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Museums offer vast amounts of information, but a visitor’s
receptivity and time are typically limited, providing the visi-
tor with the challenge of selecting the (subjectively) interest-
ing exhibits to view within the available time. Mobile, elec-
tronic handheld guides offer the opportunity to improve a
visitor’s experience by recommending exhibits of interest,
and adapting the delivered content. The first step in this per-
sonalisation process is the prediction of a visitor’s activities
and interests. In this paper we study non-intrusive, adaptive
user modelling techniques that take into account the physi-
cal constraints of the exhibition layout. We present two col-
laborative models for predicting a visitor’s next locations in
a museum, and an ensemble model that combines the pre-
dictions of these models. The three models were trained
and tested on a small dataset of museum visits. Our results
are encouraging, with the ensemble model yielding the best
performance overall.

Keywords: collaborative user model, location prediction,
museum, physical space.

1. Introduction

Museums offer vast amounts of information, but a
visitor’s receptivity and time are typically limited. The
possibility of information overload is evident, as the
visitor is confronted with the challenge of selecting the
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personally interesting exhibits to view within the avail-
able time. However, appropriate advance information
about the exhibits in different areas of the museum is
often not readily available, and visitors may change
their mind about what they want to see after viewing
some exhibits they thought they would be interested in.
A personal human guide, aware of a visitor’s interests
and time limitations, could solve these problems, but
the provision of personal guides is outside the resource
limitations of most museums.

Advances in mobile, context-aware computing and
user modelling point towards an alternative solution:
personalised electronic handheld guides. Electronic
guides have the potential to (1) make recommenda-
tions about items of interest, and to (2) personalise
the content delivered for these items, based on tracked
visitor behaviour. The Kubadji project (http://www.
kubadji.org) is developing user modelling and lan-
guage technologies to support the creation of such
guides. A first step is to infer a visitor’s interests
and activities non-intrusively from his/her behaviour
within the museum, and to store the aquired informa-
tion in models of the user. The physicality of the do-
main poses practical challenges for such user mod-
elling [13]. For example, the spatial layout of the en-
vironment influences the curator’s decisions about the
positioning of the exhibits, and both influence a vis-
itor’s decisions about which exhibits to view and in
which order. Hence, the spatial arrangement of items
is an input that should improve the accuracy of predic-
tions of a visitor’s behaviour. To our knowledge, this
factor has not been considered to date.

In this paper, we describe a first step in the recom-
mendation and personalisation process, i.e., the pre-
diction of a visitor’s interests and locations in a mu-
seum on the basis of observed behaviour. Specifically,
we consider two collaborative predictive models, Inter-
est and Transition, and an ensemble model that com-
bines their predictions. The Interest Model predicts ex-
hibits to be viewed by a visitor on the basis of his/her
observed viewing times in the context of the viewing
times of other museum visitors. The Transition Model
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predicts the next exhibit (location) based on the tran-
sitions between exhibits previously recorded for other
visitors. These models are employed to predict the next
K exhibits (K = 1 and K = 3) using two prediction ap-
proaches: set, which predicts a set of exhibits, and se-
quence, which predicts an ordered sequence.

We trained and evaluated our models on a small
dataset of museum visits collected at the Marine Life
Exhibition in Melbourne Museum. Our results show
that the Transition Model outperforms the Interest
Model, indicating that the layout of a physical space
with homogeneous exhibits (e. g., marine theme) is a
significant factor influencing visitor behaviour. How-
ever, the ensemble model yielded the best performance
overall, demonstrating the importance of considering
also a visitor’s interests.

The remainder of this paper is organised as follows.
In Section 2, we outline related work. Our approaches
for predicting visitor locations using collaborative user
models are described in Sections 3 and 4. In Section 5,
we summarise preliminary findings of our evaluation,
followed by a discussion of future work in Section 6.

2. Related Research

Our work lies at the intersection of statistical user
modelling and personalised guide systems for physical
museum spaces.

Personalised guide systems in physical domains
have often employed adaptable user models, which re-
quire visitors to explicitly state their interests in some
form. For example, the GUIDE project [8] developed
a handheld tourist guide for visitors to the city of Lan-
caster, UK. It employed a user model obtained from
explicit user input to generate a dynamic and user-
adapted city tour, where the order of the visited items
could be varied. In the museum domain, the CHIP
project [2] investigates how Semantic Web techniques
can be used to provide personalised access to digital
museum collections both online and in the physical
museum, based on explicitly initialised user models.

Less attention has been paid to predicting prefer-
ences from non-intrusive observations, and to utilis-
ing adaptive user models that do not require explicit
user input. In the museum domain, adaptive user mod-
els have usually been updated from the user’s interac-
tions with the system, with a focus on adapting content
presentation, rather than predicting or recommending
exhibits to be viewed. For example, HyperAudio [17]
dynamically adapted the presented content and hyper-
links to stereotypical assumptions about the user, and

to what the user has already accessed and seems inter-
ested in. The augmented audio reality system for mu-
seums ec(h)o [10] treated user interests in a dynamic
manner, and adapted its user models on the basis of the
users’ interactions with the system. The collected user
modelling data were used to deliver personalised infor-
mation associated with exhibits via audio display. The
PEACH project [19] developed a multimedia handheld
guide, which adapted its user models both from explicit
visitor feedback and implicit observations of visitor in-
teractions with the device, and used the information
stored in these user models to generate personalised
multimedia presentations.

These systems, like most systems in the museum do-
main, primarily rely on knowledge-based user mod-
els, which require an explicit, a-priori engineered rep-
resentation of the domain knowledge. In contrast, this
work investigates non-intrusive statistical user mod-
elling techniques that do not require an explicit rep-
resentation of the domain knowledge, and takes into
account spatial constraints — a factor that has not
been considered to date. As far as we are aware, the
only instance of the application of a statistical tech-
nique [1,20] for predicting a visitor’s behaviour in a
museum is described in [9].

3. Using Collaborative Models based on
Spatio-Temporal Information to Predict
Location Probabilities

We consider two collaborative models for estimat-
ing the probability of a visitor viewing a particular ex-
hibit given his/her previous visit trajectory: interest-
based (Section 3.1) and transitional (Section 3.2). The
interest-based approach predicts a visitor’s next loca-
tion on the basis of his/her interest in unseen exhibits,
which in turn is estimated from the time the visitor
spent at the exhibits s/he has seen. The transitional ap-
proach predicts a visitor’s next location from the tra-
jectories of other visitors. In Section 3.3 we propose
an ensemble approach to combine the predictions gen-
erated by these models [14,18]. The utilisation of the
estimated location probabilities to predict a set or se-
quence of next items is described in Section 4.

Recent developments in the area of positioning tech-
nology have made possible the non-intrusive indoor
tracking of visitors equipped with a positioning de-
vice. The availability of such technology to infer a vis-
itor’s high-level activities from sensing data, e. g., [15],
is crucial to this work, i.e., to perform non-intrusive,
adaptive user modelling. In this research, we assume
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access to a visitor’s pathway in the form of a time-
annotated sequence of visited items. That is, for each
visitor u, we have an ordered sequence of viewing du-
rations ty;,, tu,, . . . for items iy, i, . . . respectively. This
information was obtained manually for this study, by
tracking 44 visitors to the Marine Life Exhibition in
Melbourne Museum, but is of the same type as in-
formation inferable from sensing data in a real-world
setting [15].! In total, our dataset comprises 317 data
points (Section 5). The small size of this dataset is due
to the difficulties associated with collecting and pro-
cessing data in physical settings (Section 6).

3.1. Interest Model

In an information-seeking context, users are ex-
pected to spend more time on relevant than on ir-
relevant information, as viewing time correlates pos-
itively with preference and interest [16]. That is, the
time spent at a given exhibit can be used as a mea-
sure of interest. However, viewing time is also pos-
itively correlated with item complexity. Additionally,
viewing times vary over different visitors depending on
their available time.2 Hence, in order to infer the inter-
ests of visitors in different items, the observed viewing
times cannot be used directly, but must be transformed
into a measure that takes these factors into account. To
this effect we have devised the relative interest mea-
sure, which reflects the interest of a visitor in an ex-
hibit in the context of the time s/he has spent on pre-
viously seen exhibits, and the time spent by other visi-
tors on this exhibit. This measure implicitly takes into
account item complexity, as complex items are likely
to be viewed for a longer time than simpler items.

Definition 1 (Relative Interest (RI))
The relative interest of visitor u in a seen exhibit i is
defined as follows.

Ly 1 Lyi
== )

RI,; = —
ty. N U [

where t,; is the time visitor u spent at exhibit i, ,. is
the average viewing time of visitor u, n.; is the number
of visitors that viewed exhibit i, U is the set of visitors,
and n,; = 1 if visitor v viewed exhibit i and 0 otherwise.

Algorithm 1 Estimating the relative interests of the ac-
tive visitor in unseen exhibits

1: Estimate from the observed viewing times the rel-

ative interests of all visitors — including the ac-
tive visitor a — in the exhibits viewed during their
visit (Equation 1).

2: for all i such that i is an unvisited exhibit do

3:  Find a set of itein mentors, who have viewed
item i, and have the highest similarity with the
active visitor. To calculate a visitor-to-mentor
similarity, use Pearson’s correlation coefficient
on the vectors of their relative interests.

4:  Estimate the active visitor’s relative interest in
item i as the weighted mean of the relative in-
terests of his/her item mentors in i, where the
weights are the visitor-to-mentor similarities.

5: end for

The first term in Equation 1 reflects visitor u’s view-
ing time of item i relative to his/her average viewing
time, and the second term represents the average rela-
tive viewing time spent at item i (over all the visitors
that viewed this item). Hence, RI,; measures whether
visitor u is (relative to his/her average viewing time)
more or less interested in item i than the average inter-
estin item 7.3

The collaborative Interest Model (IM) is built by cal-
culating RI,;, the relative interest of visitor u in ex-
hibit i, for all visitors u = 1,...,|U| and all items
i=1,...,|I|, where |U| is the number of visitors and |/|
is the number of exhibits. This yields a relative inter-
est matrix RJ of size |U| X |I], which contains defined
values for all combinations of visitors u and items i
that occurred, i. e., combinations referring to an item i
viewed by a visitor u. These values, which may be
viewed as implicit ratings given by visitors to exhibits,
do not take into account the order in which the exhibits
were visited. In Section 6, we consider the incorpora-
tion of spatial information into our Interest Model.

Following a collaborative approach as described
in [11], we use Algorithm 1 to predict the missing rel-
ative interest values of the active visitor a from the val-
ues in R7.* These values are mapped into the [0,1]
range to estimate the probability of visiting an unseen
exhibit. Formally, given a visit where a visitor a has

The consideration of the impact of instrumentation accuracy on
user models is outside the scope of this work.

2Viewing time was also found to be negatively correlated with
familiarity, positively correlated with novelty, and decreases from
beginning to end within a sequence of stops [16]. However, these
factors are not yet considered in our models.

30ther measures of interest are possible. For instance, Bohnert
and Zukerman [4] explored a different variant of relative interest,
which was slightly outperformed by the measure presented here.

4Although visitors sometimes return to previously viewed ex-
hibits, our observations indicate that this rarely happens. Hence, we
focus on unseen exhibits.
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viewed k items so far, the probability of the (k + 1)-th
item being item i is represented by the expression
Pr(Xis1 = i | vK), where v£ is the user’s visit history so
far. Thus, approximating this expression by a probabil-
ity estimated using our Interest Model yields the fol-
lowing formula.

Pr(XkH =i V];) ~ Pry (Xk+l =i t],;)

where #X is the time component of the visit history v&
(the Interest Model depends on viewing times, rather
than transitions between locations).’

3.2. Transition Model

Our Interest Model considers only a visitor’s rela-
tive interests, and does not take into account the order
in which the exhibits were visited. Here we describe
an alternative model, denoted Transition Model (TM),
which considers the visit order.

The Transition Model is represented by a station-
ary 1-stage Markov model, where the transition ma-
trix 7-M approximates the probabilities of moving be-
tween exhibits. Specifically, the element 7 M(, j) ap-
proximates the probability of a visitor going from ex-
hibit i to exhibit j, where i, j = 1,...,|l], and |I| is the
number of exhibits. This probability is estimated on the
basis of the frequency of transitions between i and j. In
order to overcome the data sparseness problem (which
is exacerbated by our small dataset) and to smooth out
outliers, we added a flattening constant £ (= 1/|I|) to
each frequency count.

When we employ the Transition Model to approxi-
mate the probability that the (k + 1)-th exhibit viewed
by the active visitor a is item #, we obtain the formula

Pr(Xeer = i [v§) ~ Proy (X = i1 1)

where I* are the exhibits visited by the active visitor.

Since our Transition Model is a 1-stage Markov
model, the probability of the next exhibit being item i
is further approximated by

Proy(Xeet = i | 15) ~ Proyy (X1 = i | Xi = i)
= TMC(i, 1)

where i;, is the current item. As mentioned before, our
observations indicate that visitors rarely return to pre-
viously viewed exhibits. Hence, prior to calculating
these probabilities, we set to O the entries of 7M that

5The subscript k + 1 of X in Prjps (X1 =i | tf,) could be replaced
by k + m, as the Interest Model predicts the probability of visiting an
unseen exhibit at any point in the future.

correspond to the visited items (items in I¥), and ap-
propriately renormalise the rows.

The Transition Model implicitly captures the physi-
cal layout of the museum space, i. e., the physical prox-
imity of items, on the basis of the assumption that tran-
sitions to spatially close items occur more frequently
than movements to items that are further away. How-
ever, in the future, we will also experiment with spa-
tial models that represent more directly the distance
between exhibits (Section 6).

3.3. Combining Interest Model and Transition Model

As indicated above, the probabilities computed by
the Interest Model are based on temporal information,
while the predictions made by the Transition Model
implicitly capture spatial information. Additionally,
while the Interest Model adapts to the behaviour of a
visitor, the Transition Model is not personalised. In this
section, we propose a Hybrid Model (HM) that com-
bines the predictions made by these models [14,18],
thereby jointly taking into account transitional and
temporal information.

Formally, we use the probability Pryy (X1 =i | vﬁ)
generated by our ensemble model to approximate
Pr(Xes1 =i | v5).

Pf(Xk+1 =1i] Vf,) ~ Pryy (Xk+l =i VIZ)

This probability in turn is calculated by means of a
weighted average of the predictions generated by our
Interest Model and Transition Model, i.e.,

Pryy (Xk+l =i Vlf,)
= w Prpy (Xk+1
+ (1 — w) Proy (Xk+1

i)
i)
where 0 < w < 1. We experimented with different val-

ues for w, with the assignment w = S/ (a + ) yielding
the best performance.® where

a = min Pryy, (Xk+1 =1] tﬁ) , and
iel\I*

B = min Prry (X1 =i | If)
iel\I¥
and I\I* is the set of exhibits not yet visited. This
choice of w assigns more weight to the model with the
lower minimum prediction, which may be viewed as
the more discriminating model.

6In the future, we intend to apply machine learning techniques to
learn the optimal value for w.
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4. Building Models to Predict a Visitor’s Next K
Locations

In this section, we describe two approaches for us-
ing the probabilities estimated in Section 3 to predict
the next K exhibits to be viewed by a visitor: TopK,
which predicts the next K items as a set and ranks
them in descending order of estimated probability, and
SequenceK/N, which predicts the next K items as the
initial portion of a sequence of N items.

4.1. TopK Prediction

The TopK approach assumes that the current visit
history suffices to predict a visitor’s future behaviour,
and that it is unnecessary to consider the impact of fu-
ture transitions on the visitor’s subsequent behaviour.
Hence, in order to predict the next K items that will be
visited (having visited & items), we find the set of K un-
visited items ig+1, .. ., ix+x that maximises the product
of their visit probabilities. This is done by solving

K

arg max Pr (Xk+1 = liem | v’;)

ikttt KENTE =1
This approach is equivalent to computing the prob-
abilities Pr(X;.; = i | v’(j) for all unvisited exhibits
i € I\I* (pretending that each of these exhibits is the
next one — hence the subscript k + 1), then sorting the
exhibits in descending order of estimated visit proba-
bilities, and selecting the top K items.

4.2. SequenceK/N Prediction

In contrast to the TopK approach, the SequenceK/N
approach assumes that future transitions influence a
visitor’s subsequent behaviour. Hence, in order to pre-
dict the next K items that will be visited (having vis-
ited k items), we first find the maximum-probability
sequence of N unvisited items ig., . . ., ix+n Dy solving

. . k
argmax Pr (Xk+l = dgits e XkeN = g | Va)
il seeesike NEINIE
and then select the first K items igyq,..., g Within
this sequence.

Assuming that X;,,, depends only on the past, this
probability is decomposed as follows.

_ _ k
Pf(Xk+1 = dgits e XkaN = g | Va)

— N Pr(Xx — k+m—1
- m=1 r k+m = lk+m | YV

Due to this decomposition, the joint probability in
Equation 2 can be maximised by recursively spanning
a search tree of depth N — 1, and performing an exhaus-

)

tive search for a maximising path from its root to one
of the leaves.

The probability Pr(Xiim = ikm | vZ*’”‘l) in Equa-
tion 2 depends on the active visitor’s visit history up to
exhibit i1, but in practice this history is available
only up to item ;. Future exhibits are incorporated into
a “potential history” for the Transition Model by iter-
atively adding predicted unseen exhibits to construct
different potential sequences. In order to incorporate
such a potential history into the Interest Model (and
hence the Hybrid Model), we require viewing time es-
timates. The calculation of predicted viewing times is
similar to that performed for the estimation of relative
interests, and is described in [6].

5. Preliminary Findings

The data used to obtain the results reported in this
paper was collected at the Marine Life Exhibition of
Melbourne Museum in 2006. This exhibition consists
of 56 exhibits in four sections, comprising a rather ho-
mogeneous selection of marine-related topics. With the
help of curators, we transformed the original set of 56
exhibits into a set of 22 grouped exhibits by unifying
logically related exhibits. To collect the dataset, 44 vis-
itors were manually tracked at the exhibition, which al-
lowed us to construct time-annotated visitor pathways.
In summary, we obtained 317 observations, with an av-
erage visitor path length of 7.20 grouped exhibits, and
the shortest and longest visits comprising 3 and 16 ex-
hibits respectively.

In our experiments, we evaluated the performance
of our two approaches for predicting a visitor’s next
K exhibits, TopK and SequenceK/N, for two values
of K (K=1 and K =3), and a fixed value for N
(N = 3), yielding the four variants Top1, Sequencel/3,
Top3 and Sequence3/3. For every combination of pre-
diction mode (set and sequence) and value of K
(K =1 and K = 3), we considered the three prediction
models defined in Section 3: Interest Model, Transi-
tion Model and Hybrid Model. We evaluated the per-
formance of these 12 variants by measuring their Clas-
sification Accuracy and Ranking Accuracy [12]. Here
we focus on the results obtained for Classification Ac-
curacy (the results obtained for Ranking Accuracy are
detailed in [5,6]). Classification Accuracy was calcu-
lated using Precision, i.e., Pre = |K N M|/|K|, where
K (with cardinality K) is the set of predicted exhibits,
and M is the set of actually viewed exhibits. We con-
sidered two alternatives for M: (1) the set of K ex-
hibits viewed next (M| = K), and (2) the set of ex-
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hibits viewed during the remainder of the visit (which
may be of different size for each visitor). These alter-
natives for M correspond to evaluating the accuracy
of our predictions in the immediate future and in the
eventual future respectively.

Our results indicate that, as expected, our predic-
tions are less accurate when evaluated for the immedi-
ate future than when evaluated for the eventual future
(on average, immediate accuracy is lower than eventual
accuracy by 20%). Additionally, the spatial structure
of the museum space dominates in our constrained, ho-
mogeneous setup, i.e., the Transition Model signifi-
cantly outperforms the Interest Model. For the eventual
evaluation setting, we obtained the following Classi-
fication Accuracy results for the Hybrid Model (anal-
ogous insights apply to the immediate setting). When
predicting the next exhibit (K = 1) to be viewed by a
visitor, (1) the accuracy of Top1 predictions is compa-
rable to the accuracy of the more complex Sequencel/3
predictions (66% vs. 68%), hence there is no need to
apply a complex sequence prediction mechanism; and
(2) hybridisation yields only a slight improvement in
predictive accuracy over the Transition Model. In con-
trast, when predicting a sequence of K = 3 exhibits,
(1) Sequence3/3 is superior to simple Top3 (59% vs.
49%), meaning that sequence information aids predic-
tion; and (2) the Hybrid Model significantly outper-
forms the individual models. Consequently, hybridis-
ing the Interest Model and the Transition Model is gen-
erally beneficial.

6. Discussion and Future Work

Our results raise several issues with respect to mod-
elling users in physical spaces in general, and museums
in particular. These issues pertain to exhibit diversity,
amount and quality of data, user modelling strategies,
and recommendations.

Exhibit diversity. Our experiments were conducted in
the rather homogeneous Marine Life Exhibition. This
means that the visitors who decided to enter the exhi-
bition were already interested in marine life. Thus, as
indicated by our results, a key factor influencing visi-
tor behaviour in a homogeneous exhibition is the phys-
ical layout of the space. However, this conclusion may
not be valid in a space of heterogeneous exhibits, such
as the entire Melbourne Museum, which has exhibits
relating to flora, fauna, Australian history and modern
life. These observations motivate future experiments
at different levels of granularity, e. g., inter-exhibition

versus intra-exhibition, while considering the link be-
tween granularity and topic diversity. We expect these
experiments to shed light on the influence of exhibi-
tion size and exhibit diversity on the applicability of
our models.

Amount and quality of data. Our dataset comprises
visit trajectories of 44 museum visitors. This is a rather
small dataset. However, in contrast to web-based data
collections, the collection of visit traces in a physi-
cal space is an expensive and time-consuming process,
when done by either human trackers or electronic de-
vices. Additionally, cost-efficient tracking technology
is still relatively inaccurate, which may affect the accu-
racy of the derived user models and the quality of the
personalisation provided to the visitor [7]. This prob-
lem should be addressed prior to deploying such de-
vices. At the same time, this problem obfuscates basic
user modelling issues, and should be avoided during
initial model development. In contrast, human tracking
is precise, and hence ideal for initial model develop-
ment, but clearly cannot be used during model deploy-
ment. Using human trackers, we have just completed
the collection of additional visit traces at the level of
the entire Melbourne Museum. However, the amount
of data we collected remained relatively small.

User modelling strategies. Our current approach for
combining user models belongs to the ensemble cat-
egory, where the predictions made are combined in
a weighted manner [18]. However, the models them-
selves are built separately; the Transition Model from
trajectory information, and the Interest Model from
temporal information. In the future, we propose to
combine these information sources and conduct hy-
bridisation at the model acquisition stage. For exam-
ple, this can be done by considering the distance from
a current exhibit when computing a visitor’s Interest
Model. That is, the farther a newly visited exhibit is
from the last visited exhibit, the higher the interest in
the new exhibit. We also plan to investigate an en-
semble combination of collaborative user models with
content-based models, and intend to take into account
the cold-start problem [11,20] by applying machine
learning techniques to determine the point in a visit
at which personalised models can be deployed. These
techniques will also be applied to find the optimal
weight of the individual models in ensemble models.

Recommendations. In a physical domain, the transi-
tion from interest and location prediction to recom-
mending interesting items (locations; or in this partic-
ular work, exhibits) is not trivial. We suggest the fol-
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lowing approach. First, generate the set of unvisited
items, and rank them using predictions from an interest
model. Second, use a transition (or hybrid) model to
predict the locations that a visitor is most likely to visit
next. Implement a strategy for merging these lists, e. g.,
for whether locations that the visitor is likely to visit
anyway should be included (to help build trust in the
system) or excluded (to avoid over-communication).
Finally, deliver the list of recommended locations to
the visitor allowing the visitor to act on the recommen-
dations as they see fit. The modality of the presenta-
tion, e. g., visualised on a site map, or provided more
explicitly in textual or audio form, should be taken into
account in constructing the list.

In the future, we plan to investigate utility-based
recommendation generation strategies which balance
factors such as those above, e.g., Markov Decision
Processes, which were recently proposed for decision-
theoretic and user-adaptable planning in the shopping
guide domain [3].

Acknowledgements

This research was supported in part by Discovery
grant DP0770931 from the Australian Research Coun-
cil. The authors thank Enes Makalic for his assis-
tance with ensemble models. Thanks also go to Car-
olyn Meehan and her team from Museum Victoria for
fruitful discussions and the dataset.

References

[1] David W. Albrecht and Ingrid Zukerman, editors. Special issue
on statistical and probabilistic methods for user modeling. User
Modeling and User-Adapted Interaction, 17(1-2), 2007.

Lora Aroyo, Natalia Stash, Yiwen Wang, Peter Gorgels, and
Lloyd Rutledge. CHIP demonstrator: Semantics-driven recom-
mendations and museum tour generation. In Proc. of the Sixth
Intl. Semantic Web Conf. (ISWC-07), pages 879-886, 2007.

Thorsten Bohnenberger, Oliver Jacobs, Anthony Jameson, and
Ilhan Aslan. Decision-theoretic planning meets user require-
ments: Enhancements and studies of an intelligent shopping
guide. In Proc. of the Third Intl. Conf. on Pervasive Computing
(Pervasive-05), pages 279-296, 2005.

Fabian Bohnert and Ingrid Zukerman. Using viewing time for
theme prediction in cultural heritage spaces. In Proc. of the
20th Australian Joint Conf. on Artificial Intelligence (AI-07),
pages 367-376, 2007.

Fabian Bohnert, Ingrid Zukerman, Shlomo Berkovsky, Timo-
thy Baldwin, and Liz Sonenberg. Using collaborative models
to adaptively predict visitor locations in museums. In Proc.
of the Fifth Intl. Conf. on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH-08), pages 42-51, 2008.

[2

—

[3

[t}

[4

=

[5

[6] Fabian Bohnert, Ingrid Zukerman, Shlomo Berkovsky, Timo-
thy Baldwin, and Liz Sonenberg. Using interest and transi-
tion models to predict visitor locations in museums. Technical
Report 2008/219, Faculty of Information Technology, Monash
University, Clayton, Victoria 3800, Australia, 2008.

David J. Carmichael, Judy Kay, and Bob Kummerfeld. Con-

sistent modelling of users, devices and sensors in a ubiquitous

computing environment. User Modeling and User-Adapted In-

teraction, 15(3-4):197-234, 2005.

Keith Cheverst, Keith Mitchell, and Nigel Davies. The role of

adaptive hypermedia in a context-aware tourist guide. Commu-

nications of the ACM, 45(5):47-51, 2002.

Karl Grieser, Timothy Baldwin, and Steven Bird. Dynamic

path prediction and recommendation in a museum environ-

ment. In Proc. of the ACL Workshop on Language Technology
for Cultural Heritage Data (LaTeCH-07), in conjunction with

ACL-07, pages 49-56, 2007.

[10] Marek Hatala and Ron Wakkary. Ontology-based user mod-
eling in an augmented audio reality system for museums.
User Modeling and User-Adapted Interaction, 15(3-4):339—
380, 2005.

[11] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and
John Riedl. An algorithmic framework for performing collab-
orative filtering. In Proc. of the 22nd Annual Intl. ACM SIGIR
Conf. on Research and Development in Information Retrieval
(SIGIR-99), pages 230-237, 1999.

[12] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen,
and John T. Riedl. Evaluating collaborative filtering recom-
mender systems. ACM Transactions on Information Systems,
22(1):5-53, 2004.

[13] Anthony Jameson and Antonio Kriiger, editors. Special issue
on user modeling in ubiquitous computing. User Modeling and
User-Adapted Interaction, 15(3-4), 2005.

[14] George Lekakos and George M. Giaglis. A hybrid approach
for improving predictive accuracy of collaborative filtering al-
gorithms. User Modeling and User-Adapted Interaction, 17(1-
2):5-40, 2007.

[15] Lin Liao, Dieter Fox, and Henry Kautz. Extracting places and
activities from GPS traces using hierarchical conditional ran-
dom fields. Intl. Journal of Robotics Research, 26(1):119-134,
2007.

[16] Jeffrey Parsons, Paul Ralph, and Katherine Gallager. Using
viewing time to infer user preference in recommender systems.
In Proc. of the AAAI Workshop on Semantic Web Personal-
ization (SWP-04), in conjunction with AAAI-04, pages 52—64,
2004.

[17] Daniela Petrelli and Elena Not. User-centred design of flexible
hypermedia for a mobile guide: Reflections on the HyperAu-
dio experience. User Modeling and User-Adapted Interaction,
15(3-4):303-338, 2005.

[18] Robi Polikar. Ensemble based systems in decision making.
IEEE Circuits and Systems Magazine, 6(3):21-45, 2006.

[19] Oliviero Stock, Massimo Zancanaro, Paolo Busetta, Charles
Callaway, Antonio Kriiger, Michael Kruppa, Tsvi Kuflik, Elena
Not, and Cesare Rocchi. Adaptive, intelligent presentation of
information for the museum visitor in PEACH. User Modeling
and User-Adapted Interaction, 18(3):257-304, 2007.

[20] Ingrid Zukerman and David W. Albrecht. Predictive statistical
models for user modeling. User Modeling and User-Adapted
Interaction, 11(1-2):5-18, 2001.

[7

—

[8

[t}

[9

—



