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Abstract

With increased public interest in the ancient game of Go since 2016, it is an espe-
cially good time to use it in teaching. The game is an excellent source of exercises in
the theory of computation. We give some exercises developed during our research on
Go which were then used when teaching this subject at Monash University. These are
based on One-Dimensional Go (1D-Go) which uses a path graph as its board. They are
about determining whether or not a position is legal and counting the number of legal
positions. Curriculum elements that may be illustrated and practised using 1D-Go
include: regular expressions, linear recurrences, proof by induction, finite automata,
regular grammars, context-free grammars and languages, pushdown automata, and
Turing machines.
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1 Introduction

Go is one of the oldest board games still played, having originated in China over 2,000 years
ago [2]. It is very widely played in East Asia, with over 40 million players [7], extensive
media coverage and a dedicated 24-hour TV channel [1]. The game is known today as Wéiq́ı
(围棋 (simplified),圍棋 (traditional)) in China, Go or Igo (囲碁) in Japan, Baduk (바둑) in
Korea, and Go in the West where it has long been popular among computer scientists and
mathematicians.

Go is usually regarded as more complex than Chess. The number of legal positions
is greater, the number of moves available at each turn is greater, and the best computer
programs were well behind the best human players [13] until very recently.
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The profile of Go was increased significantly when Google DeepMind’s AlphaGo program
defeated first the European champion Fan Hui [15] in October 2015 (see also the Nature News
article [6]), and followed this up with victory over one of the game’s greatest players, Lee
Sedol of South Korea [10], in March 2016. In May 2017 it defeated the then-top-ranked
player in the world, Ke Jie of China [11]; the program was then retired. Fortunately, there
are now open source programs based on similar techniques and with their own successes
against top opponents. The first was Leela-Zero [12], since October 2017. Facebook’s ELF
OpenGo program was made available as open source in May 2018 [16].

Paradoxically, the end of human dominance in this game seems to have led to increased
human interest in the game [14].

Another major development in the application of computers to studying Go, announced
in January 2016, was the exact computation of the number of legal positions in the game by
John Tromp [17, 18]; an example of coverage in the I.T. press is [9]. This is one area where
Go has proved more mathematically tractable than Chess, for which the exact number of
legal positions is still unknown (and practically unknowable).

With this rise in interest in Go as a topic for computer science research, it is an especially
good time to engage students with the game. They will have a new problem domain to
explore, as well as an excellent game to play with their peers. It also gives a valuable link
to East Asian culture for students outside that region.

In ongoing research on counting legal positions in Go [3, 4, 5], I considered the character-
isation and counting of legal positions on boards of various sizes and shapes. In some cases,
languages of legal positions — when appropriately represented as sets of strings — give good
examples of language classes studied in theoretical computer science. This led to the use of
examples and problems on legal positions in Go when teaching the theory of computation.

This article describes the use of such languages in a Theory of Computation subject
(FIT2014 Theory of Computation) taken by second-year undergraduate students at Monash
University. It is a core subject for the Bachelor of Computer Science and is taken as a Com-
puter Science elective by some students in other degrees including the Bachelor of Science.

I am happy to make solutions to these exercises available to academic staff running
Theory of Computation subjects, with some restrictions on further dissemination.

For information on how to play Go, see e.g., [8] or the many online resources. Knowledge
of the game is not necessary for this article or the exercises we use.

2 One-dimensional Go

Go is played on a graph, usually a two-dimensional square lattice (grid) of 19× 19 vertices.
But we focus here on one-dimensional Go (1D-Go), which uses a path graph with n vertices
and n− 1 edges, with vertices numbered from 1 to n, from left to right.

r r r r r r r r r r r
1 2 3 4 5 6 7 8 9 10 11

Positions in 1D-Go can be described by strings over a three-letter alphabet, and many basic
Go concepts are much simpler in this context. We find that 1D-Go is a rich source of exercises
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for many concepts in the elementary theory of computation, including regular expressions,
finite automata, context-free languages, pumping lemmas, and Turing machines.

A position consists of a placement of black and white stones on some of the vertices of
the graph. Each vertex may have a black stone, or a white stone (but not both), or be
unoccupied (i.e., vacant). We may think of the vertices of the graph as each being coloured
black, or coloured white, or left uncoloured. A position is legal if every vertex with a stone
can be linked to an unoccupied vertex by a path consisting entirely of vertices with stones
of that same colour (except for the unoccupied vertex at the end).

When the game is played, the players Black and White each take turns to place a single
stone of their own colour on an unoccupied vertex, subject to certain constraints (or they
may pass). A string1 of identically-coloured stones is captured if it is surrounded by stones
of the opposite colour; the captured stones are removed from the board. The aim, roughly,
is to enclose more territory than your opponent. The detailed rules of playing and capturing
do not concern us here; see, e.g., [8]. We focus only on prima facie legality of positions.

For example, the following position is legal, since each of its three “chains” of consecutive
vertices of the same colour has an unoccupied vertex next to at least one of its ends.

r r { { r { k k k r r
But the following position is illegal, since it has a chain of white vertices with black

vertices at each end. (The position has four chains altogether, and three are ok. But it only
takes one without an unoccupied neighbour to make the position illegal.)

r r { { r { k k k { r
We say that a position on this path graph is almost legal if vertex n has a stone (i.e.,

is occupied, or coloured) and its chain is not next to an unoccupied vertex, but every other
chain is next to an unoccupied vertex. In other words, it is illegal, but the only chain making
it illegal is the chain containing vertex n; all other chains are ok. The two positions given
above are not almost legal: the first is legal (so it is not almost legal), while the second is
illegal but the illegality is not due to the last vertex (which in this case is unoccupied). The
following position is almost legal. All its chains are ok except the last one on the right.

r r { { r r k k k { {

3 Propositional logic

In the following exercises, propositional logic is used to describe position types, vertex
colours, and how the colour of the last vertex affects the type of the position. This helps

1or connected subgraph, when the game is played on graphs more complex than a path
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students clarify their understanding of legality and almost-legality of positions in 1D-Go, as
well as giving practice in using logic.

Let VB,n, VW,n, VU,n, LB,n, LW,n, LU,n, AB,n, AW,n be the following propositions about a
position on the n-vertex path graph.

VB,n Vertex n is Black.
VW,n Vertex n is White.
VU,n Vertex n is Unoccupied.
LB,n The position is legal, and vertex n is Black.
LW,n The position is legal, and vertex n is White.
LU,n The position is legal, and vertex n is Unoccupied.
AB,n The position is almost legal, and vertex n is Black.
AW,n The position is almost legal, and vertex n is White.

(3.1) Use the propositions LB,n, LW,n, LU,n (together with appropriate connectives) to write
a logical expression for the proposition that the position is legal.

Now consider how legality and almost-legality on the n-vertex path graph are affected
by extending the path to vertex n + 1.

(3.2) If LB,n is true, what possible states (Black/White/Unoccupied) can vertex n + 1 be
in, if we want the position to be legal on the (n + 1)-vertex path as well?
Do the same for LW,n and LU,n.

(3.3) If AB,n is true, what possible states can vertex n+ 1 be in, if we want the position to
be legal on the n + 1-vertex path?
Do the same for AW,n.
Why is there no line for AU,n in the list of propositions above?

(3.4) Construct a logical expression for LB,n+1 using some of the propositions V ,n+1, L ,n, A ,n

in the above table. (In other words, you can only use the L-propositions and A-propositions
for the n-vertex path graph, and the V -propositions for vertex n + 1.)
Do the same for LW,n+1, LU,n+1, AB,n+1, AW,n+1.

4 Linear recurrences

The insights gained using propositional logic allow us to write linear recurrences for numbers
of legal and almost-legal positions, classified according to the colour of their last vertex. This
helps develop students’ skills in using iteration and recursion.

Define
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`B,n := the number of legal Go positions on the n-vertex path
graph, where vertex n is Black.

`W,n := the number of legal Go positions on the n-vertex path
graph, where vertex n is White.

`U,n := the number of legal Go positions on the n-vertex path
graph, where vertex n is Unoccupied.

aB,n := the number of almost legal Go positions on the n-vertex
path graph, where vertex n is Black.

aW,n := the number of almost legal Go positions on the n-vertex
path graph, where vertex n is White.

(4.1) State the values of `B,1, `W,1, `U,1, aB,1, and aW,1.

(4.2) Derive recursive expressions for `B,n+1, `W,n+1, `U,n+1, aB,n+1, and aW,n+1, in terms of
`B,n, `W,n, `U,n, aB,n, and aW,n.

(4.3) How many of these quantities do you really need to keep, for each n, in order to work
out the values for n + 1? (Look for symmetry.)

(4.4) How do you work out the total number of legal positions on the n-vertex path graph,
from `B,n, `W,n, `U,n, aB,n, and aW,n?

5 Proof by induction

The recurrences of the previous section can be used to practise proof by induction. Students
also learn about using linear recurrences to count things, or bound the number of them.

In §4, we saw that legal and almost-legal positions can be counted using a set of simul-
taneous linear recurrence relations.

We will now use these equations to prove upper bounds for the quantities `B,n, `U,n,
aB,n, and hence for the total number of positions. Note that all these quantities have the
trivial upper bound 3n, since each vertex of the n-vertex path can be in one of three states
(B/W/U), giving 3n possible positions altogether, which includes all legal and illegal posi-
tions. We will do better than this.

(5.1) Prove by induction on n that, for all n ≥ 1, the quantities `B,n, `U,n, aB,n satisfy

`B,n ≤ 1.8× 2.8n−1,

`U,n ≤ 1.82 × 2.8n−1,

aB,n ≤ 2.8n−1.

The claim you are trying to prove here is the single claim that all three of these inequalities
are true, simultaneously. You should not try to construct three separate proofs, one for each
inequality (though it’s fine for your proof to have different cases).
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(5.2) (challenge) How much can you improve on these upper bounds? In particular, can
you reduce the 2.8 to a smaller number? If so, what can you reduce it to?

This last question enables a link to be made to the theory of closed-form solutions to linear
recurrence relations, which students may meet in their discrete mathematics courses. It may
be worth mentioning to students the beautiful application of that theory to the Fibonacci
sequence, showing that the ratio of consecutive terms is the golden ratio (1 +

√
5)/2, if they

have not seen that before.

6 Regular expressions

After doing the logic exercises of §3, students should have a good grasp of legality and almost-
legality. These 1D-Go concepts can then be used to practise writing regular expressions.

In this section and most later ones, we represent each 1D-Go position as a string over
the alphabet {b,w,u}. The i-th character in the string represents the state of vertex i in the
n-vertex path graph, with b, w, u representing Black, White and Unoccupied, respectively.
So the three positions given as examples in §2 are represented by the following strings in
turn:

uubbubwwwuu This position is legal.
uubbubwwwbu This position is illegal, and it is not almost legal.
uubbuuwwwbb This position is almost legal (hence illegal).

(6.1) Write a regular expression for the set of strings that represent legal positions.

(6.2) Write a regular expression for the set of strings that represent almost legal positions.

(6.3) Does there exist a regular expression for the set of strings that represent positions
that are neither legal nor almost legal?

7 Finite Automata

Since the sets of legal and almost-legal positions are regular, they must each be recognisable
by a Finite Automaton.

(7.1) Design a Finite Automaton that accepts precisely those strings that represent legal
positions.

(7.2) How would you modify your FA so that it accepts precisely those strings that repre-
sent almost legal positions?
(No need to draw a new FA. Just describe clearly and precisely the change you need to make.)

(7.3) How would you modify your FA from (7.1) so that it accepts precisely those strings
that represent positions that are neither legal nor almost legal?
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(For (7.2) and (7.3), there is no need to draw a new FA. Just describe clearly and precisely
the change you need to make.)

It is good for students to implement the FA they design. In our Theory of Computation
subject, we have sometimes used Prolog for practical exercises. In the next exercise, we
implement our 1D-Go FA in Prolog.

We can represent positions in 1D-Go using Prolog lists, with each member of the list being
b,w,u according as the corresponding vertex is Black, White, or Unoccupied, respectively.

So the three positions given as examples in §2, and shown as strings in §6, are represented
by the following lists in turn:

[u,u,b,b,u,b,w,w,w,u,u] This position is legal.
[u,u,b,b,u,b,w,w,w,b,u] This position is illegal, and it is not almost legal.
[u,u,b,b,u,u,w,w,w,b,b] This position is almost legal (hence illegal).

(7.4) Write a Prolog program which implements a Finite Automaton for legal positions in
1D-Go. (We gave students a Prolog program for another, unrelated FA, as a template.)

For example, checking whether the above three strings are legal should give the following
results in Prolog.

| ?- accept([u,u,b,b,u,b,w,w,w,u,u]).

true

| ?- accept([u,u,b,b,u,b,w,w,w,b,u]).

false

| ?- accept([u,u,b,b,u,u,w,w,w,b,b]).

false

| ?-

8 Lexical analysis

Lexical analysis is an important application of Finite Automata, and may be applied to
1D-Go.

Each position in 1D-Go may be regarded as a sequence of tokens, where each token is
one of the following.

Token Interpretation
free White chain White chain that has at least one unoccupied neighbour
free Black chain Black chain that has at least one unoccupied neighbour
captured White chain White chain with no unoccupied neighbour
captured Black chain Black chain with no unoccupied neighbour
gap sequence of Unoccupied vertices between chains

(8.1) Convert your FA from (7.4) above to a lexical analyser for 1D-Go positions. This
lexical analyser should detect each lexeme in the input, output it on a separate line, and
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state on that line what the corresponding token is. It should give the answer true in all
cases, so all states will be Final states. (In a more complete implementation, the lexical
analyzer would use the presence of any captured chains to detect illegality, and would report
at the end on whether the position is legal or not. This is not too difficult, but we did not
require it in this exercise.)

For example, your program should enable the following interaction (where the positions
used are the three we have been using as examples throughout).

| ?- accept([u,u,b,b,u,b,w,w,w,u,u]).

uu gap

bb free Black chain

u gap

b free Black chain

www free White chain

uu gap

true

| ?- accept([u,u,b,b,u,b,w,w,w,b,u]).

uu gap

bb free Black chain

u gap

b free Black chain

www captured White chain

b free Black chain

u gap

true

| ?- accept([u,u,b,b,u,u,w,w,w,b,b]).

uu gap

bb free Black chain

uu gap

www free White chain

bb captured Black chain

true

| ?-

9 Context-free languages

This section is about grammars for positions in 1D-Go.
Consider the following context-free grammar (CFG) for the language of legal positions

in 1D-Go.

S → P (1)

S → Q (2)

P → U (3)
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P → UB (4)

P → UBS (5)

P → UW (6)

P → UWS (7)

Q → BP (8)

Q → WP (9)

U → uU (10)

U → u (11)

B → bB (12)

B → b (13)

W → wW (14)

W → w (15)

The non-terminal symbols have the following interpretations.

• Symbol S is the Start symbol, as usual.

• Symbol P is used to represent a position starting with u. The first chain of such a
position will therefore be free (i.e., uncaptured), since it will have an unoccupied vertex
on its left. That chain can then be followed by any legal position at all, hence the rules
P → UBS and P → UWS. (Here, the B could stand for a completed Black chain, or
it could be a prefix of a Black chain that is continued in the the string generated by
the S in UBS, and similarly for W .) Alternatively, that first chain could also be the
last one, hence the rules P → UB and P → UW .

• Symbol Q represents a position that starts with a chain. For that chain to remain free,
the rest of the position must be a legal position that starts with u, hence the rules
Q→ BP and Q→ WP .

• Symbol U represents any sequence of Unoccupied vertices, B represents any sequence
of Black vertices, and W represents any sequence of White vertices. (Note that the se-
quences represented by B and W need not be complete chains; they may be substrings
of chains.)

(9.1) Give derivations of the strings (i) buuw and (ii) buuwbuuw.

(9.2) Prove, by induction on n, that for every n ≥ 1, the string (buuw)n has a derivation of
length 7n using the above CFG.

Recall that (buuw)n is n repetitions of buuw. For example, (buuw)2 is just buuwbuuw.
In the next problem, you will design and implement (in Prolog) a pushdown automaton

(PDA) for legal 1D-Go positions. We gave students Prolog code for a simpler PDA to get
them started.
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(9.3) Convert the above CFG for 1D-Go to a PDA that recognises the language of legal
1D-Go positions.

(9.4) Implement, in Prolog, your PDA from part (9.3) for the language of legal 1D-Go
positions (with positions represented as lists, as in §7, (7.4)).

(9.5) The above grammar is not regular. Very briefly, why not?

(9.6) In fact, the language of legal 1D-Go positions does have a regular grammar. How
do we know this? In answering this question, use known facts about regular languages, and
what you already know about this particular language from our previous exercises.

(9.7) Find a regular grammar for the language of legal 1D-Go positions.

Legal positions in 1D-Go can be scored as follows.
A gap is a sequence of unoccupied vertices bounded on each side by a coloured stone

or an end of the path graph. Note that a gap may have two, one, or no bounding stones,
depending on where it appears in the position. The only way it can have no bounding stones
is if it spans the entire path graph, so that every vertex in the path graph is unoccupied. A
gap is proper if it does not span the entire path graph. If the gap has just one bounding
stone, then it must sit at one end of the path graph.

A gap is owned by Black if it is proper and all of its bounding stones are Black. Similarly,
a gap is owned by White if it is proper and all of its bounding stones are White. A gap is
neutral if it is neither owned by Black nor owned by White. So, if a gap has a Black stone on
one side and a White stone on the other, then it is neutral. The only other kind of neutral
gap is when the entire path of n vertices is unoccupied, so that the entire path is a neutral
gap.

The score of a position is given by

(number of vertices owned by Black)− (number of vertices owned by White)

If the score is positive, then we say that Black wins ; if the score is negative, then White
wins ; if it is zero, then the position is a tie.

For example, consider the 11-vertex positions below, represented as strings in our usual
way. (The first of these has been used as an example several times previously.) Below each
string, we indicate who owns each unoccupied vertex: B for Black, W for White, and n for
neutral.

uubbubwwwuu Three gaps. Score = 3− 2 = 1. Black wins.
BB..B....WW

uubuwuuuuuw Three gaps. Score = 2− 5 = −3. White wins.
BB.n.WWWWW.
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uubuwuuwuub Four gaps. Score = 2− 2 = 0. Tie.
BB.n.WW.nn.

uuuuuuuuuub One gap. Score = 10− 0 = 10. Black wins.
BBBBBBBBBB.

uuuuuuuuuuu One gap. Score = 0− 0 = 0. Tie.
nnnnnnnnnnn

(9.8) Using the Pumping Lemma for regular languages, prove that the language of positions
that Black wins is not regular.

(9.9) (challenge) Prove or disprove: the language of positions that Black wins is context-free.

10 Turing machines

Having used 1D-Go for exercises on models of restricted types of computation — finite
automata and pushdown automata — we now come to Turing machines, as general models
of computation.

In 1D-Go, a chain is vulnerable if it has an unoccupied vertex at exactly one of its ends,
with the other end being either the end of the path graph or adjacent to an opposite-colour
stone.

For example, consider the following position.

r r { { r { k k k r r
1 2 3 4 5 6 7 8 9 10 11

Here it is as a string.

uubbubwwwuu

In this position, the single-vertex black chain in the middle is vulnerable, as is the three-
vertex white chain. But the two-vertex black chain on the left is not vulnerable, as it has
two unoccupied neighbours.

In the following position, the only vulnerable chain is the single-vertex black chain at the
right-hand end:

r r { r k r r k r r {
1 2 3 4 5 6 7 8 9 10 11

uubuwuuwuub

If a chain is vulnerable, then the opposite-colour player can capture the chain by placing
a stone on the sole remaining unoccupied vertex next to the chain.
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So, in the first position above, White could capture the single-stone Black chain by
placing a White stone on vertex 5, while Black could capture the three-stone White chain by
placing a Black stone on vertex 10. (In actual play, who gets to capture depends on whose
turn it is. But in this exercise we do not worry about whose turn it is. We also ignore Ko
rules for avoiding repetition in Go; since we are not actually playing the game here, these
issues do not arise.) In the second example above, White could capture the single-vertex
Black chain at the right end by placing a White stone on vertex 10.

When a capture is done, all the stones in the captured chain are removed, so those vertices
become unoccupied. Here are the results of the three captures we have described.

First position, White captures Black chain on vertex 6: uubbwuwwwuu

First position, Black captures White chain on vertices 7–9: uubbubuuubu

Second position, White captures Black chain on vertex 11: uubuwuuwuwu

(10.1) Build a Turing machine which takes, as input, a legal 1D-Go position (represented
as a string over the alphabet {b,w,u} in the usual way) and carries out the capture of the
leftmost vulnerable chain. (The first and third captures described above are of this type,
but the second is not because the White chain is not the leftmost chain in the position.)

You do not need to check that the input position is legal; just assume that it is.

(10.2) Use your FA for testing legality (§7) to modify your TM from part (a) so that it
first tests that the position is legal, and then captures the leftmost vulnerable chain. If the
position is illegal, or legal but with no vulnerable chain, then the output position must be
the same as the input position. If the position is illegal, then the TM must finish in the
Reject state; if it is legal, it finishes in the Accept state.

(10.3) (challenge) Modify your TM from (b) so that it captures the longest vulnerable
chain. If there are two or more vulnerable chains of equal-longest length, then it may cap-
ture any one of them (but only one of them).

All our exercises so far have been about 1D-Go. Standard Go is played on a 2D grid,
so representing its positions as a one-dimensional input to an FA, PDA or Turing machine
would sever some of the local connections and make computations complicated. But it is not
hard to define two-dimensional Turing machines, and these may enable some of our exercises
to be extended more naturally to standard two-dimensional Go. We have not tried this in
our classes, but pose them here as challenges.

(10.4) (challenge) Write a 2D Turing machine to recognise whether a chain containing the
initial location of the tape head is free or captured.

(10.5) (challenge) Write a 2D TM to recognise legal positions in standard n× n Go.

Our focus has been on the legality of 1D-Go positions, and using these in the Theory
of Computation. But 1D-Go is also a game, and could serve as an instructive exercise in
game-playing algorithms for students in artificial intelligence. I have not tried this, but offer
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it as another challenge.

(10.6) (challenge)
(a) Write a 1D-Go playing algorithm. Implement your algorithm.
(b) Analyse the game, to try to determine which player wins with best play.
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