the abilityα is close to zero,PD,α,mu0.5. For many

problems, the theoretical task difficultyD can be derived from the simplest solution (policy)
to the task, and therefore can sometimes be linked to the complexity of the (description of the)
task, or the complexity of the description of its policy. Consequently, the difficulty of the task
can be linked to its Kolmogorov complexity [16, 21]. Since the Kolmogorov complexity is
uncomputable, methods like Levin’sKt complexity [21, 20] or the Lempel-Ziv (compression)
algorithm [19] can be used as practical alternatives (to bound it and possibly approximate it).
For the rest of this paper, we will use the Kolmogorov complexity of the task as a derivation
of its (theoretical) difficulty. The suggested model returns the probability of a subject solving
a given task of a measurable complexity as a function of its (previously measured) ability. The
ability could be defined as a vector of weighted atomic sub-abilities s.t. α is a linear combina-
tion of [w1α1+w2α2+...+wtαt]. The model in Eq. 1 is a simple case of the latter where, for
some integer z≤t, the ability α=wzαz and

∑t
j=1,j 6=zwj=0 in [w1α1+w2α2+...+wtαt].

We will use a formal intelligence test from the literature of AI, the C-test [10], to measure
an agent’s ability α over a class of tasks.D andm are input parameters to the model typically

1 For simplicity and without loss of generality, 1/m is used in Eq. 1 to replace the probability prand
of an agent randomly guessing (one of) the correct solutions to the problem.



being measured by some earlier assessment or derived directly from the problem. We refer to
the model defined in Eq. 1 as the IRT model for brevity, and use the terms accuracy and perfor-
mance alternately (only) as measures of the probability of success at solving a (cognitive) task.

5 Assessing Inference Abilities

The C-test [10] is a compression-based intelligence test that measures the ability of a subject do-
ing inductive-inference and finding the best explanation for sequences of various complexities.
It reflects the fluid intelligence of the evaluated subject. The idea is to record the performance
of a subject over a series of patterns of increasing incomprehensibilities (or complexities). The
complexity of a C-test sequence is formally measured using Levin’sKt complexity [21] as
a practical alternative to (and possibly a rough bound on) its Kolmogorov complexity. Given
Σ={a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}, and a sequence θ of length m where each
θi∈Σ, the task consists of predicting the next letter θm+1∈Σ which correctly completes the
sequence. Given a C-test consisting of a collection of test sequencesCT=(seq1,...,seqn)with
their corresponding answers (solutions) S=(θ1m+1,...,θ

n
m+1) and corresponding complexities

K =(k1,...,kn), the average score r̃ of an agent π with guesses S′ =(θ
′1
m+1,...,θ

′n
m+1)over CT

is: r̃= 1∑n
z=1kz

·
∑n

z=1kz×hit(θ
′z
m+1,θ

z
m+1), where the function hit(a,b)←

{
1 if a == b
0 otherwise

, and the

complexity of the sequence kz is used as a weight in order to give more importance to more dif-
ficult questions. The C-test score will be used to determine the inductive-inference ability α of
a subject, further used as a parameter in the model (Eq. 1). The reasons for selecting the C-test
are, firstly, the test by definition measures an (inductive inference related) ability, in this case
the ability of finding the best explanation for a given sequence using induction. The test is well
formulated and is exclusively defined in computational terms. It generates sequences (tasks)
within a range of complexities 7≤D≤15, using Levin’sKt approximation [10] (as a practical
alternative to Kolmogorov complexity). The C-test results are highly correlated with those from
classical psychometric (IQ) tests [10]. The test sequences are formatted and presented in a quite
similar way to psychometric tests. Hence, the test can be applied to machines in the same way
it is applied to humans. There is typically one exclusive correct (simplest) answer for any of the
test sequences, making the results uncoincidental and representative of the testee’s accuracy.

Measuring abilities: Table 1 holds the definitions of a few agent behaviours to be eval-
uated over the C-test. Their scores are used to measure their (inductive inference) ability α
and are plotted in Fig. 1 along with their corresponding accuracies PD,α,m generated using
the IRT model (Eq. 1). More advanced algorithms for sequence prediction problems exist but
since the choice of agent behaviours is not particularly relevant to the validity of the model we
restrict our selection to those in the Table 1. The agents’ abilities were calculated as a function
of their C-test scores using α=ωr̃, where α is the ability of agent π with score r̃, and ω∈R
is a fitting parameter selected in such a way to (i) ensure that the agent’s moderate accuracy,
of 0.5(maxPD,α,m+minPD,α,m)≡0.5(1+1/m), falls under the area of discriminative task com-
plexities

∫D=16

D=6
PD,α,m (following [10]) and, (ii) minimise the mean squared error between

the IRT model and C-test scores. Our model nicely illustrates the agents’ average accuracies
as illustrated in Fig. 1 despite the large non-uniformity in their behaviours and performances.



Table 1: Sample agent behaviours evaluated over the C-test.

Random agent: given a sequence seq, a random agent
πrand randomly uniformly selects a letter from Σ and
returns it as its answer θ′m+1 (Refer to Sec. 5).

Pattern agents: a pattern agent πpt looks for a repeating distance
pattern between the elements of seq and completes it to infer θ′m+1.
To implement this behaviour, the problem is divided intom−1
tasks {t1,t2,...,tm−1} assigned to agents {πpt1 ,π

pt
2 ,...,π

pt
m−1}

respectively. Agent πpty calculates d(θi+y−θi)∀i∈{1,...,m−
y} and generates a list of distancesDy=(d1y,...,d

k
y) where

k=m−y, and diy :=d(θi+y−θi). Then, πpty searches for
the occurrences of the longest possible pattern inDy and continues
Dy by adding dk+1

y following the pseudo-algorithm below.
Input: set of distancesDy=(d1y,d

2
y,...,d

k
y).

Output: next distancedk+1
y inDy .

1: Extract the unique elements ofDy .
2: Store elements in a listUy in order of appearance.
3: Find the starting index for each substring occurrenceUy inDy .
4: Store index in vectorv.
5: if |v|>1 then
6: P←Dy(v(1):v(2)−1) .v(i) is the i’th element ofv
7: else if |v|≤1& |Dy|>1 then
8: P←Dy(|Dy|−1)
9: else

10: P←Dy
11: end if
12: ind←|Dy|−|P|×|v|
13: if ind>0 then
14: dk+1

y ←P(ind+1)

15: else
16: dk+1

y ←P(1)

17: end if
18: return dk+1

y

Finally, agent πpty makes its guess θ′m+1 for the next letter of seq

such that: d(θ′m+1−θm+1−y)=d
k+1
y .

Mode agent: given a sequence seq, a mode agent πmode

looks for the most repeated or frequent letter(s) in seq to pre-
dict the next letter. If more than one letter satisfy the criteria,
it chooses the left-most one appearing in the sequence.
Min-repetition agent: given a sequence seq, a min-repetition
agent πmr looks for the least repeated letter in seq to predict
the next letter.
Min-distance agent: given seq=(θ1,θ2,...,θm), agent
πmind looks for the minimal alphabetical distance (Def. 2)
between all consecutive letters of seq and infers the next letter
θ′m+1 by adding this distance to seq’s last letter θm.
Definition 2. The alphabetical distance d(γ−β) between
two characters β and γ in an alphabet Σ is equal to the
difference between their index positions in the totally ordered
set (Σ,≤) in mod |Σ|.

For instance, the distance between any two consecutive letters
in the alphabet is 1, and the distance between the first charac-
ter a and the last one z is equal to d(z−a)=26−1=25.
So, given a C-test sequence seq = (θ1, θ2, ... , θm),
agent πmind calculates the distance di := d(θi+1 − θi)
following Definition 2 between two consecutive elements
of seq for all i ∈ {1, ... ,m− 1} returning a pattern (list)
of distances D = (d1, d2, ... , dm−1). Then, πmind

looks for the minimal alphabetical distance dmin ∈ D
as follows: dmin ← argmind∈D freq(d,D) where
freq(d,D) is a function that returns the rate at which d
occurs inD. Agent πmind finally chooses θ′m+1∈Σ such
that d(θ′m+1−θm)=dmin.
Max-distance agent: this is the opposite behaviour of min-
distance agent. Given a sequence seq = (θ1,θ2, ... ,θm),
a max-distance agent πmaxd calculates the distance
di :=d(θi+1−θi) between the consecutive elements of seq
for all i∈{1,...,m−1} returning a pattern (list) of distances
D=(d1,d2,...,dm−1). It then looks for the maximal alpha-
betical distance: dmax ∈D← argmaxd∈D freq(d,D)
(from above definition). It finally chooses θ′m+1 ∈Σ such
that d(θ′m+1−θm)=dmax.

6 Predicting Agent Performance

While results from the C-tests are all alone interesting, we have no means to extrapolate them
or predict the agent performances over different sequence complexities and solution space
sizes without re-running the test. However, the expected accuracies of an agent can easily be
generated from the IRT model over inference tasks of different complexities. An example is
illustrated in Fig. 2 showing the predicted accuracies of agent πmind (refer to Table 1) across
different hypothetical (Kolmogorov) complexities D and problem solution space sizes m.
For any fixed difficulty D, the IRT model shows that the difference in accuracy measures

PD,α,m1
−PD,α,m2

over two solution space sizes m2 >m1 is: 1
m1

+ e
−D
α

m1
− 1
m2
− e

−D
α

m2
=

(1+e
−D
α )(m2−m1)
m1·m2

, meaning that this difference is greater over smallerm∈N+. This can also
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Fig. 1: Final C-test score r̃ of 9 different agents
behaviours (defined in the Table 1) and their
corresponding IRT accuracies taken from Eq. 1,
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Fig. 2: IRT accuracy of agent πmind with ability
α = 11.28 over inference tasks of different
hypothetical (Kolmogorov) complexitiesD and
problem solution space sizesm.

be observed in Fig. 2. For consecutive values ofm,PD,α,m−PD,α,m+1=(1+e
−D
α )/(m2+m), and

therefore, for very largem, any further increase inm has a negligible effect on the accuracy.

6.1 Relationship Between Accuracy and Difficulty

Figure 3 shows the shift in accuracies of a pool of example classifiers of hypothetical (clas-
sification) abilities α∈ [1,8] across severalD andm values. We observe thatm has a greater
influence thanD on the accuracy of those classifiers with poor abilities α<3 and thus their
scores are asymptotically bounded by 1/m, while the opposite is true for more adept clas-
sifiers with stronger abilities. This type of analysis can be used to identify the minimal ability
value for a classifier to be considered effective compared to, for example, a simple random
classifier. One can further put a bound on the task complexity that an agent can solve with
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Fig. 3: Shift in accuracy (from Eq. 1) across several D and
m values for example classifiers of different hypothetical
abilities such that α∈ [1,8].
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agent πmind with ability α=11.28.

a minimal probability of success PD,α,m. For instance, if we knowm, it is straightforward



to calculateD from Eq. 1 as e−Dα =
PD,α,m−

1
m

1− 1
m

=⇒D=−αln
(
m·PD,α,m−1

m−1

)
. Similarly a lower

bound on accuracy can be guaranteed with respect to the task complexity and the breadth of
its solution space. This is illustrated in Fig. 4 for agent πmind.

This becomes interesting when a cost function (e.g. processing time, fee) is associated with
utilising agents of higher abilities. Two agents π1 and π2, with abilities α1 and α2 and utilisa-
tion costs c1=f(α1) and c2=f(α2) respectively, guarantee an accuracyPD1,α1,m

=PD2,α2,m

under different problem complexities such that D2/D1=α2/α1. If α2>α1 (and c2>c1)
then π2 can accommodate (a α2/α1 factor of) higher problem difficulties with an additional
cost of c2−c1, while guaranteeing the same accuracy as π1. Given a set of tasks of different
complexities, a set of n agents of different utilisation costs, selecting the agent to solve these
tasks with a minimum bound on accuracy of p̂ can now be subsequently modelled as an
optimisation problem: argmin1≤i≤nf(αi), subject to PDj,αi,m≥ p̂.

Inferring task difficulty: alternatively, the IRT model can be applied to testing data in
order to provide a quantitative understanding of the average complexityD of one class of tasks
X={x1,...,xt}, assuming the valuem for such tasks is already known. For instance, one can
empirically evaluate an agent of a known abilityα over all task instances xi∈X and record its
average score. Equation 1 can subsequently be solved forD using the recorded score asPD,α,m.

7 Collective Accuracy of Cooperative Agents

The advantages from adopting the IRT model extend to multiagent scenarios by estimating
the collective accuracy of a group of agents. For instance, let A be a collective of agents
using simple majority voting as a social choice function to elect a solution from the set of
alternatives S={s1,s2,...,sm} to a problem x with only one correct solution si∈S. Let Y =
{y1,y2,...,yn}where each yi∈S, denote the votes of the agents inA={π1,π2,...,πn} respec-
tively regarding their preferred solution to x. When the votes are independent and identically
distributed with equal accuracies px, the probability of collectiveA finding the solution to x is
the sum of probabilities where at least 50% of its agents are correct which can be calculated as:

Px(A)=

n∑
k=bn/2c+1

(n
k

)
p
k
x(1−px)

n−k (2)

By combining equations 1 and 2, the probability Px(A) of a collective of agents A =
{π1,π2,...,πn} electing the correct solution to x with difficulty D, and alphabet m using
simple majority voting becomes:PD,m(A)=

∑n
k=bn/2c+1

(n
k

)
PkD,α,m(1−PD,α,m)n−k.According to

Condorcet’s jury theorem [28], PD,m(A) is monotonically increasing when the IRT accuracy
PD,α,m > 0.5 and vice versa. If A is a group of three agents with unequal accuracies of
0.55,0.55, and 0.63, its accuracy can be calculated from the agents’ independent choices using
majority voting as the probability of at least 2 out of 3 agents finding the correct solution:
(0.552×0.37+2×0.45×0.55×0.63+0.552×0.63)=0.6144. Similar predictions can also be performed
using weighted2 voting rules [17, Chap. 4]. The accuracy of an agent collective can thus be
sometimes inferred from its agents’ individual accuracies using the IRT model. Subsequently,

2 More sophisticated voting rules such as Borda count, harmonic rule, maximin and Copeland require
the subject to output a concrete ranking over all possible alternatives of the test/task, which inhibits
our ability of making exact predictions. Yet, one can still analytically place min and max bounds
on team accuracy using different sampling techniques.



one can analytically reason about the performance of groups of agents, in comparison to
individual agent performance.

8 Analysing Individual and Group Accuracies

The accuracy of agent πmind and the accuracies of three agent collectives (A1,A2 andA3)
over different task complexities and solution spaces are illustrated in Fig. 5. We observe
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Fig. 5: Collectives accuracies aggregated using majority voting. The accuracy of πmind is also depicted
as dotted markers in the backgrounds of the first 3 plots for comparison. The ∗ symbol denotes the
cut-off point where the accuracy of πmind meets the corresponding group accuracy.

that adding agents of equivalent accuracies to the majority voting process (Collective A1)
improves the accuracy of the group over all tasks where the individual accuracy PD,α,m>0.5,
while the opposite is true for PD,α,m<0.5. The key question here is, when is a (voting) col-
lective more efficient than a single agent? To answer this, we calculate the cut-off point ∩Y,Z
between two evaluated subjects Y and Z. To calculate ∩π,A (where the accuracy PD,α,m
of an agent π, and PD,m(A) of a collectiveA, are both equal over some task of complexity
D) we look for the value of D at which PD,α,m = 1

m +e
−D
α
(
1− 1

m

)
= PD,m(A), which leads

toD=−αln
(
(PD,m(A)− 1

m )/(1− 1
m )
). If all the agents have similar accuracies (Collective A1,



Fig. 5), then according to Eq. 2, they are only equally accurate whenPD,α,m=PD,m(A)=0.5

leading to aD=−αln
(
(1
2−

1
m )/(1− 1

m )
)
=−αln((m−2)(2m−2)). For example, the cut-off point

∩πmind,A1 between πmind with α=12.0094 and A1 over a problem with m=3 occurs at
aD=−12ln

(
1
4

)
=16.64, which can also be verified from the graph in Fig. 5.

The cut-off point not only returns the setting over whichPD,α,m andPD,m(A1) are equal,
but also illustrates the relationship between the complexity of the problemD and the breadth
of its solution spacem, with respect to the accuracy of the evaluated group. In other words, the
cut-off point indicates the problem complexities and solution spaces over which a collective is
more effective than its individual agents. In most real world scenarios voting agents have dif-
ferent abilities and consequently different accuracies. Replacing a group member by another
of higher/lower accuracy (Fig. 5 top-right/bottom-left) improves/diminishes the performance
of the group by a measurable amount. For instance, letA={π1,π2,π3} be the group of agents
with abilities α1,α2,α3 and IRT accuracies (abridged as) p1,p2,p3 respectively over some task
x. If the agents’ individual votes are independent, the probability PD,m(A) of A correctly
guessing the solution to task x by majority voting is: p1p2(1−p3)+(1−p1)p2p3+(1−p2)p1p3+

p1p2p3. When p1=p2=p3, then PD,m(A) is equivalent to Eq. 2. If A′={π1,π2,π′3} is the
group of agents with accuracies p1,p2,p′3 respectively s.t. p′3>p3, then its accuracy increases
by PD,m(A′)−PD,m(A) = p1p2(p3−p′3)+ (1−p1)p2(p′3−p3)+ (1−p2)p1(p′3−p3)+p1p2(p

′
3−p3) =

(1−p1)p22(p′3−p3) since 1/m≤p1,p2≤1 by definition (Eq. 1). For p1=p2 6=p3 the cut-off
point ∩π1,A occurs atD=−α3ln

(
(p3− 1

m )/(1− 1
m )
)when p3=0.5. As a result, we can measure

the rise/drop in accuracies ofA2 andA3 illustrated in Fig. 5 top-right/bottom-left. For example,
for tasks ofm=3,∩πmind,A2 (Fig. 5 top-right) occurs at aD=−16.33ln

(
(0.5− 1

3 )/(1−
1
3 )
)
=22.64.

Comparing agent collectives: scores from standard IQ tests provide us with some sort
of scale or ranking of performances of evaluated individuals or groups. Nonetheless, these
performance measures might not be valid over certain settings. We observe in Fig. 5 that vot-
ing collectiveA1 is more efficient thanA4 (holding agents with abilities {4.56,16.33,15.18})
over inference tasks ofD<14, whereas (counterintuitively)A4 scores higher thatA1 over
the C-test (0.51>0.38). Moreover, the opposite is true for tasks of higher complexities. Such
scenarios might create confusions as they are frequently encountered and cannot be disclosed
from standard intelligence tests. We also observe that for highly complex tasks withD>25
collectives A1 and A2 record very similar accuracies since PD,m(A1)−PD,m(A2) becomes
very small. This is coherent with real world observations (although it cannot be drawn from
intelligence test scores) as the accuracy of a subject, or a group of subjects, over extremely
hard tasks is likely to converge to a random guess (an asymptotic minimum).

9 Conclusion and Future Work

Intelligence test scores can be an unreliable predictor of an agent’s performance over tasks
of well-defined complexities and other problem settings. We proposed a new mathematical
model that is flexible enough to predict the accuracy of agents of different abilities over
various classification problem settings. We illustrated the relationships between the accuracy
(and ability) of an agent, the complexities of the assessment task and the size of its solution
space, and identified agents that can guarantee a lower bound on accuracy with respect to task
complexity and the size of its solution space. We further analysed settings over which a group
of (majority voting) agents can be more or less effective than individual agents or other groups.



For instance, we directly inferred from the model the complexity at which a group is expected
to record a similar accuracy as an individual agent, and beyond which a single agent is more
effective than the group. We also measured the effect (on accuracy) of introducing agents of
higher or lower abilities to a group of agents. Finally, we identified possible circumstances that
are somewhat counterintuitive to the conclusions drawn from intelligence tests. These occur
when a group of agents scores higher than another on an intelligence test yet fails to outperform
this same group over certain task complexities. In our future work, more sophisticated voting
rules will be used to analytically reason about team accuracy by analysing the outcomes from
different sampling techniques over the agents’ ranked votes.
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