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Abstract

Spatial processes are typically used to analyse and
predict geographic data. This paper adapts such
models to predicting a user’s interests (i. e., implicit
item ratings) within a recommender system in the
museum domain. We present the theoretical frame-
work for a model based on Gaussian spatial pro-
cesses, and discuss efficient algorithms for param-
eter estimation. Our model was evaluated with a
real-world dataset collected by tracking visitors in
a museum, attaining a higher predictive accuracy
than state-of-the-art collaborative filters.

1 Introduction

Recommender systems (RS) are designed to direct users to
personally interesting items in situations where the amount of
available information exceeds the users’ processing capabil-
ity [Resnick and Varian, 1997; Burke, 2002]. Typically, such
systems (1) use information about a user to predict ratings of
items that the user has not yet considered, and (2) recommend
suitable items based on these predictions. Collaborative mod-
elling techniques constitute one of the main model classes ap-
plied in RS [Albrecht and Zukerman, 2007]. They base their
predictions upon the assumption that users who have agreed
in their behaviour in the past will agree in the future.

The greatest strength of collaborative approaches is that
they are independent of any representation of the items be-
ing recommended, and work well for complex objects, for
which features are not readily apparent. The two main col-
laborative approaches are memory-based and model-based.
Previous research has mainly focused on memory-based ap-
proaches, such as nearest-neighbour models (classic collab-
orative filtering), e. g., [Herlocker et al., 1999], due to their
intuitiveness. The main drawback of memory-based algo-
rithms is that they operate over the entire user database to
make predictions. In contrast, model-based approaches use
techniques such as Bayesian networks, latent-factor mod-
els and artificial neural networks, e. g., [Breese ef al., 1998;
Bell et al., 20071, to first learn a statistical model in an offline
fashion, and then use it to make predictions and generate rec-
ommendations. This decomposition can significantly speed
up the recommendation generation process.

Spatial processes (random fields) are a subclass of stochas-
tic processes which are applied to domains that have a
geospatial interpretation, e.g., [Diggle et al., 1998; Baner-
jee et al., 2004]. Typical tasks of the field of spatial statistics
include modelling spatial associations between a set of ob-
servations made at certain locations, and predicting values at
locations where no observations have been made.

This paper applies theory from the area of spatial statis-
tics to the prediction of a user’s interests or item ratings in
RS. We develop a Spatial Process Model (SPM) by adapt-
ing a Gaussian spatial process model to the RS scenario, and
demonstrate our model’s applicability to the task of predict-
ing implicit ratings in the museum domain. The use of spatial
processes requires a measure of distance between items in
addition to user ratings. This measure, which is non-specific
(e. g., it may be a physical or a conceptual distance), can be
readily obtained in most cases.

Our application scenario is motivated by the need to au-
tomatically recommend exhibits to museum visitors, based
on non-intrusive observations of their actions in the phys-
ical space. Employing RS in this scenario is challenging
due to (1) the physicality of the domain, (2) having exhibit
viewing times rather than explicit ratings, and (3) predictions
differing from recommendations (we do not want to recom-
mend exhibits that visitors are going to see anyway). We
turn the first challenge into an advantage by exploiting the
fact that physical distances between exhibits are meaning-
ful, enabling the use of walking distance between exhibits
to calculate (content) distance. This supports the direct, in-
terpretable application of spatial processes by using a simple
parametric Gaussian spatial process model (with the ensuing
low variance in parameter estimates), compared to more com-
plex non-parametric approaches, e. g., [Schwaighofer et al.,
2005]. The second challenge, which stems from the variable
semantics of viewing times (time ¢ for different exhibits could
mean interest or boredom), is naturally addressed by SPM’s
structure. The third challenge can be addressed by (a) using
SPM to build a model of a visitor’s interests in exhibits, (b) in-
ferring a predictive model of a visitor’s pathway through the
museum [Bohnert et al., 2008], and (¢) combining these mod-
els to recommend exhibits of interest that may be overlooked
if the predicted pathway is followed.

Our approach offers advantages over other model-based
approaches in that, unlike neural networks (and memory-



based techniques), it returns the confidence in a prediction,
and its parameters have a clear interpretation; unlike Bayesian
networks, our model does not require a domain-specific adap-
tation, such as designing the network topology. In addi-
tion, the distance measure endows our model with capabilities
of hybrid RS [Burke, 2002; Albrecht and Zukerman, 2007]
by seamlessly supporting the incorporation of other types of
models (e. g., content-based). The distance measure also al-
leviates the cold-start problem. The new-item problem is ad-
dressed by utilising the (distance-based) correlation between
this item and the other items. The new-user problem is simi-
larly handled through the correlation between items rated by
a user and the other items (our model can make useful per-
sonalised predictions after only one item has been rated).

SPM was evaluated with a real-world dataset of time spans
spent by museum visitors at exhibits (viewed as implicit rat-
ings). We compared our model’s performance to that of (1) a
baseline model which delivers a non-personalised prediction,
and (2) a state-of-the-art nearest-neighbour collaborative fil-
ter incorporating performance-enhancing modifications, e. g.,
[James and Stein, 1961; Herlocker et al., 1999]. Our results
show that SPM significantly outperforms both models.

The paper is organised as follows. Our spatial processes
approach for modelling and predicting item ratings is de-
scribed in Section 2. In Section 3, we present the results of
our evaluation, followed by our conclusions in Section 4.

2 Using Spatial Processes to Model and
Predict Ratings in Recommender Systems

We briefly introduce stationary spatial process models (Sec-
tion 2.1), before adapting a model based on Gaussian spatial
processes to RS (Section 2.2). In Section 2.3, we describe an
MCMC-based Bayesian approach for estimating the parame-
ters of the model, and in Section 2.4 we outline the theory for
predicting item ratings.

2.1 Stationary Spatial Process Models

LetY = (Y(s1),...,Y(s,)) be avector of observations at n
sites s1, ..., S,. Assuming stationarity both in the mean and
variance, we can define the following basic model to capture
spatial associations:

Y(s;)) =p+ow(s;) +e(s;)foralli=1,...,n,
where w(s;) are assumed to be realisations from a station-
ary Gaussian spatial process W (s) with mean 0, variance 1,
and isotropic! correlation function p(||s; — s;|; ¢, v) cap-
turing residual spatial association; and £(s;) are realisations
from a white-noise process with mean 0 and variance 72,
i. e., non-spatial uncorrelated error terms. That is, we assume
that Y = (Y (s1),...,Y(8,)) are observations from a sta-
tionary Gaussian spatial process over s with mean p, vari-
ance 02 + 72, and correlation function p(||s; — s;|; ¢, v).
Generally, correlation is assumed to approach 0 with increas-
ing distance ||s; — s;||. Common choices for isotropic corre-
lation functions are the powered exponential

p(llsi = sjll; 6, v) = exp (= (llsi — s;1)")..

' A correlation function is isotropic if it depends on the separation
vector s; — s; only through its length ||s; — s;]|.

where ¢ > 0 and 0 < v < 2, or correlation functions from
the Matérn class [Banerjee et al., 2004].2

The model provides a generic framework for modelling
spatial associations between locations. Given estimates for
Lbs o2 and 72, it can make predictions for new locations. This
model can be extended to observations Y that would not natu-
rally be modelled using a Gaussian distribution, e. g., discrete
binary variables indicating like/dislike [Diggle et al., 1998].

2.2 Adaptation for Recommender Systems

RS help users find interesting information in a space of many
options. Typically, RS identify items that suit the needs of
a particular user given some evidence about his/her prefer-
ences. A collaborative filter, for example, utilises a set of
ratings Y of users U = {u : uw = 1,...,m} regarding a set
ofitems I = {i : i« = 1,...,n} to identify users who are
similar to the current user. It then predicts this user’s ratings
on the basis of the ratings of the most similar users. Ratings
of different users are usually considered to be independent,
whereas ratings of related items tend to be correlated. Intro-
ducing a notion of spatial distance between items in order to
functionally specify this correlation structure, we can use spa-
tial process models (Section 2.1) for the prediction task, in a
fashion similar to the Gaussian process model for preference
prediction described by Schwaighofer et al. [2005]. The as-
sumption made for spatial processes, that correlation between
observations increases with decreasing site distance, fits well
with RS, where ratings are usually more correlated the closer
(i. e., more related) items are. As for the previous section, we
use si, . . . , S, to denote the locations of items ¢, j = 1,...,n
in a space providing such a distance measure, i.¢., |s; — s;]|.
For example, ||s; — s;|| could be computed from feature vec-
tors representing the items (similarly to content-based RS),
from item-to-item similarities (similarly to item-to-item col-
laborative filtering [Sarwar et al., 20011]), or from physical
distance, as done in this paper.

The following changes are necessary to adapt the model
presented in the previous section to RS:

e Multiple ratings. Given a set of users U, we can have
multiple (but independent) ratings for a given item %.

e Non-stationarity. Different items can have different rat-
ing means and variances. Hence, the underlying process
cannot be assumed to be stationary in its mean and vari-
ance, as both y and o2 depend on an item’s location s.
We use the notation z(s) and o%(s) to indicate this.

e Item set finiteness. In contrast to traditional geospatial
modelling, we require predictions only for a finite set of
items, i.e., those at locations s1,...,s,. Hence, it is
sufficient (and necessary) to know p(s) and o2(s) only
at these locations. That is, we do not require a special
(functional) structure for 1(s) or o%(s), which is usually
the case for geospatial models.>

%In our experiments (Section 3), we use a powered exponential
correlation function, as the Matérn class yielded inferior results.

3In order to compute predictions for a new item ¢ without ratings,
w(s;) and o (s;) must be externally estimated and supplied to our
model, until they can be estimated from observed data.



For a single user with rating vector Y with (Y); = Y (s;),
we extend the basic model from Section 2.1 as follows. We
set Y(s;) to be observations from a non-stationary spatial
process, i.e., Y (s;) = p(s;)+o(s;)w(s;)+e(s;). Exploiting
finiteness, u( ;) and o(s;) are respectively components of
w=(u(s1),...,u(s,)), the vector of mean ratings for items
1,...,n,and o = (0(s1),...,0(8n)), the vector of standard
deviations. Let @ = (p, 0,72, ¢, ) be a vector collecting all
model parameters, and W = (w(s1),...,w(sy)). Then,

Y|07W~N(u+01nW,T21n),

where 1,, is the identity matrix of dimension n x n. Note that
Y = (Y(s1),...,Y(s,)) are mutually independent given
and W. Marginalising the model over W, we obtain*

Y0~ N (molyH(gv)ol,+7°1,), (1)

where H (¢, v) denotes a correlation matrix with components
(H(¢,v));; = p(llsi — s;ll; ¢, v). Thatis, (H(¢,v)),; rep
resents the correlation between the ratings for items ¢ and j.

We are ready to generalise the model to the multi-user
case. As above, we denote the set of users with U (cardi-
nality m), and the set of items with I (cardinality n). Typ-
ically, for a user w in U, we have ratings for only a subset
of I, say for n, items in I. Denoting a rating by user u for
item ¢ with Y, (s;) and a user’s rating vector with Y, we col-
lect all observed ratings into a vector Y = (Y3,...,Y,,) of
dimension Z _1 M. Similarly, we structure p and o such
that pu = (H17-~-7Nm) and o = (01,...,0,), where p,
and o, are the vectors of means and standard deviations for
those items rated by a user u, respectively. For example, as-
sume that U = {1,2} and I = {1, 2, 3}. If user 1 rated items
2 and 3, and user 2 rated items 1 and 2, then

Y = (Y1.Y2) = (Yi(s2),Yi(ss3);Ya(s1),Ya(s2)),
poo= (p1,p2) = (u(s2),1(s3); pu(s1), 1(82)),
o = (01,02) = (0(s2),0(83);0(s1),0(s2)).

Similarly to Equation 1, Y |€ is multivariate normal
of dimension .., n,, where H(¢$,v) is block diagonal
with diagonal elements Hy (¢, v), ..., H,, (¢, v) (due to users
u=1,...,m being independent), and H,(¢,r) denotes a
user u’s correlation matrix of dimension n, X n,. That is,
forallusersu =1,...,m,

Yo |0~ N (1w, 0uln, Hu(,0)0u 10, +7°15,) . (2)

Thus, given the model parameters 8 = (u, o, 7%, ¢, 1/), our
model is fully specified, with g = (u(s1),...,u(sy)) and
o=(0(s1),...,0(8n))

2.3 Parameter Estimation

This section describes efficient algorithms for estimating the
2n-+3 model parameters @ = (p, o, 72, ¢, v). The most pop-
ular parameter estimation strategies are maximum-likelihood
and Bayesian inference. We opt for a Bayesian solution, as it
offers some attractive advantages over the classic frequentist

“Marginalisation over W is possible only in the Gaussian case,
not in the more general case described in [Diggle er al., 1998].

Algorithm 1 Slice Gibbs sampling algorithm

1: Initialise 0, e. g., by drawing 6 from p(0).
2: repeat
Updating of auxiliary variable V |0,Y .
3: Draw Z ~ Exp(1),andsetV =1(0;Y) + Z.
Component-wise updating of 6 | V,Y.
fork=1,...,]0|do
repeat
Draw the k-th component 8y, of 6 from p(6y), us-
ing shrinkage sampling to truncate the domain of
p(0y) after each iteration.
until [ (6;Y) < V.
end for
Keep acquired sample of 6.
until the number of MCMC samples of 6 from p(0|Y)
is sufficiently large.

SANSANE
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approach. For instance, prior knowledge can be formally in-
corporated into parameter estimation via the prior distribution
p(8), and the uncertainty about the parameters 6 is captured
by the posterior distribution. Parameter estimates for 6 can
be obtained from the posterior distribution

 pYiepe)
POY) = T Vio)(6)d0

where p(Y'|0) is the likelihood of Y given 6. Typically, in-
dependent priors are chosen for the different parameters, i. e.,
in our case, p(6) = p(u)p(a)p(r?)p(¢)p(v).

The integrations required to calculate p(0|Y) in Equa-
tion 3 are generally not tractable in closed form. How-
ever, p(0|Y) can be approximated numerically using Markov
chain Monte Carlo (MCMC) integration methods, such as
the Metropolis-Hastings algorithm and the Gibbs sampler.
Following Banerjee et al. [2004], we use slice sampling
[Neal, 2003], i.e., a slice Gibbs sampler, to sample from the
posterior distribution p(0|Y"). This approach is favoured by
Banerjee et al., because it does not require tuning that is tai-
lored to the application, and hence provides an automatic
MCMC algorithm for fitting Gaussian spatial process mod-
els. Algorithm 1 summarises our sampling procedure. The
algorithm consists of two iteratively applied steps: (1) slicing
the likelihood, and (2) performing Gibbs updates using draws
from the prior along with rejection sampling. When updating
a component 0 of 6, we use shrinkage sampling to reduce
the number of draws required before a point in the slice is
found [Neal, 2003].

For our model (Equation 2), the marginal negative log-
likelihood 1(0;Y') = —log p(Y'|0) associated with Y is

:%Zm log |, ]
QZ Y Hu 2;1

where ¥, = ZU(UU,T o, v) = oyly, Hy(p,v)ou1n, +
721,,,and C' = const. independent of 6. Given o, ¢ and

p(Y[0)p(0), ()

(Yu - uu) + C,

SRefer to [Andrieu et al., 2003] for an excellent introduction to
MCMC for machine learning.



v, computing the eigen decomposition of positive-definite
oy ln, Hy (b, V)0, 1, simplifies the calculation of log |X,|
and X1, It also speeds up the sampling procedure when up-
dating 72 at a given iteration of the slice Gibbs sampling al-
gorithm. To minimise the number of eigen decompositions,
we update ¢ and v together. We proceed similarly for the
components of g, and hence for the components of o.

In the following section, we set o(s;) = /o3 (s;) — 72,
where o3 (s;) denotes the sample variance of the ratings for
item 4 (at site s;), calculated from the ratings Y,,(s;). This
reduces the number of free model parameters from 2n + 3 to
n+3,i.c., 0= (u, 72, ¢,v), and significantly speeds up the
slice Gibbs sampler.

2.4 Prediction

Given 0, the prediction of a user u’s ratings of unseen items,
say Y, 1, from a vector of observed ratings Y, o is straight-
forward. That is, we can use standard multivariate nor-
mal theory, because Y,, = (Y,.1,Yy2) | € is normally dis-
tributed (Section 2.2, similarly to Equation 1). If we use the

following notation
Y. [T Yu11 Y12
S 0 ~ u, s s ,
|: Yu,? ‘ N Hou,2 ’ 2;1;12 Zu,22
then the conditional distribution p (Y, 1|Yy 2,0) is normal
with mean vector and covariance matrix

E(Yy1|Yu2,0) = prui+ Zu,122;7122 (Yoo — thu2),
Cov (Ye1|Yu2,0) = Sut — 125, 5250 12

The expectation |t (Y,,,1|Y%,2, @) represents a personalised
prediction of ratings Y, 1, and a measure of confidence can
be easily derived from Cov (Y, 1|Y5, 2, 0).

3 Evaluation with a Real-World Dataset

This section reports on the results of an evaluation performed
with a real-world dataset from the museum domain, including
comparison with a state-of-the-art collaborative filter.

In an information-seeking context, viewing time correlates
positively with preference and interest. This observation was
used in [Bohnert et al., 2008] to propose a formulation of
visitors’ interests based on viewing times of exhibits. In this
paper, we evaluate the predictive accuracy of our model on
the basis of its predictions of viewing times.

3.1 Dataset and Model Justification

We obtained the dataset by manually tracking visitors to Mel-
bourne Museum (Melbourne, Australia) from April to June
2008. In general, visitors do not require recommendations to
travel between individual, logically related exhibits in close
physical proximity. Hence, with the help of museum staff,
we grouped the collection exhibited at Melbourne Museum,
which comprises a few thousand exhibits, into 126 coherent
exhibit areas. We tracked first-time adult visitors travelling
on their own, to ensure that neither prior knowledge about
the museum nor other visitors’ interests influenced a visitor’s
decisions about what to look at. The resulting dataset
comprises 158 complete visitor pathways in the form of

Table 1: Museum dataset statistics
Mean Stddev Min  Max

Visit length (hrs) 1:50:39 0:47:54 0:28:23 4:42:12
Viewing time (hrs) 1:31:09 0:42:05 0:14:09 4:08:27

Exhibit areas / visitor 52.70 20.69 16 103
Visitors / exhibit area 66.09 25.36 6 117

time-annotated sequences of visited exhibit areas, with a total
visit length of 291:22:37 hours, and a total viewing time of
240:00:28 hours.® A total of 8327 exhibit areas were viewed,
yielding 52.7 areas per visitor on average (41.8% of the
exhibit areas). Hence, 58.2% of the entries are missing from
the viewing time (rating) matrix, indicating a potential for
pointing a visitor to personally relevant but unvisited exhibit
areas. Table 1 summarises further statistics of the dataset.

Clearly, the deployment of an automated RS in a museum
requires suitable positioning technologies to non-intrusively
track visitors, and models to infer which exhibits are being
viewed. Although our dataset was obtained manually, it pro-
vides information that is of the same type as information in-
ferable from sensing data. Additionally, the results obtained
from experiments with this dataset are essential for model de-
velopment, as they provide an upper bound for the predictive
performance of our model.

The museum space is carefully themed by curatorial staff,
such that closely-related exhibits are in physical proximity.
Based on this observation, we hypothesise that physical walk-
ing distance between exhibits is inversely proportional to
their (content) similarity. Thus, in our experiments, we use
physical walking distance for measuring (content) distance
between exhibits. To calculate walking distances, we em-
ployed an SVG file-based representation of Melbourne Mu-
seum’s site map, mapped onto a graph structure which pre-
serves the physical layout of the museum (i.e., preventing
paths from passing through walls or ceilings), and normalised
the distances to the interval [0, 1].

We used the Bayesian Information Criterion (BIC) to se-
lect the most appropriate family of probability distributions
for approximating the distribution of viewing times at each
exhibit area. We tested exponential, gamma, normal, log-
normal and Weibull distributions. The log-normal family fit-
ted best, with respect to both number of best fits and average
BIC score (averaged over all exhibit areas). Hence, we trans-
formed all viewing times to their log-equivalent to obtain nor-
mally distributed data.

3.2 Parameter Estimation

We performed slice Gibbs sampling (Algorithm 1) to ob-
tain estimates for the parameters 6 of our Spatial Process
Model (SPM) (Section 2). For each of the 129 free model
parameters,” we used (uninformative) independent uniform

®For our experiments, we ignore travel time between exhibit ar-
eas, and collapse multiple viewing events of one area into one event.

"We set o(s;) = \/03 (8;) — 72 to speed up the sampling pro-
cess (Section 2.3), which reduces the number of free parameters
from 255 to 129.
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Figure 1: p(||s; — s;||; ¢ = 28.6334, v = 0.2583)

prior distributions. We used every 20-th sample after a burn-
in phase of 1000 iterations as a sample of 6 from p(0|Y"), and
stopped the sampling procedure after 8000 iterations. Thus,
in total, this provides 350 samples of 8 from p(0|Y").

For visualisation purposes, we ran a slice Gibbs sampler
on the complete dataset of 8327 log viewing times, and used
the output of this run to obtain posterior mean point estimates
of ¢ (28.6334), v (0.2583) and 72 (0.1578); we omit the esti-
mates for p and o due to space limitations. Figure 1 depicts
a plot of p(||s; — s;||; ¢, v) for this parameterisation of ¢ and
1, showing the shape of the fitted powered exponential cor-
relation function. The dashed lines indicate the correlation
functions obtained with ¢ and v set to the lower and upper
bounds of their 95% credible intervals respectively. The cor-
relation function rapidly drops to values around 0.4, and then
more slowly approaches 0.1 as ||s; — s, || approaches 1.0. The
shape of this function confirms the existence of a relatively
high correlation between viewing durations at exhibit areas
in close physical proximity.

3.3 Predictive Model Performance

Experimental Setup

To evaluate SPM’s predictive performance, we implemented
two additional models: Mean Model (MM) and Collabora-
tive Filter (CF). MM, which we use as a baseline, predicts
the log viewing time of an exhibit area ¢ to be its (non-
personalised) mean log viewing time u(s;). For CF, we
implemented a nearest-neighbour collaborative filtering algo-
rithm, and added modifications from the literature that im-
prove its performance, such as shrinkage to the mean [James
and Stein, 1961] and significance weighting [Herlocker et
al., 1999]. Additionally, to ensure that varying exhibit area
complexity does not affect the similarity computation for se-
lecting the nearest neighbours (viewing time increases with
exhibit complexity), we transformed the log viewing times
into z-scores by normalising the values for each of the ex-
hibit areas separately. Visitor-to-visitor differences with re-
spect to their mean viewing durations were neutralised by
transforming predictions to the current visitor’s viewing-time
scale [Herlocker et al., 1999]. We tested several thousand dif-
ferent parameterisations, but in this paper, we report only on
the performance of the best one.

Due to the relatively small dataset, we used leave-one-out
cross validation to evaluate the performance of the differ-
ent models. That is, for each visitor, we trained the mod-
els with a reduced dataset containing the data of 157 of the
158 visit trajectories, and used the withheld visitor pathway

for testing. For SPM, we first obtained the posterior mean
of p(0|Y") by performing slice Gibbs sampling on the training
data (Section 3.2), and then used this posterior mean to com-
pute predictions by conditioning a multivariate normal dis-
tribution (Section 2.4). For CF, predictions were computed
from the ratings of the nearest neighbours; and for MM, we
used p(s;), estimated from the appropriate reduced dataset,
as a prediction.

We performed two types of experiments: Individual Ex-
hibit (IE) and Progressive Visit (PV).

e [E evaluates predictive performance for a single exhibit.
For each observed visitor-exhibit area pair (u, ), we re-
moved the observation Y, (s;) from the vector of visitor
u’s log viewing durations, and computed a prediction

Yu(sL) from the other observations. This experiment is
lenient in the sense that all available observations except
the observation for exhibit area ¢ are kept in a visitor’s
viewing duration vector.

e PV evaluates performance as a museum visit progresses,
1. e., as the number of viewed exhibit areas increases. For
each visitor, we started with an empty visit, and itera-
tively added each viewed exhibit area to the visit history,
together with its log viewing time. We then predicted the
log viewing times of all yet unvisited exhibit areas.

For both experiments, we used the mean absolute error
(MAE) to measure predictive accuracy as follows:

MAE = DD Yalsi) = Yalsil,

Yover Hul u€U i€l

where I,, denotes a visitor u’s set of exhibit areas for which
predictions were computed. For /E, we calculated the total
MAE for all valid visitor-exhibit area pairs; and for PV, we
computed the MAE across the yet unvisited exhibit areas and
all visitors for each time fraction of a visit (to account for dif-
ferent visit lengths, we normalised all visits to a length of 1).

Results
Table 2 shows the results for the /E experiment, where SPM
achieves an MAE of 0.7548 (stderr 0.0066), outperforming
both MM and CF. The performance difference between SPM
and the other models is statistically significant with p < 0.01.
The performance of SPM, CF and the baseline MM for the
PV experiment is depicted in Figure 2. CF outperforms MM
slightly (statistically significantly for visit fractions 0.191 to
0.374 and for several shorter intervals later on, p < 0.05).
More importantly, SPM performs significantly better than
both MM and CF (statistically significantly for visit fractions
0.019 to 0.922, p < 0.05). Drawing attention to the initial
portion of the visits, SPM’s MAE decreases rapidly, whereas
the MAE for MM and CF remains at a higher level. Gen-
erally, the faster a model adapts to a visitor’s interests, the
more likely it is to quickly deliver (personally) useful recom-
mendations. Such behaviour in the early stages of a museum
visit is essential in order to build trust in the RS, and to guide
a visitor in a phase of his/her visit where such guidance is
most likely needed. As expected, MM performs at a rela-
tively constant MAE level. For CF and SPM, we expected to
see an improvement in performance (relative to MM) as the



Table 2: Model performance for the /E experiment (MAE)
MAE  Stderr
0.8618 0.0071

0.7868 0.0068
0.7548  0.0066

Mean Model (MM)
Collaborative Filter (CF)
Spatial Process Model (SPM)

0.92 T T T T rr
MM
—CF
SPM [

0.90

0.88[

MAE

0.86

0.84

0.82 i i i i
0.0 0.2 0.4 0.6 0.8 1.0

visit fraction

Figure 2: Model performance for the PV experiment (MAE)

number of visited exhibit areas increases. However, this trend
is rather subtle (it can be observed when plotting the models’
performance relative to MM). Additionally, for all three mod-
els, there is a performance drop towards the end of a visit.
We postulate that these phenomena may be explained, at least
partially, by the increased influence of outliers on the MAE as
the number of exhibit areas remaining to be viewed is reduced
with the progression of a visit. This influence in turn offsets
potential gains in performance obtained from additional ob-
servations. Our hypothesis is supported by a widening in the
standard error bands for all models as a visit progresses, in
particular towards the end (not shown in Figure 2 for clar-
ity of presentation). However, this behaviour requires further,
more rigorous investigation.

4 Conclusions and Future Work

In this paper, we utilised the theory of spatial processes to de-
velop a model-based approach for predicting users’ interests
or item ratings in RS. We applied our model to a real-world
dataset from the museum domain, where our model attains
a higher predictive accuracy than state-of-the-art nearest-
neighbour collaborative filters. In addition, under the realistic
Progressive Visit setting, our model rapidly adapts to a user’s
ratings (starting from as little as one rating), thus alleviating
the new-user problem common to collaborative filtering.

Our dataset is relatively small compared to other real-world
RS applications. Although a high number of ratings per user
slows down the slice Gibbs sampler due to repeated inversion
of matrices of high dimension, employing our model with
larger datasets should not represent a problem in practice.
This is because the number of ratings per user is usually small
compared to the number of users and items, and the compu-
tational complexity of evaluating the likelihood function de-
pends only linearly on the number of users in the database.

In the future, we intend to hybridise our model by incorpo-
rating content-based item features into our distance measure.
We also plan to extend our model to fit non-Gaussian item rat-
ings, e. g., [Diggle et al., 1998; Yu et al., 20061, and consider
negative correlations between items.
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