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Abstract We describe a probabilistic approach for the interpretation of user arguments
that integrates three aspects of an interpretation: inferences, suppositions and explanatory
extensions. Inferences fill in information that connects the propositions in a user’s argument,
suppositions postulate new information that is likely believed by the user and is necessary to
make sense of his or her argument, and explanatory extensions postulate information the user
may have implicitly considered when constructing his or her argument. Our system receives
as input an argument entered through a web interface, and produces an interpretation in terms
of its underlying knowledge representation—a Bayesian network. Our evaluations show that
suppositions and explanatory extensions are necessary components of interpretations, and
that users consider appropriate the suppositions and explanatory extensions postulated by
our system.
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440 S. George et al.

1 Introduction

When generating discourse, people often rely on information without stating it explicitly.
They may skip steps in a chain of reasoning, take into account information without mention-
ing it, or suppose facts that are not necessarily in evidence. Failure to identify these unstated
information items may lead to mis-communication. For instance, the implication “Only the
blue car is in the driveway, therefore Mary is probably out” would be rather unintelligible,
unless the addressee knew that the blue car wasn’t Mary’s. Likewise, the implication “Jack
is tall, so Jill must be tall” supposes that Jack and Jill are related. This supposition must be
taken into account in order to respond cooperatively, e.g., saying “Actually, Jack and Jill are
not related” rather than “I don’t think so, Jill may or may not be tall”.

In previous work, we introduced a probabilistic approach to argument interpretation that
was implemented in a system called BiAs (Bayesian Interactive Argumentation System).
BIAS receives as input an argument for a goal proposition, and generates one or more inter-
pretations that consist of propositions associated with degrees of belief, and relations between
propositions. For example, if a user in Melbourne said “If I walk to the main road, then I'll
probably be in Sydney tomorrow”, one possible interpretation would be “WalkMainRoad —
TakeBus — ArriveSydney [Probably]”, and another would be “WalkMainRoad — HitchRide
— ArriveSydney [Probably]”.

Our approach starts out from the tenet that an interpretation is a representation of what
an interlocutor said in terms of the mental model maintained by the addressee. When the
addressee is a computer, this representation is constrained by the knowledge representation
employed by the system—in our case a Bayesian network (BN) (Pearl 1988). Thus, the
objective of our research is to obtain an interpretation of a user’s argument in terms of BIAS’
underlying domain BN (rather than constructing this BN). In our initial work, we defined
an interpretation as a subnet of this BN, and applied a probabilistic approach to select a
subnet that fits the user’s argument well. The main contributions of that research were: (1) an
anytime algorithm for proposing candidate subnets of the domain BN (George et al. 2004);
and (2) a formalism for calculating the probability of these subnets—this probability encodes
how probable are the structure and beliefs of these subnets in the context of the domain BN
(Zukerman et al. 2003; Zukerman and George 2005). Our formalism is applicable to a variety
of BNs (which is orthogonal to how well the BNs model their domain).

In this article, we extend our previous definition of an interpretation by incorporating
suppositions and explanatory extensions. Suppositions postulate beliefs held by the user
which are not consistent with the beliefs in the user model. Explanatory extensions present
information that was omitted from the user’s argument, but appears in the user model and
was likely considered by the user when constructing his or her argument. To illustrate these
concepts, imagine that our Melbournian user had said “If I walk to the main road, I’ll have to
hitch a ride to Sydney”. Now, if the user had previously been bemoaning a current bus strike,
the system would use this shared but unstated information to explain the user’s conclusion,
yielding an interpretation such as “You’ll have to hitch a ride to Sydney, because of the bus
strike you mentioned’. However, if the strike (or other reasons for hitching a ride) had never
been mentioned, in order to explain the consequent, the system would have to postulate that
the user believes there is a reason for hitching a ride (e.g., buses are too slow or there is
a bus strike), and suppose the most probable of these reasons according to the user model.
This supposition would yield an interpretation such as “You say that you’ll have to hitch a
ride to Sydney. Are you supposing that there is a bus strike?”. Explanatory extensions are
added to interpretations to improve their coherence, while suppositions are included in the
user model and added to interpretations to justify a user’s stated beliefs. The incorporation
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of these components in an interpretation signifies a shift in paradigm from our earlier work,
in that we now view an interpretation as an explanation, rather than a representation, of what
the user said.

The main contributions of this article are: (1) an extension of the definition of an interpreta-
tion that includes suppositions and explanatory extensions, (2) an extension of the formalism
for calculating the probability of an interpretation, and (3) procedures for postulating suppo-
sitions and for including explanatory extensions in an interpretation.

In the next section, we describe our domain of implementation, knowledge representation
and user model. In Sect. 3, we define an interpretation in terms of our knowledge represen-
tation, and outline our interpretation-generation process. Section 4 describes our mechanism
for positing suppositions, followed by its evaluation. Section 6 describes our procedure for
including explanatory extensions in an interpretation, also followed by its evaluation. In
Sect. 8, we demonstrate the generalizability of our approach by applying it to a BN down-
loaded from the Netica website (www.norsys.com). We then discuss related research, and present
concluding remarks, focusing on the limitations and contributions of our approach.

2 Domain and user model

It is widely accepted that people are not Bayesian (Kahneman et al. 1982). Nonetheless, we
have chosen BNs (Pearl 1988) to represent and reason about B1As’ domain knowledge, due to
their ability to perform causal and evidential reasoning under uncertainty, which is essential
for argumentation. An interpretation of a user’s argument is a mapping of this argument into
BIAS’ domain knowledge. Our formalism for selecting an interpretation is also probabilistic
(it selects the interpretation with the highest posterior probability), but it is not represented
as a BN.

Our domain of implementation is a murder mystery, for which we developed a series of
BNs (Zukerman et al. 2003; Zukerman and George 2005). The examples in this paper are
drawn from two similar 32-node binary murder-mystery BNs.! Each node in a binary BN
may be set to True or False, or remain unset (with a probability between 0 and 1 inferred by
Bayesian propagation).

Our BNs are merely a test platform used to demonstrate the applicability of our inter-
pretation formalism. They represent a generic “story” that we made up, from which many
specific scenarios can be generated. The user discovers the details of a scenario as he or she
explores our web interface (Zukerman and George 2005). Figure 1 shows one of the BNs
used for our examples. The observable evidence nodes are boxed (a specific configuration of
values for evidence nodes yields a particular scenario). In our example, five of these evidence
nodes have been observed so far: NbourSawGreenAroundGardenAt11, FingerprintsFoundOnGun,
ForensicsMatchGreen’sFingerprints, GunFoundinGarden and BulletsFoundinBody’sBody (bold-
faced and shaded). With this evidence in hand, the user could construct several arguments.
Examples are: (1) “Since the neighbour saw Mr Green around the garden at 11 and the gun
was found in the garden, it is probable that Mr Green had the means to kill Mr Body™, (2) “The
gun being found in the garden but forensics not matching Mr Green’s fingerprints with those
on the gun indicates that Mr Green possibly did not murder Mr Body”, and (3) “The fact that
bullets were found in Mr Body’s body and a gun was found in the garden implies that
Mr Body was murdered”. The white boldfaced nodes in the BN (GreeninGardenAtTime

! The size of these BN is comparable to that of many BNs obtainable from the Netica web site. Specifically,
the average size of the “real-life” BNs is 17 nodes, and that of “large and complex” BNs is 62 nodes.
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Fig. 1 Domain BN and interpretation of a user’s argument

OfDeath, GreenHasMeans and TimeOfDeath11) pertain to the interpretation of the argument
in Fig. 2 (Sect. 3). TimeOfDeath11 is an evidence node that has not been observed yet, while
GreenlnGardenAtTimeOfDeath and GreenHasMeans contain intermediate hypotheses about the
murder case at hand.

Our BNs are configurable in the sense that different nodes may be set or unset as evidence
nodes. As stated above, this enables us to generate a large number of scenarios, which pro-
vide the evidence that the user encounters as he or she investigates the murder mystery. For
example, the BN in Fig. 1 has a node about the time of death being 11, which may be set to
True or False. Similarly, the neighbour may or may not have seen Mr Green in the garden,
Mr Green’s fingerprints may or may not have been found on the gun, etc. Further, as shown
in Sect. 8, BIAS may be applied to other binary BNs.

BIAS was originally designed as a computer game, where users are expected to enter argu-
ments about the guilt or innocence of a suspect (Zukerman and George 2005). Our current
research focuses on the interpretation capabilities of the system. Hence, a user’s interaction
with the system consists of (1) reading a system-generated “police report”, which provides
background information for the murder mystery (the report may contain preliminary eye-
witness reports, forensic information and findings obtained from the scene of the crime);
(2) optionally exploring a virtual murder scenario, where the user discovers evidence for our
murder mystery; and (3) presenting an argument for the guilt or innocence of Mr Green. This
argument, which is presented through a web interface, is then interpreted by the system.?

The first two steps provide information to populate our user model, which is consulted
when interpreting the user’s argument. In Zukerman and George (2005), we compared the
performance obtained using several user models of increasing complexity: the Simple model

ZIna previous implementation, we accepted free-form Natural Language input for the antecedents and con-
sequents of an argument, which then had to be reconciled with the nodes in the domain BN. In the current
implementation, this capability is replaced by a web-based interface, so that we can focus on suppositions and
explanatory extensions.
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records only the evidence accessed by the user, the Access model also takes into account
the manner in which the evidence was accessed (e.g., seen or explicitly accepted) and how
frequently and recently it was accessed, and the Access&Similarity model also considers
whether this evidence could remind the user of other things. This information was used
to calculate the probability of an interpretation. Our evaluation showed a trend whereby
the interpretations produced by the Access&Similarity model were more acceptable to peo-
ple than the interpretations produced by the simpler models. Hence, we use the Access
&Similarity model in this paper.

3 What is an interpretation?

In the context of a BN, an interpretation of a user’s argument is the tuple {SC, IG, EE},
where SC is a supposition configuration, 1G is an interpretation graph, and EEs are
explanatory extensions.

— A Supposition Configuration is a set of suppositions attributed to a user to account for the
beliefs in his or her argument.

— An Interpretation Graph is a subnet of the domain BN which connects the nodes men-
tioned in the user’s argument. The nodes and arcs that are included in an interpretation
graph but were not mentioned by the user fill in additional detail in the context of the BN,
bridging inferential gaps in the user’s argument.

— Explanatory Extensions consist of subnets of the domain BN which are added to an inter-
pretation graph to improve the coherence of the inferences in it.

Figure 2 illustrates these elements of an interpretation.

— The top segment shows the five pieces of evidence in the user model (boldfaced and boxed
in light gray in Fig. 1). This evidence may be obtained from the police report or from
the user’s investigation of BIAS’ virtual scenario. As indicated in Sect. 2, our user model
assigns different strengths to propositions based on the manner in which the information
in question was accessed by the user, e.g., evidence read in a police report is considered
weaker than a fact stated by the user in his or her own argument (Zukerman and George
2005).

— The second segment contains a sample argument, which was generated using a menu in an
argument-construction interface (Zukerman and George 2005). As seen in this segment, we
continue using the seven linguistic categories of belief adopted in (Zukerman and George
2005). However, we have changed the wording associated with these categories, as our
surveys indicated that people found wordings using “probable” and “possible” clearer than
wordings using “likely”” and “a little likely”. Thus, our belief categories are: VeryProbably,
Probably, Possibly, EvenChance, PossiblyNot, ProbablyNot and VeryProbablyNot.

— The third segment shows the interpretation produced by adding a node from the BN and
its links to bridge a gap between two propositions in the user’s argument (the proposition
corresponding to the added node is boldfaced, and the node is white boldfaced and circled
in striped dark gray in Fig. 1; the resultant interpretation graph is surrounded by a light
gray bubble in Fig. 1). However, the beliefs in this interpretation do not match those of
the argument consequents. This is because without knowing the time of death, there is no
reason to believe that being in the garden at 11 implies opportunity.

— The fourth segment contains the supposition BIAS attributes to the user in order to account
for the beliefs stated in the argument. This supposition, which is that the time of deathis 11,
brings the beliefs in the interpretation in line with those in the argument (the supposition
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Evidence in the user model

Neighbour saw Mr Green around Mr Body’s garden at 11.

Bullets were found in Mr Body’s body.

A gun was found in the garden.

Fingerprints were found on the gun.

Forensics did not matcht he fingerprints on the gun with Mr Green.

Argument

Mr Green probably being in the garden at 11 implies that
he possibly had the opportunity to kill Mr Body, but

he possibly did not murder Mr Body.

Interpretation Graph: Bridging a gap in the argument

Mr Green probably being in the garden at 11

IMPLIES

Mr Green probably was not in the garden at the time of death
IMPLIES

Mr Green probably did not have the opportunity to kill Mr Body
IMPLIES

Mr Green probably did not murder Mr Body

Supposition Configuration: Making suppositions
Supposing that: Time of death was 11

Mr Green probably being in the garden at 11

IMPLIES

Mr Green probably was in the garden at the time of death
IMPLIES

Mr Green possibly had the opportunity to kill Mr Body
IMPLIES

Mr Green possibly did not murder Mr Body

Explanatory Extension: Incorporating unstated information
Supposing that: Time of death was 11

Mr Green probably being in the garden at 11

IMPLIES

Mr Green probably that was in the garden at the time of death

IMPLIES

Mr Green possibly had the opportunity to kill Mr Body

BUT Mr Green probably did not have the means to murder Mr Body
IMPLIES

Mr Green possibly did not murder Mr Body

Fig. 2 Bridging gaps in an argument, making suppositions and incorporating explanatory extensions

is boldfaced, and the corresponding node is white boldfaced and boxed in dark gray in
Fig. 1). However, the interpretation is still somewhat problematic, as the belief in the final
consequent is significantly lower than that in its antecedent (in our trials, people objected
to such drops in belief, Sect. 6).

— The final segment illustrates how B1as addresses this problem by including in the inter-
pretation an explanatory extension about Mr Green not having the means to murder
Mr Body, which explains the drop in belief (the explanatory extension is boldfaced, and
the corresponding node is white boldfaced and circled in dark gray in Fig. 1; the belief in
this node is inferred through Bayesian propagation from the forensic evidence).

3.1 Proposing interpretations
In this section, we discuss the generation of candidate interpretations for a user’s argument,

and the calculation of the probabilities of these interpretations. The probability of an interpre-
tation depends on (1) how well it matches the underlying domain knowledge (its plausibility
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Algorithm Generatelnterpretations(UserArg)
while {there is time}

{

1. Propose a supposition configuration SC that accounts for the beliefs
stated in the argument. (Section 4)
SC «— GetSuppositionConfig(UserArg)

2. Propose an interpretation graph /G that connects the nodes in UserArg
under supposition configuration SC. (Zukerman and George, 2005)
IG «— GetlnterpretationGraph(UserArg,SC)

3. Propose explanatory extensions EE for interpretation graph /G under
supposition configuration SC. (Section 6)
EE «— GetExplanatoryExtensions(SC,IG)

4. Calculate the probability of interpretation {SC,/G,EE}.
(Sections 3.2, 4.2 and 6.2)

5. Retain the top N (=4) most probable interpretations.

}

Fig. 3 Anytime algorithm for generating interpretations

in the context of this knowledge); and (2) how well the user’s argument matches the inter-
pretation. That is, the particulars of the domain or the argument are not important. What
is important is the similarity between an interpretation and the domain, and between the
argument and the interpretation. The interpretations with the highest posterior probability
are then selected for further consideration.’

The problem of finding the best interpretation is exponential. In Zukerman and George
(2005), we presented an anytime algorithm (Dean and Boddy 1998; Horvitz et al. 1989)
that generated only interpretation graphs, and a probabilistic formalism for selecting the best
interpretation. Our algorithm was generalized in George et al. (2004), where we generated
interpretations composed of node configurations (which contain BN nodes that match Natural
Language sentences in an argument), supposition configurations, and interpretation graphs.
In this article, we apply our anytime algorithm to generate interpretations comprising sup-
position configurations, interpretation graphs and explanatory extensions (as stated above,
in our current implementation we obtain a user’s input from a menu, and hence do not posit
node configurations).

Algorithm Generatelnterpretations (Fig. 3) generates interpretations of the form
{SC, IG, EE} until it runs out of time. It first proposes a supposition configuration that
accounts for the beliefs in a user’s argument. Next, it generates an interpretation graph that
connects the nodes in the argument. Each interpretation graph is complemented with explan-
atory extensions that improve the coherence of the inferences in the graph. The probability of
the resultant interpretation is then calculated, and the top N (=4) interpretations are retained.
This process is repeated until the algorithm runs out of time.

Figure 4a depicts a portion of the search tree generated by our algorithm. Each level of the
tree corresponds to a different component. Supposition configurations are generated in the
first level, and interpretation graphs in the second level. This order is motivated by the effect
of supposition configurations on interpretation graphs, i.e., a supposition may block a path
in a BN (precluding the propagation of evidence through this path), or unblock a previously
blocked path (for a discussion of blocked paths, see Pearl, 1988). These interactions, which

3Ina complete dialogue system, if there was a clear winner, the system would act on that interpretation,
and if there were several good candidates, a clarification dialogue would ensue. However, at present, we just
generate promising interpretations.
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Argument (connected propositions)

SC1 C2 SC3 SC4

[N

IG11  1G12 IGI13 IG21 1G22
SC —— supposition configuration
‘ IG — interpretation graph
EE12 EE21 EE22 EE —— explanatory extensions

(a) Search tree in progress

Mr Green being in the garden at 11 [Probably] IMPLIES
Mr Green had the opportunity to kill Mr Body [Possibly]

SCI: SC2: SC3:
NONE TimeOfDeathl1: TRUE GreenVisitBodyLastNight: TRUE
1G11 1G21
GreenInGardenAt1 1 [Probably] | |GreenlnGardenAtll  [Probably]
GreenInGardenAtTimeOfDeath GreenIlnGardenAtTimeOfDeath
Y [EvenChance] # [Probably]
GreenHasOpportunity [EvenChance]| |GreenHasOpportunity [Possibly]

EE11: TimeOfDeathl1 [EvenChance] EE21: NONE

(b) Sample search tree

{SCLIGI1,EEI1} {SC2,IG21,EE21}
GreenInGardenAtl1 [Probably] SC2: TimeOfDeath11 TRUE
EEI1: TiijiDealh] 1 [EvenChance] GreenInGardenAt11 [Probably]
GreenInGardenAtTimeOfDeath GreenInGardenAtTimeOfDeath
[EvenChance] ) ¢ [Probably]
GreenHasOpportunity — [EvenChance] GreenHasOpportunity [Possibly]

(¢) Two complete interpretations

Fig. 4 Process for generating interpretation: (a) Search tree in progress, (b) Sample search tree, and (¢) Two
complete interpretations

are difficult to predict until an interpretation graph is complete, also motivate the large num-
ber of alternatives considered in the first two levels of the search tree. In contrast, explanatory
extensions do not seem to have complex interactions with interpretation graphs or supposition
configurations. Hence, they are deterministically generated in the third level of the search
tree, i.e., only one set of explanatory extensions is proposed for each interpretation, rather
than multiple options. Figure 4b depicts a portion of the search tree that was instantiated for
the short argument at the root node of this tree: “Mr Green probably being in the garden at
11 implies that Mr Green possibly had the opportunity to kill Mr Body”. Figure 4c shows
two complete interpretations of this argument.

In this example, the user’s belief in the consequent of this argument differs from the belief
obtained by B1AS by means of Bayesian propagation (in the domain BN) from the evidence
nodes observed by the user. As indicated above, B1As attempts to address this problem by
making suppositions (Sect. 4). However, if appropriate suppositions can not be posited or
the resultant interpretation still has discrepancies between the user’s beliefs and BIAS’, BIAS
just acknowledges these discrepancies. This is done by prefacing the interpretation with a
sentence such as “I know this is not quite right, but it is the best I could do given what I
believe about this situation”. An alternative approach would consist of updating the system’s
inference patterns to match the user’s. In the context of BNs, this involves modifying the
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Conditional Probability Tables (CPTs) for the offending implications. However, this is a
laborious process with far-reaching effects with respect to the system’s reasoning. Hence,
this type of solution is left for future investigation.

The first level of the sample search tree in Fig. 4b contains three supposition configurations
SC1, SC2 and SC3 (only the beliefs that depart from those in the user model are shown):
SC1 posits no beliefs that differ from those in the user model, thereby retaining the mismatch
between the user’s belief in the consequent and B1AS’ belief; SC2 posits that the user sup-
poses that the time of death is 11; and SC3 posits that the user supposes that Mr Green visited
Mr Body last night.

SC1 yields interpretation graph /G11, where the belief in the consequent differs from
that stated by the user (due to the absence of suppositions), prompting the generation of a
preface that acknowledges this fact. In addition, the interpretation graph has a large jump
in belief (from Probably to EvenChance), which causes B1as to add the proposition Time
OfDeath11[EvenChance] as an explanatory extension. The resultant interpretation, which ap-
pears in Fig. 4c, may be glossed as follows (the explanatory extension appears in boldface
italics).

I know this is not quite what you said, but it is the best I could do
given what I believe about this situation.

Since it is probable that Mr Green was in the garden at 11, and

it is even chance that the time of death was 11, it is even chance
that Mr Green was in the garden at the time of death, which implies
that it is even chance that he had the opportunity to kill Mr Body.

SC?2 yields interpretation graph / G21, which does not require explanatory extensions. This
interpretation, which also appears in Fig. 4c, may be glossed as follows.

Your argument seems to suppose that the time of death was 11.
Hence, Mr Green probably being in the garden at 11 implies that
he probably was in the garden at the time of death, which implies
that he possibly had the opportunity to kill Mr Body.

Note that both interpretations mention TimeOfDeath11. However, in the first interpretation
this proposition is used as an explanatory extension (with a belief of EvenChance obtained
by Bayesian propagation), while in the second interpretation it is used as a supposition (with
a belief of True).

Upon completion of this process, BIAS retains the four best interpretations (the evaluation
of the goodness of an interpretation is described in Sect. 3.2). In this example, the winning
interpretation is {SC2, IG21, EE21}.

3.2 Evaluating interpretations

An interpretation is evaluated by calculating its posterior probability. This is a “second order
probability” in the sense that it encodes how probable are the structure and beliefs of an inter-
pretation in the context of the domain BN. The best interpretation is that with the highest
posterior probability.

SysIntBest = argmax;_; ,Pr(SC;, I1G;, EE;|UserArg)

.....

where n is the number of interpretations.
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After applying Bayes rule, we obtain

SysIntBest = argmax;_; ,{Pr(UserArg|SC;, IG;, EE;) x Pr(SC;, IG;, EE;)} (1)

,,,,,

We now make the simplifying assumption that given SC; and I G;, UserArg is conditionally
independent of EE;, i.e.,

Pr(UserArg|SC;, 1G;, EE;) = Pr(UserArg|SC;, 1G;) 2)

One could argue that this assumption is not strictly correct, because the more explanatory
extensions are postulated in an interpretation, the less likely it is that a user who intended this
interpretation uttered UserArg. However, the presence of explanatory extensions is taken into
account in Eq. 5 when calculating the probability of an interpretation. Hence, incorporating
them in the calculation of the probability of UserArg would double-count them.

To calculate the prior probability of an interpretation, Pr(SC;, IG;, EE;), we consider
separately the structure and the beliefs in interpretation graph / G;. This yields

Pr(SC;, IG;, EE;) = Pr(SC;, beliefs in 1G;, struct of I1G;, EE;) 3)
After applying the chain rule of probability we obtain

Pr(SC;, beliefs in 1 G;, struct of IG;, EE}) 4)
= Pr(beliefs in 1G;|SC;, struct of 1G;, EE;) x Pr(EE;|SC;, struct of I1G;)
xPr(struct of 1G;|SC;) x Pr(SC;)

Substituting Egs. 2, 3 and 4 in Eq. 1, we obtain

SysIntBest = argmax;_;  ,{Pr(UserArg|SC;, 1G;)
x Pr(beliefs in /G;|SC;, structof IG;, EE})
X Pr(EE;|SC;, struct of 1G;)
x Pr(struct of 1G;|SC;) x Pr(SC;)} 5)

We now consider these factors from last to first (for ease of exposition).

— Pr(SC;) depends on how close the suppositions in a configuration are to the current beliefs
in the user model. The closer they are, the higher the probability of the supposition con-
figuration. The calculation of Pr(SC;) is described in Sect. 4.2.1.

— Pr(struct of 1G;|SC;) is the probability of selecting the nodes and arcs in /G; from the

domain BN. The calculation of this probability is described in (Zukerman and George
2005). Here we present a brief summary. The simplest calculation implements ideas from
combinatorics: given a BN with N nodes and an interpretation graph /G; with n nodes,
there are (2’ ) ways to choose the n nodes in /G;. This probability is refined using the
Access&Similarity user model, which stores whether the user previously encountered the
nodes in /G; or similar ones, and the type, frequency and recency of these encounters
(Sect. 2). The probability of the arcs in /G; is also calculated using combinatorics. It
involves choosing the arcs in /G; from the arcs in the BN that are incident on the nodes
in IG;.
As mentioned above, the structure of / G; depends on SC; because a path may be blocked or
unblocked by making suppositions. The probability of an interpretation graph that contains
blocked paths is significantly reduced, as the resultant beliefs do not reflect the reasoning
employed in the user’s argument. This precludes the selection of such an interpretation
graph, unless all available graphs have blocked paths.
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— The probability Pr(E E;|SC;, struct of 1 G;) has a structural component only. There is no
belief component, as nodes in explanatory extensions do not provide additional evidence,
and hence they do not affect the beliefs in a BN. They only affect the acceptability of
an interpretation from the point of view of users (Sect. 6). Pr(EE;|SC;, struct of 1G;)
depends on the number of nodes included in an explanatory extension and on their abil-
ity to explain the consequent. The less nodes are included and the higher their explan-
atory power, the higher the probability of an explanatory extension. The calculation of
Pr(EE;|SC;, struct of 1G;) is described in Sect. 6.2.2.

— Pr(beliefs in /G;|SC;, struct of IG;, EE;), the probability of the belief component of an
interpretation graph, reflects feedback received in preliminary trials, where users objected
to inferences that had increases in certainty or large changes in belief from their anteced-
ents to their consequent (Zukerman et al. 2004; Zukerman and George 2005). Accord-
ingly, interpretations that contain such objectionable inferences have a lower probability
than interpretations where the beliefs in the consequents of the inferences fall within an
“acceptable range” of the beliefs in their antecedents. The calculation of this probability
is described in Sect. 6.2.1.

— The calculation of Pr(UserArg|SC;, I G;) is based on the calculation of Pr(UserArg|1 G;)
described in Zukerman and George (2005). As for I G;, this calculation also separates the
structural component from the belief component of UserArg. This yields

Pr(UserArg|SC;, 1G;) = Pr(struct of UserArg|struct of 1G;) 6)
x Pr(beliefs in UserArg|SC;, beliefs in 1G;)

e The structural component reflects how easy it is to obtain UserArg from I G; by per-
forming structural modifications to I G;, such as deletions of nodes and additions and
deletions of arcs (nodes are not added, as the user is not allowed to introduce new
propositions). Given the structure of I G;, this component is independent of SC;.

e The belief-based component represents how well the beliefs in the nodes in UserArg
match the beliefs in the corresponding nodes in / G;. This component depends on SC;,
as SC; influences the beliefs in /G;. The “right” suppositions can bring the beliefs in
IG; closer to those in UserArg, while the “wrong” suppositions can pull them apart.

The more structural modifications are required and the higher the discrepancy between the
beliefs in /G; and those in UserArg, the lower the probability that a user who intended
1G; and supposed SC; said UserArg.

4 Positing suppositions

As stated in Sect. 2, the nodes in our BNs are binary. Hence, the possible supposition states
that BIAS can posit are: SET TRUE—suppose that a node is True; SET FALSE—suppose that
a node is False; and UNSET—suppose that a node has not been observed (i.e., ignore any
evidence supplied by this node). Making a supposition may strengthen the influence of the
antecedents of an inference on their consequent (as shown in the fourth segment in Fig. 2)
or weaken it.

A supposition configuration describes the state of every node in the BN, hence there are
3N such configurations (where N is the number of nodes in the BN). Since the number
of nodes in the BNs implemented in BIAS ranges between 32 and 85, we cannot consider
all possible supposition configurations, and we certainly cannot combine them with large
numbers of interpretation graphs in the next step of algorithm Generatelnterpretations. We
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Algorithm GetSuppositionConfig(UserArg)
1. If SuppositionConfigList is empty

a) Call MakeNewConfig(Supposition) K (=300) times, where each time
MakeNewConfig returns the best supposition configuration.

b) Assign the top k (=20) supposition configurations to SuppositionCon-
figList.
2. Select an element from SuppositionConfigList at random.

3. Return the chosen configuration.

Algorithm MakeNewConfig(ConfigType)

1. If the priority queue is empty, propose an initial configuration, calcu-
late its impact on the probability of an interpretation, and add the
configuration and its probability impact to the priority queue.

2. Remove the first configuration from the queue.

3. Generate the children of this configuration, calculate their probabil-
ity impact, and insert them in the queue so that the queue remains sorted
in descending order of the probability impacts of the configurations.

4. Return the chosen (removed) configuration.

Fig. 5 Algorithms for generating suppositions

therefore find promising supposition configurations by generating only a limited number of
supposition configurations that are close to the beliefs in the user model, and selecting from
these the best k configurations as the basis for the generation of interpretation graphs.

Next we present our procedure for generating supposition configurations (George et al.
2005), followed by the calculation of the contribution of a supposition configuration to the
probability of an interpretation.

4.1 Proposing supposition configurations

Algorithm GetSuppositionConfig (Fig. 5), which is called in Step 1 of algorithm Generate
Interpretations (Fig. 3), receives as input an argument UserArg and returns a supposition con-
figuration randomly selected from a short-list of £ (=20) configurations. This short-list, which
is denoted SuppositionConfigList, is generated by calling MakeNewConfig(Supposition) K
(=300) times, and selecting the best k configurations.

Algorithm MakeNewConfig, whichis called in Step 1(a) of GetSuppositionConfig, maintains
a priority queue of configurations and their probabilities. Each time it is called, it removes
the configuration at the top of the queue (which has the highest probability), generates its
“child configurations” (derived from the removed one), inserts them in the queue according
to their probability, and returns the removed configuration.* The boldfaced segments of the
algorithm are explained later in this section.

We have adopted this process for the generation of supposition configurations, because
observations of our system’s behaviour indicate that there are only a few promising supposi-
tion configurations among the many possible options, but these configurations generally do
not follow a monotonic pattern. Hence, a procedure that just descends a priority queue will
not yield good results reliably. Further, trials performed during system development show
that 20 promising configurations are sufficient to generate an appropriate interpretation in a

4 This algorithm is also used to generate interpretation graphs and node configurations that match NL
sentences, but here we focus on its use for generating supposition configurations.
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Table 1 Sample supposition score table

node nodes S nodezn

unset: 0.7 seT TRUE: 0.8 . unset: 0.7
seT TRUE: 0.21 unser:  0.15 seT TRUE: 0.15
seT FALSE: 0.09 seT FALSE: 0.05 . SET FALSE: 0.15

relatively short time, and that the top 300 supposition configurations (obtained by repeatedly
accessing the priority queue) provide a suitable basis for selecting these 20 configurations.’

The generation of supposition configurations and their children employs a structure called
Supposition Score Table, which maps nodes to suppositions (Table 1 shows a sample Supposi-
tion Score Table for a 32-node BN). Each column in the Supposition Score Table corresponds
to a node in the BN. Each node is associated with a list of three <supposition: probability >
tuples—one for supposing SET TRUE, one for SET FALSE and one for uUNSET—sorted in
descending order of probability. The probabilities for these tuples are obtained by applying
the following heuristics.

— No change is best: There is a strong bias towards not making suppositions that differ from
the beliefs in the user model.

— Users are unlikely to change their mind about observed evidence: If a user has observed
a node (i.e., its value is True or False), he or she is unlikely to change his or her belief in
this node.

— Small changes in belief are better than large changes: 1f a node that is left unset has a
high propagated belief, then it is more likely that the user is assuming it True than if its
propagated belief was lower.

4.1.1 Generating and using the supposition score table

The above heuristics are implemented by means of the probabilities in Table 2. The second
and third columns in Table 2 specify the probabilities of making suppositions about nodes that
have been observed by a user. For example, if the user knows that GreenInGardenAt11 = True,
then the probability of setting this node to True (leaving it unchanged) is 0.8, the probability
of unsetting this node is 0.15, and the probability of setting it to False is 0.05. The fourth col-
umn in Table 2 specifies the probabilities of making suppositions about nodes which have not
been observed by a user (i.e., nodes that are unset). As per the above heuristics, the bulk of the
probability mass (0.7) is allocated to leaving a node unset. The remainder of the probability
mass (0.3) is allocated as follows: 2/3 of this mass (Prg,uine = 0.2) is distributed between the
values True and False in proportion to the propagated probability of the node, and 1/3 of this
mass is distributed equally between True and False as a fixed component (Prfieq = 0.05 for
each value). This ensures that some probability mass is allocated to each value, i.e., the prob-
ability of setting a node to True or False can not go below 0.05. For instance, if the propagated
belief of unobserved node GreenHasMeans is Pr(GreenHasMeans) = 0.8, then the probability
of leaving it unset is 0.7, the probability of setting it to True is 0.8 x 0.2 + 0.05 = 0.21, and
the probability of setting it to False is 0.2 x 0.2 4+ 0.05 = 0.09. The probability assignments
in Table 2, which reflect a reluctance to posit suppositions that differ from the beliefs in the

5 The number of supposition configurations that should be generated for a particular BN would normally
depend on its size. However, an experimental study of the effect of number of configurations and BN size on
search performance is outside the scope of this research.
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Table 2 Probability of making suppositions

Probability Node was observed by the user Node was not observed by the user
Node = FALSE Node = TRUE

Pr(unseT) 0.15 0.15 Prynser (=0.7)

Pr(seT FALSE) 0.8 0.05 Pr(raLse) x Prﬂoating + Prﬁxed

Pr(seT TRUE) 0.05 0.8 Pr(TRUE) X Ptfoqring + Plfived

user model, were derived manually. They lead to a stable system behaviour, in the sense that
the system will posit a supposition that differs from the belief in a node only if it yields a
payoff, i.e., a substantially better match between the beliefs in an interpretation and those in
a user’s argument.

The Supposition Score Table is used by elements of algorithm MakeNewConfig (Fig. 5)
to generate supposition configurations as follows.
Propose an initial configuration (Step 1 of MakeNewConfig). Get the first row from the Suppo-
sition Score Table, which contains the supposition configuration with the highest probability.
For the Supposition Score Table in Table 1, this configuration is {node;: uxser, nodey: ser
TRUE, ..., node32: UNSET}.
Generate the children of a configuration (Step 3). The ith child is generated by mov-
ing down one place in column i in the Supposition Score Table, while staying in the
same place in the other columns. This process yields the following children for the ini-
tial configuration obtained from the Supposition Score Table in Table 1: {node;: ser trus,
nodey: ser TRUE, ..., node3y: unser}, {nodei: unser, nodey: unser, ..., nodesy: unser}, ...,
where the underlined node-supposition pair replaces an element in the parent supposition
configuration.

4.2 Estimating the effect of supposition configurations on the probability
of an interpretation

As seen in Eqgs. 5 and 6, the probability of an interpretation depends partly on the match
between the beliefs in /G; (influenced by the suppositions in SC;) and those in UserArg.
Thus, if SC; yields a better match between the beliefs in the interpretation and those in the
user’s argument, then Pr(beliefs in UserArg|SC;, beliefs in I G;) increases. As a result, the
“cost” incurred by the suppositions in SC; may be overcome by the “reward” resulting from
the better match between the beliefs. This cost-reward balance, which reflects the impact
of a supposition configuration on the probability of an interpretation, is represented by the
product

Pr(beliefs in UserArg|SC;, beliefs in 1G;) x Pr(SC;) (7)

This product determines the position of configuration SC; in the priority queue maintained
by algorithm MakeNewConfig (Fig. 5). Thus, the supposition configurations that yield the
best cost-reward balance among those considered so far are at the top of the queue (children
that are more promising may be discovered next time MakeNewConfig is called). The first
factor in this product appears in Eq. 6, and its calculation is summarized in Sect. 3.2. The
second factor appears in Eq. 5, and its estimation is described below.
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4.2.1 Estimating Pr(SC)

The prior probability of a supposition configuration, Pr(SC;), is the product of the probabili-
ties of the entries in the Supposition Score Table for the configuration in question. For instance,
the initial configuration selected above has probability 0.7 x 0.8 x - - - x 0.7, and configuration
{nodq: SET TRUE, nodeg: SET TRUE, * * *, n0d632: UNSET} has pI’Obabﬂity% x 0.8 x---x0.7.
Thus, the more SC; departs from the beliefs in the user model, the lower is Pr(SC;), thereby
reducing the overall probability of an interpretation which includes SC;.

4.3 Determining the effect of suppositions on interpretations

Our process for generating supposition configurations proposes promising configurations
in terms of improvements in the belief match between an argument and an interpretation.
However, it does not take into account other types of interactions which may cause locally
optimal supposition configurations and interpretation graphs to combine into interpretations
that are sub-optimal or even invalid as a whole. For example, consider a situation where a user
says A — G[Probably], and the most direct unblocked path between A and G in the BN is
A — B — C — G. Now, say that BIAS must suppose that proposition E is True in order to
obtain the user’s belief in G. This supposition in turn may unblock a shorter path between A
and G, yielding a better interpretation. Such global effects are considered during the evalua-
tion of an interpretation as a whole (Step 4 of algorithm Generatelnterpretations, Sect. 3.1).

5 Evaluation of suppositions

Our evaluation of the module for postulating suppositions was conducted as follows. We con-
structed four scenarios from one of our 32-node BNs: Crimson, Lemon, Sienna and Mauve
(Fig. 6). These scenarios test various supposition alternatives as follows. The Crimson and
Sienna scenarios required supposing that a node is True in order to strengthen the belief in
the goal proposition of an argument; the Lemon scenario required a True supposition in order
to unblock a path; and the Mauve scenario required unsetting or “forgetting” the value of a
node to weaken the belief in the goal proposition of an argument. Each scenario contained
background evidence (not shown in Fig. 6) and two versions of a short argument for a goal
proposition in our BN. One version (denoted “We think that”) stated the belief obtained for
the goal proposition by performing Bayesian propagation from the evidence, and the other
version (denoted “If someone says”) gave a different belief for this proposition. The trial
subjects were then asked to determine what this “someone” may be supposing in order to
account for his or her belief in the goal proposition.

We have used this “indirect” evaluation method (instead of having subjects interact freely
with the system) for several reasons. From a practical point of view, we wanted to focus on
a particular behaviour of the system (the postulation of suppositions) that does not occur for
every argument, and we wanted to remove extraneous factors (such as interface usability)
from the evaluation. From a theoretical standpoint, ideally B1As’ performance should be
comparable to that of people. That is, even if BIAS sometimes gets things wrong, its mistakes
should be plausible. Hence, a fair assessment of BIAS’ interpretations is whether they are
considered reasonable by other “addressees”.

Since the purpose of our evaluation is to determine whether BIAS generates sensible suppo-
sitions in the context of its domain knowledge, we needed to limit the suppositions available
to our trial subjects to the propositions known to B1as. However, at the same time, we did
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CRIMSON SCENARIO

We think that If forensics matched the bul-
lets in Mr Body’s body with the found gun,
then the suspect Mr Green possibly had the
means to murder Mr Body.

If someone says Forensics matching the bul-
lets with the found gun means Mr Green very
probably had the means to murder Mr Body.

LEMON SCENARIO
We think that If broken glass was found,
then Mr Body’s window probably wasn’t
broken from outside.

If someone says Broken glass being found
means Mr Bodyis window probably was bro-
ken from outside.

Then it would be reasonable to think that they are supposing .........

S1) Mr Green fired the gun found in the
garden.

S2) The gun found in the garden is the
murder weapon.

S3) Mr Green fired the murder weapon.

S4) Mr Green murdered Mr Body.

S1) Broken glass was found inside the win-
dow.

S2) The suspect Mr Green argued with Mr
Body last night.

S3) Mr Body was killed from outside the
window.

S4) Mr Green was in the garden at the time
of death.

S5) None of the above are suitable as suppositions. A more likely supposition
(in light of what our system understands) is ... [LINK TO LIST OF PROPOSITIONS]
S6) It is not appropriate to think they are supposing anything.

SIENNA SCENARIO

We think that If the suspect Mr Green was
in the garden at 11 o’clock last night, then
Mr Green possibly didnit have the opportu-
nity to murder Mr Body.

If someone says Mr Green being in the gar-
den at 11 o’clock last night means Mr Green
probably did have the opportunity to murder
Mr Body.

MAUVE SCENARIO

We think that If the suspect Mr Green
fired the murder weapon and the Bayesian
Times newspaper reported that Mr Body se-
duced Mr Green’s girlfriend, then Mr Green
probably murdered Mr Body.

If someone says Despite Mr Green firing
the murder weapon and the Bayesian Times
newspaper reporting that Mr Body seduced
Mr Green’s girlfriend, it is only even chance
that Mr Green murdered Mr Body.

Then it would be reasonable to think that

they are supposing ....................
S1) The time of death was 11 o’clock.

S2) Mr Green was in the garden at the time
of death.

S3) The time of death was NOT 11 o’clock.

S4) Mr Green’s ladder was found at the
bedroom window.

S5) None of the above are suitable
as suppositions. A more likely supposition

they have forgotten or ignored ..........
S1) The neighbour heard Mr Green argue
with Mr Body last night.

S2) Bullets were found in Mr Body’s body.

S3) The time of death was 11 o’clock.

S4) Broken glass was found inside the win-
dow.

S5) They have made a supposition, not for-
gotten evidence. The most likely supposition

(in light of what our system understands) is ... [LINK TO LIST OF PROPOSITIONS]

S6) It is not appropriate to think they are
supposing anything.

S6) It is not appropriate to think they are
supposing or forgetting anything.

Fig. 6 Scenarios for user trials for suppositions

not wish to burden our subjects with the need to look through B1as’ knowledge base to find
out what B1AS knows. Additionally, we wanted to allow respondents some freedom to state
their views, if they disagreed with B1as’ suppositions. These requirements were addressed
by presenting our subjects with the following options (Fig. 6): (S1-S4) a list of four candidate
suppositions (one was the top supposition recommended by BIAS, and most of the others
were considered by BIAS to be reasonable options); (S5) an option to include an alternative
supposition (the subjects were provided a link to a list containing the propositions in the BN,
but could also write a supposition of their own); and (S6) an option to state that they didn’t
believe that any suppositions were required.
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Table 3 Ranking of candidate suppositions for the four scenarios

Total R1 R2 Other
CRIMSON SCENARIO
Supposition S1 20 10 8 2
Supposition S2 18 11 3 4
Total responses 75 34 21 20
LEMON SCENARIO
Supposition S1 30 30 0 0
Supposition S3 11 0 11 0
Total responses 51 34 12 5
SIENNA SCENARIO
Supposition S1 + S3 30 20 6 4
Supposition S4 16 7 6 3
Total responses 69 34 19 16
MAUVE SCENARIO
Supposition S1 25 19 4
Supposition S5 14 8 5 1
Total responses 62 34 16 12

The order of presentation of the suppositions was randomized across the scenarios. How-
ever, for the discussion in this paper, BIAS” preferred supposition was re-labeled S1. The trial
subjects had to award a rank of 1 to one option and could optionally rank additional alterna-
tives (with inferior ranks). This allowed respondents to ignore suppositions that didn’t make
sense to them, while enabling them to include more than one option that seemed reasonable.
At the same time, the results obtained by this method enable us to determine whether BIAS’
suppositions are considered sensible, even if they are not our subjects’ top-ranked preferences.

Our four scenarios were considered by 34 participants. Many of the respondents had not
been exposed to BIAS previously and were from outside academia. The responses for the
Lemon and Mauve scenarios were clearly positive, while the responses for the Crimson and
Sienna scenarios were more ambiguous, but still positive. The results for these scenarios
are shown in Table 3. The columns contain the total number of respondents that ranked a
supposition (Total), and the number of respondents that ranked it first (R1), second (R2) or
gave it a lower rank (Other). The top two rows for each scenario contain the suppositions
that were preferred by the trial subjects, and the bottom row lists the total responses for each
scenario and for the different ranks (recall that the only rank that had to be given was 1). Our
results are summarized below.

— Supposition S1 was clearly the most favoured choice for the Lemon scenario, with 30 of
the 34 respondents ranking it first. Supposition S3 was clearly the next best choice, with
11 trial subjects giving it rank 2.

— Supposition S1 was the preferred choice for the Mauve scenario, with 19 of the 34 respon-
dents giving it a rank of 1. The next best choice was an alternative supposition (S5), with
only 8 subjects ranking it first. There were no clear preferences for rank 2, with all options
receiving this rank at least once, but never more than five times.

— Suppositions S1 and S2 for the Crimson scenario were similarly ranked (each ranked first
by about 1/3 of the subjects), with Supposition S1 being favoured slightly over S2 for the
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first two ranks, but not significantly so. The other options were ranked first only by a few
trial subjects.

— The responses for the Sienna scenario presented us with a special case. The comments
provided by our trial subjects indicated that there was some confusion due to the wording
of the instructions combined with the fact that, unlike the other scenarios, the Sienna sce-
nario included a True and a False version of the same node (Supposition S1 was “The time
of death was 11 pm last night” and S3 was the negation of S1). Further, Supposition S3
supports the “We think that” version, while S1 supports the “If someone says” version. As
a result, most of the respondents were divided between giving a rank of 1 to Supposition
S1 or Supposition S3. Nonetheless, the main outcome from this scenario is that regardless
of how the respondents read it, they clearly felt that a supposition had to be made about
the “time of death” node, which was ranked first by 20 of the 34 respondents.

— Overall, very few trial subjects felt that no suppositions were warranted (9 for all the sce-
narios combined). Further, BIAs’ preferred supposition was consistently ranked first or
second, with its average rank being the lowest (best) among all the options.

These results show the importance of making suppositions, and indicate that the supposi-
tions posited by BIAS not only are considered reasonable by people, but also have significant
support.

6 Proposing explanatory extensions

In early trials with our system (Zukerman and George 2005), users objected to inferences
where

— the consequent had a greater degree of certainty than its antecedents, e.g., “Mr Green
probably had the means to murder Mr Body. Therefore, Mr Green very probably murdered
Mr Body”; or

— the belief in the consequent was substantially different from the belief in its antecedents
(even if there was a reduction in the level of certainty), e.g., “Mr Green probably being in
the garden at 11 implies that it is even chance that Mr Green was in the garden at the time
of death”.

Sometimes such objectionable inferences are caused by unintuitive inference patterns. These
patterns, which are encoded in the Conditional Probability Tables (CPTs) of the arcs that
connect the antecedents of an inference with the consequent, may be justified by explaining
the CPTs in question (a task that is outside the scope of this research). However, many objec-
tionable inferences may be explained by influences from nodes that are not part of BIAS’
initial interpretation. We postulate that users may have implicitly considered these nodes
when constructing their arguments, and hence including these nodes in the objectionable
inferences in an interpretation would turn them into acceptable inferences. Such inclusions
constitute explanatory extensions.

‘We then conducted another survey to determine the types of inferences preferred by people
from the standpoint of the relationship between the consequent and the antecedents. Our sur-
vey was restricted to monotonic inferences, where a high/low probability for an antecedent
yields a high/low probability for the consequent. The results from our preliminary survey
prompted us to distinguish between three types of acceptable inferences for this new survey:
BothSides, SameSide and AlmostSame.°

6 Additional categories are required for “inverse” inferences, where a low/high probability antecedent yields
a high/low probability consequent, but they are not discussed in this paper for clarity of exposition.
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— BothSides inferences have antecedents with beliefs on both “sides” of the consequent (in
favour and against), e.g.,

A[VeryProbably] & B[ProbablyNot] implies C[EvenChance].

— All the antecedents in SameSide inferences have beliefs on “one side” of the consequent,
but at least one antecedent has the same belief level as the consequent, e.g.,
A[VeryProbably] & B[Possibly]| implies C[Possibly].

— All the antecedents in AlmostSame inferences have beliefs on one side of the consequent,
but the closest antecedent is one level “up” from the consequent, e.g.,

A[VeryProbably] & B[Possibly] implies C[EvenChance].

Our survey considered inferences in three domains: burglary, going to the beach, and a court
case. Our results showed that people prefer BothSides inferences to the other categories.
They also prefer SameSide to AlmostSame for antecedents with beliefs in the negative range
(VeryProbablyNot, ProbablyNot, PossiblyNot); and they do not distinguish between SameSide
and AlmostSame for antecedents with beliefs in the positive range. Further, BothSides infer-
ences with three antecedents were preferred to SameSide inferences with two antecedents,
indicating that persuasiveness carries more weight than parsimony.

We now present our mechanism for identifying objectionable inferences, and generating
explanatory extensions according to the above preferences. We then estimate the probabilities
in Eq. 5 (Sect. 3.2) that are affected by these extensions.

6.1 Proposing explanatory extensions

Algorithm GetExplanatoryExtensions (Fig. 7), which s called in Step 3 of algorithm Gener-
atelnterpretations (Fig. 3), receives as input a supposition configuration and an interpretation
graph, and returns a (possibly empty) set of explanatory extensions to be added to inferences
in the graph. To this effect, it performs the following actions for each inference. First, it acti-
vates algorithm IsNonSequitur to determine whether the inference is objectionable (according
to user opinions expressed in our preliminary trials). If so, it calls algorithm GetBestCategory
to propose a set of BN nodes that could defuse or mitigate the objection. GetBestCategory
returns the best non-empty set of such nodes according to the preferences expressed by our
survey participants. Unlike the process used to generate supposition configurations and inter-
pretation graphs, the generation of explanatory extensions is deterministic, producing at most
one explanatory extension (comprising one or more nodes) for each objectionable inference
in the interpretation graph.

Algorithm IsNonSequitur receives as input an inference composed of antecedents and a
consequent, and checks whether (a) the consequent has a greater degree of certainty than the
most certain antecedent, or (b) the consequent has a lower level of certainty than the least
certain antecedent, and the belief in this consequent is substantially different from the belief
in this antecedent. As indicated in Sect. 3, beliefs are specified in terms of our seven linguistic
belief categories, denoted Bel/Cat. These are {VeryProbably, Probably, Possibly, EvenChance,
PossiblyNot, ProbablyNot, VeryProbablyNot}.

Algorithm GetBestCategory receives as input an inference that was identified as a non-
sequitur, an interpretation graph and a supposition configuration, and proposes BN nodes
that explain the non-sequitur. Our algorithm restricts its attention to nodes that (a) are infor-
mative, i.e., their belief stems from independent evidence; (b) are not in the interpretation
graph or in previously generated explanatory extensions; and (c) are closely related to the
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Algorithm GetExplanatoryExtensions(SC,IG)
For each Inference € IG
If IsNonSequitur(Inference) Then

1. EE < GetBestCategory(Inference,SC,IG)
2. Include EE in Inference

Algorithm IsNonSequitur(Inference)
Let Inference = [ {Antecedents}— Consequent ]
If the Consequent is more certain than the Antecedents OR
{ the Consequent is less certain than the least certain Antecedent AND
| BelCat (Consequent) — BelCat(least certain Antecedent)| > 1}
Then Inference is a NonSequitur

Algorithm GetBestCategory(Inference,SC,IG)
Let Inference = [ {Antecedents}— Consequent |

1. For each Sibling of {Antecedents}, such that
Sibling €1G AND Sibling ¢ a previous explanatory extension
If IsInformative(Sibling) Then add Sibling to InformativeSiblings

2. For each sibling in InformativeSiblings, determine the category of the re-
sultant inference if that sibling was included in the inference (BothSides,
SameSide, AlmostSame or SmallNonSeq, which is explained below).
Siblings outside these categories are ignored.

3. Return all the siblings in the best non-empty category according to the
following preference ordering: BothSides - SameSide - AlmostSame -
SmallNonSeq.

Algorithm IsInformative(Sibling)

If { Sibling is an evidence node OR
There is an unblocked path outside the interpretation graph
from an evidence node to Sibling }

Then Sibling is an InformativeSibling

Fig. 7 Algorithms for adding explanatory extensions to an interpretation

argument, specifically we focus on nodes with a link to the consequent of the offending
inference (i.e., siblings of the antecedents).

Algorithm IsInformative receives a node as input, and determines whether there is inde-
pendent evidence for its belief. For instance, as shown in Fig. 1 and in the first segment of
Fig. 2, there is independent evidence supporting —GreenHasMeans, but there is no indepen-
dent evidence for or against GreenHasMotive. Hence, as seen in the last segment of Fig. 2,
only GreenHasMeans[ProbablyNot] was added to the interpretation to explain the drop in belief
from GreenHasOpportunity[Possibly] to GreenMurderedBody[PossiblyNot].

To illustrate these algorithms, consider the following interpretation graph obtained from
the BN in Fig. 1: GreenInGarden[Probably] — GreenlnGardenAt11[VeryProbably] — Green
InGardenAtTimeOfDeath[VeryProbably]. The first inference in this graph is a non-sequitur,
as there is an increase in certainty. Hence, an explanatory extension is required. The sib-
lings of the antecedent of this inference are GreenInGardenAtTimeOfDeath, WitnessSawGreen
AtFootballAt10:30 and NbourSawGreenAroundGardenAt11. However, only the last sibling meets
all the above conditions (the first sibling is already in the interpretation graph, and there is
no evidence regarding the second sibling). Hence only NbourSawGreenAroundGardenAt11 is
added to InformativeSiblings.

After the informative siblings have been identified, algorithm GetBestCategory deter-
mines how including each of these siblings in an objectionable inference would influence its
acceptability. That is, whether a sibling would turn the inference into a BothSides, SameSide,
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(a) Large drop in certainty, decrease in belief: creating a BothSides inference
Mr Green had the means to murder Mr Body [Probably]
BUT [EE] Mr Green had the opportunity
to murder Mr Body [PossiblyNot]
IMPLIES
Mr Green murdered Mr Body [EvenChance]

(b) Increase in certainty, increase in belief: creating a SameSide inference
Mr Green visited Mr Body last night [PossiblyNot]
BUT [EE] Mr Green was in the garden
at the time of death [VeryProbably]
IMPLIES
Mr Green had the opportunity to murder Mr Body [VeryProbably]

Fig. 8 Explanatory extensions added to sample interpretations

AlmostSame or SmallNonSeq inference (or none of these, in which case the sibling is dis-
carded). The SmallNonSeq category, which was not defined before, comprises siblings that
improve an inference, but not enough to make it acceptable. This category extrapolates from
the results of our survey, in that the inclusion of siblings from this category presumes that a
small departure from what is considered acceptable is less offensive than a large departure.’
The algorithm then returns all the siblings in the most preferred non-empty category, where
BothSides > SameSide > AlmostSame > SmallNonSeq.

Itis worth noting that our categorization of siblings considers only the belief in the siblings,
assuming that their influence on the consequent of the inference in question is monotonic
(i.e., the higher the belief in the sibling, the stronger its influence on the consequent). That is,
we do not consider the impact of a sibling in the context of other nodes linked to the conse-
quent. For instance, it is possible that due to the configuration of the CPTs for the inference, a
BothSides sibling has less impact on the belief in the consequent than a SameSide sibling. A
promising approach for addressing this problem consists of incorporating into our inference
categories a probabilistic formulation of the impact of a node (Zukerman et al. 2000).

6.1.1 Examples

To illustrate the workings of algorithm GetExplanatoryExtensions, consider the inferences
in Fig. 8. These inferences are non-sequiturs, which are defused by explanatory extensions.

The inference in Fig. 8a illustrates a large drop in certainty and a decrease in belief.
It goes from “Mr Green probably having the means to murder Mr Body” to “Mr Green
may be (even chance) murdering Mr Body”. Our algorithm examines the siblings of Gree-
nHasMeans, which are BodyWasMurdered, GreenHasMotive and GreenHasOpportunity (Fig. 1).
There is no independent evidence for GreenHasMotive, so it is not an InformativeSibling.
The other two siblings are informative. In this example, BodyWasMurdered has a belief of
VeryProbably, which is obtained from the evidence node BulletsFoundinBody’sBody [VeryProb-
ably] by Bayesian propagation. However, BodyWasMurdered does not fit the four categories
of interest, as its belief is higher than that of the antecedent. Hence, it is dropped from con-
sideration. GreenHasOpportunity has a belief of PossiblyNot derived from the evidence nodes
NbourSawGreenAroundGardenAt11 and TimeOfDeath11, which in this example have a belief
of VeryProbablyNot and VeryProbably respectively. Hence, GreenHasOpportunity is added to the
interpretation as an explanatory extension that yields a BothSides inference.

7 Our trial focused on the acceptance of interpretation graphs. Therefore, users were not asked to compare
between different types of non-sequiturs.
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The inference in Fig. 8b illustrates an increase in certainty and an increase in belief. It
goes from “Mr Green possibly not visiting Mr Body last night” to “Mr Green very prob-
ably having the opportunity to murder Mr Body”. Our algorithm considers the siblings of
GreenVisitBodyLastNight, which are BodyKilledFromOutsideWindow, GreenMurderedBody and
GreenlnGardenAtTimeOfDeath (Fig. 1). In this example, the first two siblings have a belief of
EvenChance, which puts them in the SmallNonSeq category, while GreeninGardenAtTimeOf-
Death has a belief of VeryProbably, which puts it in the SameSide category. Hence it is added
as an explanatory extension.

6.2 Estimating the effect of explanatory extensions on the probability of an interpretation

According to Eq. 5 (Sect. 3.2), explanatory extensions affect the probability of an interpre-
tation through the following product, which expresses a cost-reward balance similar to that
described in Eq. 7 (Sect. 4.2) for supposition configurations.

Pr(beliefs in 1G;|SC;, struct of 1G;, EE;) x Pr(EE;|SC;, struct of 1G;) (8)

Pr(EE;|SC;, struct of 1G;) represents the cost incurred by presenting explanatory exten-
sions, and Pr(beliefs in 1 G;|SC;, struct of 1G;, E E;) represents the reward due to the elim-
ination or reduction of non-sequiturs. The calculation of these factors appears in Appendix A.
Below we summarize the results of these calculations and illustrate them with an example.

6.2.1 Estimating Pr(beliefs in IG|SC, struct of IG, EE)

The calculation of the probability of the beliefs in /G is described in Appendix A.1. This
probability is not about the beliefs themselves in the domain BN. Rather, it is about the
extent to which the inferences that yield these beliefs satisfy people’s preferences about the
relationship between the antecedents of these inferences and their consequent. Inferences
which reflect people’s preferences are more probable than inferences which do not reflect
these preferences.

These preferences are represented in the three types of acceptable inferences gleaned
from our surveys: BothSides, SameSide and AlmostSame. These inference categories specify
a range of beliefs considered acceptable for the consequent of an inference given its ante-
cedents. We call this range an acceptable range. For example, an inference with antecedents
A[Probably] & B[Possibly] has the acceptable range {Probably, EvenChance} (an acceptable
belief for its consequent is Probably, Possibly or EvenChance). The probability of an inference
whose consequent falls within the acceptable range is higher than the probability of an infer-
ence whose consequent falls outside this range. In addition, we extrapolate from the results
of our survey, and posit that the probability of an objectionable inference decreases as the
distance of its consequent from the acceptable range increases. For example, the probability
of A[VeryProbably] implies B[Possibly] is higher than the probability of A[/VeryProbably]
implies B[PossiblyNot], as the acceptable range is {VeryProbably,Probably}, and Possibly is
closer to this range than PossiblyNot.

Following Zukerman and George (2005), we use the Zipf distribution to model the prob-
ability of an inference, but extend that model to reflect the fact that the acceptable range may
comprise more than one belief category. The probability of the beliefs in an interpretation
graph is then obtained by multiplying the belief probabilities for the inferences in the graph.
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Possibly
EvenChance Not

o VeryProbably {E )

EvenChance
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D) P I
D e robably

(a) Interpretation 1 (b) Interpretation 2

Fig. 9 Two interpretations with explanatory extensions

6.2.2 Estimating Pr(E E|SC, struct of 1G)

The calculation of the probability of an explanatory extension is described in Appendix A.2.
This calculation is based on the following heuristics:

— Users prefer short explanations, but not at the expense of persuasiveness. This heuristic
implements the Gricean Maxim of Brevity (Grice 1975) in combination with the feedback
given by our survey respondents. Following Zukerman and George (2005), we model this
heuristic using a truncated Poisson distribution, Poisson(u), where p is the average num-
ber of nodes in an explanatory extension. We use 1 = 1.5, which penalizes explanatory
extensions with many nodes.

— Explanatory extensions that yield BothSides inferences are preferred over explanatory
extensions that yield SameSide or AlmostSame inferences, which are much preferred over
explanatory extensions that produce SmallNonSeq inferences. This heuristic reflects our
subjects’ feedback for antecedents with beliefs in the positive range (a similar heuristic
exists for beliefs in the negative range). It is modelled by means of a manually-generated
probability distribution that assigns a probability to an inference category according to
people’s preferences, i.e., higher preferences yield higher probabilities. However, it is
worth noting that these preferences are qualitative, hence similar probability assignments
may also work well.

Thus, the probability of a short explanatory extension that generates a BothSides inference is
higher than that of a long explanatory extension that generates an AlmostSame inference. In
contrast, the probability of a long BothSides explanatory extension could be similar to that
of a short AlmostSame extension.

6.2.3 Example

Figure 9 illustrates the generation of explanatory extensions for the simple argument A — G.
The interpretation graphs differ in the BN node that was included to connect between the
antecedent and the consequent. In addition, in Interpretation 1, the inference between node
B and node G is objectionable, while in Interpretation 2, the inference between node A and
node C is objectionable. Algorithm GetExplanatoryExtensions deterministically proposes
the best explanatory extension for the objectionable inference in each interpretation. This
turns the second inference of Interpretation 1 into a SameSide inference, and the first infer-
ence of Interpretation 2 into a BothSides inference. The probabilities of these explanatory

@ Springer



462 S. George et al.

extensions are then incorporated in the calculation of the overall probability of the interpre-
tations, and the interpretation with the highest probability is selected. In this example this is
Interpretation 2.

7 Evaluation of explanatory extensions

Our evaluation of the module for adding explanatory extensions was conducted as follows. We
constructed two evaluation sets from two 32-node BNs, each consisting of a short argument
and two alternative interpretations, one with explanatory extensions and one without (Fig. 10).
The evaluation sets represented the following two conditions: in the first set, the interpreta-
tion without explanatory extensions had a small increase in belief, and in the second set, the
interpretation without explanatory extensions had a large decrease in belief.

The two evaluation sets were shown to 20 subjects, who exhibited diverse levels of com-
puter literacy. In our experiment, we first gave our subjects a definition and example of an
interpretation, and told them that the aim of the experiment was to compare two methods for
presenting BIAS argument interpretations. We then showed them the arguments and interpre-
tations in Fig. 10, but we inverted the order of presentation of the interpretations in Fig. 10b.

Our trial subjects clearly favoured the interpretations with explanatory extensions, which
were preferred by 57.5% of the subjects, compared to 37.5% of the subjects who preferred
the interpretations without such extensions, and 5% who were indifferent. Despite their clear
preference for interpretations with explanatory extensions, 45% of the subjects felt that the
extended interpretations were too verbose, while 17.5% thought that the extended inter-
pretations still lacked information. Only 7.5% of the trial subjects thought that the short
interpretations were already too verbose. These results indicate that the subjects preferred
to know more about the system’s reasoning, but had some problems with its presentation.
These problems may be partially attributed to the presentation of the nodes as full canon-
ical sentences (direct renditions of the propositional content of a node), which makes the
interpretations appear repetitive in style, and hence may have an adverse influence on accep-
tance. The generation of stylistically diverse text is the subject of active research in Natural
Language Generation, e.g., (Paiva 1999; Gardent and Kow 2005).

8 Generalizability: The Chest Clinic BN

As mentioned in Sect. 2, our implementation currently assumes that the nodes in the BN
are binary. This assumption limits the BNs on which our formalism can be immediately
applied, as most BNs are not entirely binary (the relaxation of this assumption is discussed in
Sect. 10). The Netica website contains a few binary BNs, of which we found that the 8-node
Chest Clinic BN (also known as Asia) was immediately usable (Fig. 1 .8

Despite its small size, the Chest Clinic BN illustrates the behaviour of our procedures
for proposing suppositions and generating explanatory extensions. Table 4 shows the four
short arguments we devised to test this BN, together with BiAS’ preferred interpretations.
After performing Bayesian propagation from the instantiated nodes (the antecedents of the
arguments), all the arguments yielded a belief of EvenChance in the consequent. Hence, all

8 Other binary BNs are the 6-node Fire BN, the 8-node Neapolitan90 BN, the 23-node Boerlage BN, and
the 76-node Win95pts BN. However, the first BN is too small, the nodes in the second are just letters of the
alphabet, the third also represents a fictional story like ours, and the last requires domain-specific knowledge
to follow the arguments.
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(a) ARGUMENT

The neighbour seeing Mr Green in the garden at 11 implies that
it is very probable that Mr Green had the opportunity to murder Mr Body

Interpretation Graph only

The neighbour seeing Mr Green in the gar-
denat 11

IMPLIES

It is probable that Mr Green was in the
garden at 11

IMPLIES

It is very probable that Mr Green was in the
garden at the time of death

IMPLIES

1t is very probable that Mr Green had the
opportunity to murder Mr Body

Interpretation Graph +

Explanatory Extension

The neighbour seeing Mr Green in the gar-
denat 11

IMPLIES

It is probable that Mr Green was in the
garden at 11

TOGETHER WITH

The neighbour hearing Mr Green and Mr
Body argue late last night

AND

The time of death being 11

IMPLIES

It is very probable that Mr Green was in the
garden at the time of death

IMPLIES

It is very probable that Mr Green had the
opportunity to murder Mr Body

(b) ARGUMENT

A gun was found in the garden and forensics matched Mr Green’s fingerprints
with those on the gun, but Mr Green possibly did not murder Mr Body

Interpretation Graph only

A gun was found in the garden AND
Forensics matched the fingerprints on the
gun with Mr Green

IMPLIES

Mr Green very probably was in the garden

THEREFORE
It is possible that Mr Green was not in the
garden at 11

Interpretation Graph +

Explanatory Extension

A gun was found in the garden AND
Forensics matched the fingerprints on the
gun with Mr Green

IMPLIES

Mr Green very probably was in the garden
BUT

The neighbour did not hear Mr Green argue
with Mr Body late last night

THEREFORE

It is possible that Mr Green was not in the
garden at 11

IMPLIES IMPLIES

He possibly was not in the garden at the time ~ He possibly was not in the garden at the time
of death of death

IMPLIES IMPLIES

It is possible that Mr Green did not have the
opportunity to murder Mr Body

IMPLIES

Mr Green possibly did not murder Mr Body

It is possible that Mr Green did not have the
opportunity to murder Mr Body

IMPLIES

Mr Green possibly did not murder Mr Body

Fig. 10 Arguments and interpretations in user trials for explanatory extensions

the interpretations required the postulation of suppositions to obtain the beliefs stated for the
consequents.

The interpretations of the third and fourth arguments include the supposition as an explan-
atory extension (once a supposition has been added to the user model, it may be used as an
explanatory extension). In the third argument, the supposition explains the large difference
in belief between the antecedent and the consequent in the first inference. In the fourth
argument, the supposition explains the increase in certainty that takes place between the
antecedent and the consequent in the second inference. In addition, the supposition influ-
ences Dyspnea, which is included as an explanatory extension for the first inference, turning
it into an AlmostSame inference.
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Visit To Asia Smoking
visit 1.00) & & & smoker 50.0
no visit  99.0 — non smoker  S0.0 j—
Tuberculosis Lung Cancer Bronchitis
present  1.04| : : ¢ present 550N @ ¢ : present 450 B
absent 99,0 j— absent 945 — absent 55.0 —

X P
Tuberculosis or Car!oezr :

true 6.48
false 93.5

Chest Clinic

N

(C) Contributing Factors
XRay Result Dyspnea )
abnormal 11.0m: : | present  43.6 O Oiseases
normal 89.0 absent  56.4 - O symptoms

Fig. 11 ChestClinic BN

Table 4 Four arguments and interpretations for the Chest Clinic BN

Argument/Interpretation

Argument 1 Smoking =imply= LungCancer [Possibly]
Interpretation Supposing that XrayAbnormal

Smoking =imply= LungCancer [Possibly]
Argument 2 XrayAbnormal =imply= LungCancer [Possibly]
Interpretation Supposing that Smoker

XrayAbnormal =imply=> TBorCancer [Probably]
TBorCancer [Probably] =imply= LungCancer [Possibly]

Argument 3 Despite XrayAbnormal, LungCancer [ProbNot]

Interpretation Supposing that NOT Dyspnea
Although XrayAbnormal, Not Dyspnea =imply= TBorCancer [ProbNot]
TBorCancer [ProbNot] =imply=> LungCancer [ProbNot]

Argument 4 Despite XrayAbnormal, LungCancer [VeryProbNot]

Interpretation Supposing that NOT Smoker
Although XrayAbnormal, Dyspnea [PossiblyNot] =imply=- TBorCancer [ProbNot]
TBorCancer [ProbNot] + Non Smoker =imply=> LungCancer [VeryProbNot]

9 Related research

An important aspect of discourse understanding involves filling in information that was
omitted by the interlocutor. In this paper, we have identified three types of such omitted
information: inferential gaps, suppositions and unstated information, and we have presented
a process that integrates the mechanisms for filling in this information in the context of an
argumentation system. Our process is based on (1) an anytime algorithm that searches for
candidate argument interpretations, (2) a probabilistic formulation for the evaluation of these
interpretations, and (3) a BN for reasoning about the domain.

Our original version of BiAs featured the BN representation, and applied the probabi-
listic formulation to evaluate interpretations that fleshed-out intermediate reasoning steps
omitted by a user (Zukerman et al. 2003; Zukerman and George 2005). The need to postu-
late suppositions and explanatory extensions was determined during the evaluation of that
system. A preliminary algorithm for proposing explanatory extensions was presented in
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Zukerman et al. (2004), but it was not integrated with our probabilistic process. Our anytime
algorithm was described in George et al. (2004), and our procedure for positing suppositions
in George et al. (2005).

In this section, we focus on research related to our work on positing suppositions and
proposing explanatory extensions (research related to the other aspects of our system was
discussed in Zukerman and George 2005).

Our approach offers an abductive account of a user’s argument. Such accounts have been
provided by several researchers for different discourse interpretation tasks, (e.g., Ng and
Mooney 1990; Hobbs et al. 1993; McRoy and Hirst 1995). Our work resembles that of these
researchers in its postulation of assumptions, and its use of expectations (which in our case
are prior probabilities) to guide the selection of an interpretation. However, there are signifi-
cant differences between our work and theirs. Hobbs et al. focused on problems of reference
and disambiguation in single sentences, and McRoy and Hirst considered the identification
of speech acts in a dialogue. Both of these tasks propose a model that explains a single datum.
In contrast, like Ng and Mooney, our model explains relational information, i.e., discourse
consisting of several propositions. However, Ng and Mooney apply a coherence heuristic to
select an explanation for a user’s discourse, while our selection process is based on a probabi-
listic framework that incorporates people’s preferences. Additionally, the above researchers
employ a logic-based formalism for the selection of an interpretation, while our approach is
probabilistic.

BN have been used in several plan recognition tasks, e.g., (Charniak and Goldman 1993;
Gertner et al. 1998; Horvitz and Paek 1999). Charniak and Goldman'’s system handled com-
plex narratives. It automatically built and incrementally extended a plan recognition BN from
propositions read in a story, so that their BN represented a probability distribution over the
set of possible explanations for these propositions. The most likely interpretation for a set of
actions in the story was then selected. We also select the interpretation with the highest pos-
terior probability. However, we use a domain BN to constrain our understanding of a user’s
argument. Further, our inclusion of suppositions in an interpretation is motivated by discrep-
ancies between the user’s stated beliefs and those obtained in the BN, and our inclusion of
explanatory extensions is motivated by inferences that people find objectionable. Gertner et
al. used BN to represent solutions of physics problems. After observing an action performed
by a student, their system (Andes) postulated candidate interpretations, each hypothesizing
subsequent actions, and selected the interpretation with the highest probability (subject to
tie-breaking heuristics). Horvitz and Paek used BN at different levels of an abstraction hier-
archy to infer a user’s goal in information-seeking interactions with a Bayesian Receptionist.
Our mechanism for proposing suppositions could be applied to both Gertner et al.’s work
and Horvitz and Paek’s work to explain outcomes that differ from those predicted by their
system.

Despite the pervasiveness of BNs, the explanation of the reasoning performed by a BN
has been considered only by a few researchers (Druzdzel 1996; McConachy et al. 1998;
Jitnah et al. 2000). Druzdzel and McConachy et al. studied different aspects of the presen-
tation of BNs. Druzdzel focused on the reduction of the number of variables being consid-
ered, verbal expressions of uncertainty, and qualitative explanations, which were generated
by tracing the influence of the nodes in a BN. McConachy et al. applied attentional mod-
els to the construction of probabilistic arguments, and studied probabilistic argumentation
patterns and argumentation strategies. Jitnah et al. extended this work to the selection of
strategies for rebutting users’ rejoinders to the system’s arguments, relying on a measure
related to mutual information to determine the influence of a rejoinder node on the argument
(Zukerman et al. 2000). The presentations produced by the last two systems hinged on
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discrepancies between the system’s beliefs and the user’s. Such discrepancies may be inferred
by BIAS’ procedure for positing suppositions, enabling the combination of these systems.
Further, an interesting avenue for future research would involve incorporating models based
on attention and mutual-information into our probabilistic formalism for deciding which
nodes to include in an explanatory extension.

The research reported by Joshi etal. (1984), van Beek (1987) and Zukerman and McConachy
(2001)) considers the addition of information to planned discourse to prevent or weaken
a user’s erroneous inferences from this discourse. Our mechanism for adding explanatory
extensions to an interpretation prevents inferences that people find objectionable due to jumps
in belief. Since such non-sequiturs may also be present in system-generated arguments, the
approach presented here may be incorporated into argument-generation systems.

Several researchers have considered presuppositions, a type of suppositions implied by
the wording of a statement or query (Kaplan 1982; Motro 1986; Mercer 1991; Gurney et al.
1997). For instance, “How many people passed CS101?” presupposes that CS101 was offered
and that students were enrolled in it (Kaplan 1982). Mercer used default logic together with
lexical information to identify a speaker’s presuppositions. Gurney et al. used active logic plus
syntactic and lexical information to update the discourse context presupposed by an utterance.
Kaplan considered the information in a database and applied language-driven inferences to
identify presumptions in database queries, and generate indirect cooperative responses, €.g.,
“CS101 was not offered” rather than “nobody passed CS101”. Motro extended this work
using information about the database, such as integrity constraints, in addition to the infor-
mation in the database. The presuppositions considered by these researchers are typically
few and can be unequivocally inferred from the wording of a single statement. In contrast,
the suppositions considered in this paper are postulated to justify beliefs stated by a user that
differ from what our system thinks that the user believes. Furthermore, there may be several
alternative suppositions that explain a user’s statements, and their probability depends on the
other beliefs held by the user.

Our work on positing suppositions is also related to research on the recognition of flawed
plans (Quilici 1989; Pollack 1990; Chu-Carroll and Carberry 2000), in the sense that we
attempt to justify a user’s statements (i.e., why does the user think X?). Pollack focused
on invalid plans in the context of a consultation system that generated helpful responses.
In order to infer these plans, her system assumed the availability of a model of the user’s
beliefs, including erroneous beliefs. Such a model is produced by B1as from the user’s inter-
action with the system (Zukerman and George 2005) and by positing suppositions. Quilici
investigated the recognition of plan-oriented misconceptions in advice-seeking dialogues.
This was done by applying a set of justification rules that started from a user’s stated belief
and arrived at a supporting, possibly erroneous premise. Chu-Carroll and Carberry applied a
plan-based approach to identify erroneous beliefs that account for a user’s statements during
conflict-resolution dialogues. They then selected propositions to be mentioned by their sys-
tem in its counter-argument based on the envisaged impact of candidate propositions on the
user’s erroneous statements. The main difference between B1AS and the last two systems is
that they infer a plan from a user’s utterances and context, and use the plan itself to postulate
the user’s beliefs that differ from the system’s beliefs. In contrast, BIAS infers a Bayesian
subnet, rather than a plan, from the user’s utterances, and considers its entire user model
when postulating discrepant beliefs (i.e., suppositions). In addition, in BIAS, the selection of
a supposition is integrated into our probabilistic formalism for choosing an interpretation,
instead of being performed as a stand-alone operation.
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10 Discussion

We have offered an integrated approach for the generation of argument interpretations in
the context of a Bayesian argumentation system. Our interpretations, which are viewed as
explanations of a user’s argument, comprise the following elements: (a) a Bayesian subnet
that connects the propositions mentioned by a user, (b) suppositions that explain the user’s
beliefs, and (c) explanatory extensions which complement an interpretation with information
that the user may have considered (but omitted from his or her argument).

We have presented an anytime algorithm for the generation of candidate interpreta-
tions which activates procedures for postulating suppositions, constructing Bayesian subnets
(Zukerman and George 2005), and proposing explanatory extensions. We have also extended
our formalism for the calculation of the probability of an interpretation (Zukerman and
George 2005) to incorporate suppositions and explanatory extensions. This probability re-
flects the similarity between an interpretation and the domain, and between the argument and
the interpretation, rather than the peculiarities of a particular domain BN. Nonetheless, there
are domain characteristics that influence this probability—explained below.

The evaluation of our module for positing suppositions shows that our trial subjects found
BIAS’ suppositions to be both necessary and reasonable, with its preferred suppositions being
top-ranked or top-2 ranked by most subjects. The evaluation of our module for generating
explanatory extensions shows that interpretations with such extensions were clearly preferred
to interpretations without them.

Our formalism for calculating the probability of an interpretation is based on the idea of
cost versus reward, which balances the cost of adding extra elements (e.g., suppositions and
explanatory extensions) to an interpretation against the benefits obtained from these elements.
The calculations that implement this idea are based on a few general principles: (1) com-
binatoric principles for extracting an interpretation graph from the domain BN; (2) known
distributions, such as Poisson for the number of nodes in an interpretation graph or explanatory
extension, and Zipf for modelling discrepancies in belief; and (3) distributions which model
preference heuristics, e.g., for different suppositions in the context of a user’s beliefs, and
for different types of inferences. The parameterization of these distributions requires specific
information. For instance, the mean of the Poisson distribution determines the “penalty” for
having too many nodes in an interpretation or explanatory extension. Similarly, the hand-tai-
lored distributions require fine-tuning the probabilities that express people’s preferences, or
designing experimental studies to gather accurate probabilities that express these preferences
(Elzer et al. 2005).

The immediate applicability of our approach is mainly affected by our assumption that
the nodes in the BNs are binary, which influences all aspects of our implementation. Other
factors that must be considered when applying our formalism are: the characteristics of the
domain, the expressive power of BNs, and the ability of users to interact with the system.

Binary nodes in BNs. A limitation to the applicability of our implemented formalism is the
assumption that the nodes in the domain BN are binary. The effect of this assumption is that
knowing the probability of the value of a node (say Pr(TimeOfDeath11) = 0.6) automatically
implies the probability of its other value (Pr(—TimeOfDeath11) = 0.4). This assumption
simplifies our procedure for calculating the probability of suppositions, but it does not invali-
date the principles behind the process for generating suppositions and assigning probabilities
to them (Sect. 4). The generalization of the procedure for calculating the probability of sup-
positions is relatively simple. For example, supposing that a node has its most probable value
would still have the highest probability, and supposing that it has its least probable value
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would have the lowest probability. Supposing other values would then have intermediate
probabilities. To address this limitation we would have to extend the probability distribution
in Table 2 to reflect this range of options.

The binary-node assumption also affects explanatory extensions, as the preferences we
identified regarding acceptable inferences were restricted to binary-nodes and monotonic
inferences (Sect. 6). The relaxation of the binary-node assumption requires the extension
of our definition of acceptable inferences. For example, the preferences we identified could
generalize to non-binary nodes with ordinal values (e.g., high, medium and low).

The relaxation of the binary-node assumption has a further impact with respect to the search
space, which would be significantly extended. Specifically, for suppositions, each value of a
node would be a candidate supposition. Thus, instead of having a search space of 3 supposi-
tions for a BN with N nodes, now the search space would be (k1 +1) x (ko+1) x- - - x (kny+1),
where k; is the number of values for node i. Experimental studies would then be required
to determine the effect of an increase in the search space on the performance of our any-
time algorithm, and to appropriately parameterize this algorithm (e.g., how many supposition
configurations to select as seeds, Sect. 4).

Domain characteristics. Explanatory extensions are domain dependent, as they are gener-
ated to explain surprising outcomes, and what is surprising often depends on the domain.
For instance, in some domains what matters is the increase or reduction in probability, rather
than its absolute value, e.g., an increase from 6 to 10% in the probability of a patient having
cancer may require an explanatory extension, even though in absolute terms both probabili-
ties belong to the VeryProbablyNot belief category. Also, the values of nodes may be elements
of a set (e.g., red, white, blue). The idea of inference monotonicity is not applicable to sets,
thereby precluding the identification of regularities such as those identified in our survey
(Sect. 6). These observations, together with the relaxation of the binary-node assumption,
affect several factors in the generation of explanatory extensions, e.g., the probability cate-
gories that are considered significant, whether absolute probabilities or relative change from
previous values should be considered, which preferences generalize across different nodes
and which should be encoded specifically.

Expressive power of BNs. Although the BNs employed in our work were hand designed, BN's
can be automatically learned from data (Wallace 2005). Our domain knowledge is represented
according to the state of the art for application BNs, which represent ground predicates. This
influences our argument interpretation capabilities, which support only such predicates.

Two complementary avenues for resolving this issue have been considered in the literature.
Charniak and Goldman (1993), Gertner (1998), and Elzer et al. (2005) built BNs on the fly
based on the features of a situation. Getoor et al. (2001) and Taskar et al. (2002) studied prob-
abilistic relational models, which combine advantages of relational logic and BNs, and can
generalize over a variety of situations. The first approach is suitable for our situation, where
different instances of a predicate can be dynamically instantiated in a BN. However, such an
approach still does not support arguments based on quantified predicates. The interpretation
of such arguments requires both further research on BNs, and corresponding enhancements
to our approach.

Interacting with BNs. Although this paper focuses on argumentation, our formalism enables
users to interact with BNs outside the argumentation context. That is, our formalism allows
users to reach a “mutual understanding” with domain BN, in the sense that users can present
their thoughts about a situation, and the system can attempt to cast these thoughts in the
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context of a domain BN. However, this requires an underlying assumption of a common
ground between the users and the knowledge representation. In addition, users must be able
to input their ideas. As indicated in Sect. 2, we have addressed this problem by providing a
web interface that restricts users to the propositions known to the system. However, usability
studies are required to determine the general feasibility of this approach.

Summary. The main contributions of this article are: an extension of the definition of an
interpretation that includes suppositions and explanatory extensions, a general formalism
for calculating the probability of an interpretation, and procedures for postulating suppo-
sitions and including explanatory extensions. Explanatory extensions are influenced by the
characteristics of the domain and require further examination. However, the probabilistic
formalism and the procedure for positing suppositions are domain independent, and, with
the relaxation of the binary-node assumption, generally applicable. We are currently in the
process of applying our formalism for calculating the probability of an interpretation to spo-
ken interactions with robots, which requires us to represent open-ended settings (where all
the propositions in the domain cannot be encoded in advance).

Appendix

A Calculating the effect of explanatory extensions on the probability
of an interpretation

The influence of explanatory extensions on the probability of an interpretation is represented
by the following product, which expresses the cost-reward balance obtained by including a
(possibly empty) explanatory extension in an interpretation.

Pr(beliefs in 1G;|SC;, struct of 1G;, EE;) x Pr(EE;|SC;, struct of 1G;) (A.1)

The calculation of the two probabilities in this product is described in the following sub-sec-
tions.

A.1 Estimating Pr(beliefs in /G|SC, struct of /G, EE)

As stated in Sect. 6.2.1, the probability of the beliefs in /G is a function of the discrepancy
between peoples’ preferences regarding which beliefs are appropriate for the consequent of
the inferences in /G given the antecedents, and the actual belief in the consequent.

Following (Zukerman and George 2005), we use the Zipf distribution to model these dis-
crepancies in belief for each inference in an interpretation graph, where the parameter of
the distribution is the difference between the belief category of the consequent and a desired
belief category. However, here we do not have a single desired category, but a range of
desired belief categories, denoted as acceptable range, which includes the beliefs specified
by BothSides, SameSide and AlmostSame inferences (Sect. 6).

Definition 1 (Acceptable Range)

AcceptableRange = [minA €Anteced 'S{Belcat(A) } » MaX AeAnteced’s {Belcat(A ) }]
If AcceptableRange is on the same side of EvenChance

Then extend AcceptableRange by one category towards EvenChance

The parameter of our Zipf distribution is 0 if the consequent of the inference is inside
the acceptable range. Otherwise, it is the absolute value of the difference between the belief

@ Springer



470 S. George et al.

category of the consequent and the closest belief category in the acceptable range. This
parameter, called difRange, is calculated as follows.
For Inference = [ {Antecedents}— Cons ],
difRange(Inference)
|BelCat(Cons) —min Acct’bleRange| if BelCat(Cons) <min Acct’bleRange
= {|BelCat(Cons) —max Acct’bleRange| if BelCat(Cons) > max Acct’bleRange
0 otherwise

The following formula is then used to calculate the probability of the beliefs in Inference.

Pr(beliefs in Inference)
|AcceptableRange| X 6

(difRange(Inference) + 1)7
0

(difRange(Inference) + 1)V

where |AcceptableRange]| is the size (number of belief categories) of the acceptable range,
y = 2 is an empirically determined parameter, and 6 is a normalizing constant.” This proba-
bility distribution views the union of the belief categories in the acceptable range as a single
block (the belief categories inside this block do not compete with each other). A side effect of
this distribution is that a consequent inside a large acceptable range has a higher probability
than a consequent inside a small range, and a consequent outside a large acceptable range
has a lower probability than a consequent outside a small range. Alternative formulations for
the impact of the size of an acceptable range on the probability of an inference are left for
future research.

The probability of the beliefs in an interpretation graph is obtained by multiplying the
belief probability for each inference in the graph.

if BelCat(Cons) € AcceptableRange

(A2)
otherwise

NF
Pr(beliefs in /G |SC, structof IG, EE) = H Pr(beliefs in Inference ;)
j=1

where N F is the number of inferences in /G.

A.2 Estimating Pr(E E|SC, struct of 1G)

As stated in Sect. 6.2.2, the calculation of Pr(E E|SC, struct of I G) is based on the following
heuristics.

— Users prefer short explanations, but not at the expense of persuasiveness.

— Explanatory extensions that yield BothSides inferences are preferred to explanatory exten-
sions that yield SameSide or AlmostSame inferences, which are much preferred to explan-
atory extensions that produce SmallNonSeq inferences.

These heuristics are implemented in the following equation.

Pr(EE|SC, struct of IG)
NF
= H Pr(InfCategory(EE ), s(EE;)|SC, struct of 1G) (A.3)
j=1

9 The denominator is incremented by 1 to avoid division by 0. If the belief category of the consequent is in
the acceptable range, the denominator is (0+1) =1.
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where N F is the number of inferences in /G, s(EE}) is the number of siblings included
in the explanatory extension for the jth inference in /G, and InfCategory(EE}) is the cat-
egory of the inference resulting from the inclusion of these siblings (BothSides, SameSide,
AlmostSame or SmallNonSeq).

Applying the chain rule of probability yields

Pr(EE|SC, struct of I1G)

_ ﬁ [ Pr(infCategory(EE )|s (EE;), SC. struct of 1G) ] (A4)

o xPr(s(EE;)|SC, struct of 1G)
]:
These probabilities are calculated as follows.

— Pr(s(EE;)|SC, struct of 1G) is the probability of having s (E E ) siblings in an explana-
tory extension for inference j in IG. As in (Zukerman and George 2005), we model
this probability by means of a truncated Poisson distribution, Poisson(it), where w is the
average number of nodes in an explanatory extension. According to our first heuristic,
explanatory extensions should be concise, but not necessarily minimal (Sect. 6). Hence,

we use 1 = 1.5, which penalizes explanatory extensions with many nodes.
et s (EE))

Pr(s(EE;)|SC, structof IG) = SW
0 otherwise

if s(EEj) < S (AS)

where 6 is a normalizing constant, and S is the maximum number of siblings for a node in
the domain BN. We use the maximum number of siblings in the BN, instead of the actual
number of siblings of the antecedents of the inference in question, so that we can have an
absolute measure of the cost of an explanatory extension. Such a measure expresses our
users’ preference for short explanations (irrespective of the number of propositions that
could be included in an explanation), and enables us to compare different interpretations
where explanatory extensions have been added to different inferences.

— Pr(InfCategory(EE})|s(EE;), SC, struct of /G) is the probability of the category of an
inference after adding an explanatory extension.'” We devised the following probabil-
ity distribution to represent people’s preferences for different categories of inferences, as
specified by the second heuristic above.

Pr(InfCategory(EE)|s(EE;))

0.5 if InfCategory(EE ) is BothSides
= 1 0.4 if InfCategory(EE ) is SameSide or AlmostSame (A.6)
0.1 if InfCategory(E E j) is SmallNonSeq

This distribution pertains to beliefs in the positive range (a similar probability distribu-
tion exists for beliefs in the negative range). According to this distribution, an explanatory
extension yielding a BothSides inference has a higher probability than one yielding a Same-
Side or AlmostSame inference, which in turn has a significantly higher probability than one
yielding a SmallNonSeq inference.!! These probabilities were generated manually on the

10°1f the explanatory extension is empty, the category of the inference is irrelevant. In this case, we assign it
a probability of 1.

11 We have also considered an approach where the probability of including a sibling in an explanatory extension
balances the sibling’s salience against its effect on the inference. However, the nature of this trade-off is unclear,
e.g., should a SameSide and salient sibling be included in preference to a BothSides and non-salient sibling?
Therefore, at present we revert to a simpler approach.
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basis of our surveys. However, these surveys were qualitative, hence similar distributions
may work just as well.
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