A Probabilistic Model for Understanding Composite
Spoken Descriptions

Enes Makalic, Ingrid Zukerman, Michael Niemann, and DaSeimidt

Faculty of Information Technology, Monash University
Clayton, VICTORIA 3800, AUSTRALIA
{enes, ingrid, ni emann, dschmni dt} @sse. nonash. edu. au

Abstract. We describe a probabilistic reference disambiguation aueisim de-
veloped for a spoken dialogue system mounted on an autorsrobotic agent.
Our mechanism receives as input referring expressionsicomg intrinsic fea-
tures of individual concepts (lexical item, size and cojaund features involving
more than one concept (ownership and location). It theropmi$ probabilistic
comparisons between the given features and features oftshjethe domain,
yielding a ranked list of candidate referents. Our evatuaghows high reference
resolution accuracy across a range of spoken referringesgjuns.

1 Introduction

In this paper, we describe the reference disambiguatiorharesm ofScusi? — the
spoken language interpretation module of a robot-mouritddglie agent. Our mecha-
nism interprets referring expressions such as “the blue omue table near the lamp”
by performing probabilistic comparisons between the negmeéents stated in a referring
expression and the features of candidate objects (e.gg thdhe room).

The contributions of our mechanism are (1) probabilistiogedures that perform
feature comparisons; and (2) a function that combines thdtseof these comparisons.
These contributions endow our mechanism with the abilityandle imprecise or am-
biguous referring expressions. For instance, the exgmesttie bag near the green ta-
ble” is ambiguous if there is a bam a green table, and there is a bag next to a table
thatisn’t green. Such candidate objects are ranked acwpralhow well they match the
specifications in an utterance. Our system handles thenfimitpfeature types: lexical
item, colour, size, ownership and location. Our evaluasbows that our mechanism
exhibits high resolution accuracy for different types déreing expressions.

This paper is organized as follows. Section 2 outlines ttexjmetation process and
the estimation of the probability of an interpretation. 8at 3 describes the proba-
bilistic feature comparison. The results of our evaluatppear in Section 4. Related
research and concluding remarks are given in Sections 5 eggp@ctively.

2 Interpretation Process

Scusi? processes spoken input in three stages: speech recogpiticeing and seman-
tic interpretation (Figure 1). First, it runs Automatic ol Recognition (ASR) soft-
ware (Microsoft Speech SDK 5.1) to generate candidate feats a speech signal.
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Fig. 1. Stages of the interpretation process  Fig. 2. UCG and ICG for a sample utterance

Each text is assigned a score that reflects the probabilityeofvords given the speech
wave. Next,Scusi? applies Charniak’s probabilistic parséit p: // ft p. cs. br own.
edu/ pub/ nl par ser /) to generate parse trees from the texts. The parser prodpces
to NV (= 50) parse trees for each text, associating each parse trea pithbability.

During semantic interpretation, parse trees are sucedgsivapped into two rep-
resentations based on Conceptual Graphs [1]: Grsihstantiated Concept Graphs
(UCGs), and therinstantiated Concept Graphs (1CGs) (Figure 2). UCGs are obtained
from parse trees deterministically — one parse tree gezeoate UCG. A UCG repre-
sents syntactic information, where the concepts corraspmthe words in the parent
parse tree, and the relations are derived from syntacticrimdtion in the parse tree and
prepositions. Each UCG can generate many ICGs. This is dpmeiminating differ-
ent instantiated concepts and relations from the systentsvledge base as potential
realizations for each concept and relation in a UCG.

Our interpretation process applies a selection-expansjale to build a search
graph, where each level of the graph corresponds to one ddttges of the inter-
pretation process (Figure 1). In each selection-expargiole, our algorithm selects
an option for consideration (speech wave, textual ASR dufarse tree or UCG). At
any point after an expansiofcusi? can return a list of ranked interpretations (ICGs)
with their parent sub-interpretations (text, parse tiea(sl UCG(S)).

Figure 2 illustrates a UCG and an ICG for an utterance coimgithe composite
referring expression (“the long yellow tray on the tablemtbé& lamp”). Theintrinsic
features of an object (e.g., colour and size of the tray) toeed in the UCG node
for this object. In contrasstructural features, which involve at least two objects (e.qg.,
“the table near thelamp”), are represented as sub-graphs of the UCG (and then the
ICG). This distinction is made because intrinsic featui@s loe compared directly to
features of objects in the knowledge base, while featusittpend on the relationship
between several objects require the identification of tlodgects and the verification
of this relationship. In our example, all the tables andtadl tamps in the room need to
be considered, and the table/lamp combination that bestmsithe given specification
is eventually selected. The procedures for selecting tbjthat match intrinsic and
structural features are described in Section 3.



2.1 Estimating the probability of an ICG

Scusi? ranks candidate ICGs according to their probability of behre intended mean-
ing of a spoken utterance. Given a speech siffiaind a context, the probability of
an ICGI is represented as follows.

Pr(I|W,C) Y PI(I|U,C) - PAU|P) - P{P|T) - Pr(T|W) (1)
A

whereU, P andT denote a UCG, parse tree and text respectively.

The summation is taken over all possible paths { P, U} from a parse tree to the
ICG, because a UCG and an ICG can have more than one parenem®ned above,
the ASR and the parser return an estimate ¢71#) and P(P|T") respectively; and
Pr(U|P)=1, since the process of generating a UCG from a parse treedsndiefstic.
The estimation of RZ|U,C) is described in detail in [2]. Here we present the final
equation obtained for PF|U, C), and outline the ideas involved in its calculation.

Pr(I|U,C) = [Pr(ulk) Pr(k|kp, kqp) Pr(K|C) (2)
kel

wherek is an instantiated node in ICG v is the corresponding node in UQG, k,, is
the parent node of in ICG I, andk,, the grandparent node. For exampiear is the
parent ofl anp03, andt abl e01 the grandparent dfanp03 in the ICG in Figure 2.

— Pr(ulk) is the “match probability” between the specifications fodea in UCG U
and the features of the corresponding néde ICG I, e.g., how similar an object
in the room is to the “long yellow tray” (Section 3.1).

— Pr(k|k,, kyp,) represents the structural probability of I0Gsimplified to node tri-
grams, e.g., whethermbl e01 is near | anp03 (Section 3.2).

— Pr(k|C) is the probability of a concept in light of the context, whizhpresent in-
cludes only domain knowledge.

3 Probabilistic Feature Comparison

Scusi? handles three intrinsic features, viz lexical item, coland size; and two struc-
tural features, viz ownership and several types of locaiferences. The procedure for
generating ICGs for a referring expression and calculdtieg probability is described
in Algorithm 1. First, the intrinsic features of the objeatsour world are used to cal-
culate the probability of a match with each UCG concept (fastor in Equation 2,
Step 2 in Algorithm 1). These probabilities are used to bailst of candidate objects
that are a reasonable match for each UCG concept (Step 3nhbjeets in each list are
iteratively combined into candidate ICGs, where each aatdirepresents an interpre-
tation of the referring expression (Step Sjusi? then considers the structural features
of each ICG to calculate its structural probability (Stegécond factor in Equation 2),
and combines the intrinsic and structural probabilitiesaiculate the probability of the
ICG (Step 8). Finally, the ICGs are ranked according to thesbability (Step 10).

For example, consider a request for “the blue mug on thetaddsuming that the
knowledge base contains several mugs, some of which areHitgg for all the objects



Algorithm 1 Generate candidate ICGs for a referring expression

Require: UCG U comprising concepts and relatiomsknowledge bas& of objects
1: for all objectsu € UCGU do
2:  Estimate Ru|k), the probability of the match between the features ahd those of each
objectk € K.
Rank the candidate objedts= K in descending order of probability.
: end for
: Construct candidate ICGs by iteratively going down tis¢ dif objects generated for each
conceptu in UCG U — each candidate ICG contains one object from each list.
: forall ICGsI do
Estimate the probabilities frik,, k4 ) for eachobject-relation-object trigram in /.
Combine these estimates with the probabilities from Stepobtain the probability of .
end for
. Rank the candidate ICGs in descending order of prolabili
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in the knowledge base, we estimate the probability that toeyd be called ‘mug’ (e.g.,
mugs, cups), and the probability that their colour could esidered ‘blue’; similarly,
we calculate the probability that an object could be caltadble’ (Section 3.1). The
candidates for ‘blue mug’ and ‘table’ are then ranked in daging order of probability.
Candidate ICGs are built by iteratively combining each édaie blue mug with each
candidate table. The structural probability of each ICGientcalculated on the basis
of the location coordinates of the mug and table instancd#sihCG (Section 3.2).

At present, we make the following simplifying assumptio(is): the robot is co-
present with the user and the possible referents of an ntterand (2) the robot has
an unobstructed view of the objects in the room and up-te-ébrmation about these
objects. This information could be obtained through a s@eradysis system [3] acti-
vated upon entering a room. These assumptions obviate #tkfaeplanning physical
actions, such as moving to get a better view of certain objertleaving the room to
seek objects that better match the given specifications.

3.1 Estimating the Probabilities of Intrinsic Features

The probability of the match between a nodspecified in UCGU and a candidate
instantiated concepdt € IC (Step 2 of Algorithm 1) is estimated as follows.

Pl'(u|k):Pl'(uf],...,u.fp|kf17...,kfp) (3)
where(f1,..., fp) € F are the features specified with respect to nedé is the set
of features allowed in the systemy, is the value of the-th feature of UCG node,
andky, is the value of this feature for the instantiated conéept

Assuming that the features of a node are independent, thmpiliy that an in-
stantiated concept matches the specifications in a UCG nadean be rewritten as

P
Pr(ulk) = H Pr(ufi kfi) (4)
i=1

In the absence of other information, it is reasonable to disear distance function
h:RT—10, 1] to map the outcome of a feature match to the probability spEuat is,




the higher the similarity between requested and instattitgature values (the shorter
the distance between them), the higher the probability eb#uire match. Specifically,

Prtuylkys) = hy(uy, ky) (5)

Below we present the calculation of Equation 5 for the irgidgrfeatures supported
by our system (lexical item, colour and size). In agreemettt [#, 5], lexical item and
colour are considereabsolute features, and size i@lative feature (its value depends
on the size of other candidates).

Lexical item. We employ the Leacock and Chodorow [6] similarity measuesaded
LC, to compute the similarity between the lexical feature:@ndk. This measure is
applied to the words in a database constructed with the aldbofiNet (theLC measure
yielded the best results among those in [7]). Ti@&similarity score, denoted ¢, is
converted to a probability by applying the followiig.,. function.

S e(Wex, k
Pr(uiex|Kiex) = hicx (SLc(Wex, Kiex)) = M

wheres, .« is the highest possibleC score.

Smax

Colour. The colour model chosen f&usi? is the CIE 1976(L, a, b) colour space,
which has been experimentally shown to be approximatelggmtually uniform [8].
The L coordinate represents brightneés= 0 denotes black, anéi = 100 white), a
represents position between greenq 0) and red ¢ > 0), andb position between blue
(b < 0) and yellow ¢ > 0). The range ofL is [0, 100], while for practical purposes,
the range of: andb is [—200, 200]. Thus, the probability of a colour match between a
UCG concept, and an instantiated concépts

Pr(ucolr|kcolr) =hecolr (uCO|I'7 kcolr) =1- ]

whereED is the Euclidean distance between g a,b) coordinates of the colour
specified for: and the(L, a, b) coordinates of the colour &f andd,,,.x is the maximum
Euclidean distance between two colours (=574.5).

ED (uCO|I'7 kcolr)

Size. Unlike lexical item and colour, size is considered a relafeature, i.e., the prob-
ability of a size match between an objéct K and a UCG concept depends on the
sizes of all suitable candidate objectsinthose that have a reasonable match for lex-
ical and colour comparisons). The highest probability fsize match is then assigned
to the object that best matches the required size, whilethedt probability is assigned
to the object which has the worst match with this size.

This requirement is achieved by the following;.. function, which like Kelleher
et al.’s pixel-based mapping [9], performs a linear mapping betwej;e andksize.
ma:lf{%ee} if usize € {'large’'big/. ..}
Pr(usize|ksize) = hsize (usizea ksize) = amini{if )
Tes'ze if usize € { ‘small’’'little’/ ...}
wherea is a normalizing constant, arki,,. is the size of candidate objekt (this

formula is adapted for individual dimensions, e.g., length



Combining Feature Scores. To determine how intrinsic features are used in our do-
main, we conducted a survey where people were asked to cefesusehold objects
laid out in a space [10]. The results of our survey agree witeland Reiter’s find-
ings [4], whereby people often present features that arstriotly necessary to identify
an item, and use features in the following order of frequetypge - absolute adjectives
> relative adjectives, where colour is an absolute feature and size is a relataterfe.
These findings prompted us to incorporate a weighting schatoeEquation 4,
whereby features are weighted according to their usagefenriey expressions. That
is, higher ranking or more frequently used features argyassdi a higher weight than
lower ranking or less frequently used features. Specijficgilen a match probability
Pr(uy, |k, ) and a weightoy, for featuref; (0 < wy, < 1), the adjusted match proba-
bility for this feature is

Pr(uy, |k, ) = Pr(uy, [ky,) x wy, + (1 —wy,)

The effect of this mapping is that features with high weidtase a wide range of
probabilities (and hence a substantial influence on thehmatabability of an object),
while features with low weights have a narrow range (and aced influence on match
probability).

3.2 Estimating the Probabilities of Structural Features

As shown in Equation 2, the overall probability of an ICG sture can be decomposed
into a product of the probabilities of the trigrams that maigethe ICG. A trigram
consists of a relationshif, (e.g., ownership or location) and two instantiated coreept
k andkg,, e.g.,t abl e01-near— anp03 in Figure 2. A probability is assigned to this
trigram based on the physical coordinates @l e01 andl anp03.

Below we present the probability calculation for the twaustaral features sup-
ported by our system (ownership and location). This catmranvolves validating the
structural feature against the information in our worldd aas for intrinsic features,
performing a linear mapping from the result of this validatto a probability.

Ownership. In our world, an object is either owned by one or more peoplearwner
has been recorded for this object. This leads to a simplegititic mapping.

0 if k ¢ owner-ofky,)
Pr(kjown, k,,) = ¢ 3 if owner-of(k) is unknown
1 if k € owner-ofk,,)

whereg is currently set td).5.

Location. At present, we assume that all the objects in our world aiid,rand hence
can be represented by a circumscribing box, e.g., a lampiesented by the small-
est box that contains the lamp. As a result, each olijeeas three dimensions and
one position coordinate. The dimensions @g k., k), corresponding to the object’s
length, width and height respectively. The position cooatk is(k,, k,, k. ), measured
between a starting coordinate, 0,0) and the closest corner of the box. The system
handles the following locative prepositiormsi, under, above, in (inside) andnear (by).



— on, under, above these prepositions have the following directional sencanti
e onmeans thak,, = k. + kjy, wherek, + k; represents the height of the top

surface of the bounding box for objdct

e undermeans thak,, + k,,, <k.;and

e abovemeans thak,, > k. + k.
If the objectsk andkg, in an ICG satisfy the directional requirement of their loca-
tion prepositionloc e {on,under,above}), we say that Rik|loc, k,,, ) is proportional
to the area shared by the horizontal surfaces of (the bogrtires of) the two ob-
jects. Otherwise, Rk|loc, k) is set to a low probabilityd). Specifically, letd (k)
denote the area of the top face of objkecand letA(k, k,, ) denote the overlapping
area between the top faces of objdetandk,, in thezy plane. The probability of
a trigram involving location relationan, under or above is

Akkgp) T . . -
Pr(kfloc, k,,) — 4 WA, AT if dlrecponal requirement is satisfied
€< 0.1 otherwise

For example, consider the utterance “the book on the tafdetyhich one of the
candidate ICGs ibook01—o0n—t abl e02. The directional semantics fon stipu-
late that thez coordinate of (the bottom of) the book,) must be equal to the
coordinate of the tablek]) plus the height of the table. If this condition is satisfied,
then the degree of overlap between the surface of the bookhandf the table is
calculated. That is, a book that is entirely on a table tojsfsas theon relationship
with a higher probability than a book overhanging the table.

— in (inside) —the probability of an object being inside another is proipod! to
the volume shared by their bounding boxes (one object coelgdstially inside
another). Formally, le¥/ (k) denote the volume of (the bounding box of) object
k, and letV (k, k,,) denote the shared volume between (the bounding boxes of)
objectsk andkg,. The probability of ann-trigram is

V(k7 kgp)
min {V'(k), V(kgp)}
For example, if we are asked for “the mug inside the box”, a thagis wholly con-

tained within a box would yield a higher probability than agrhwhose top exceeds
the top of a box.

— near —following [9], we employ a formulation inspired by the greational model
to calculate the probability of two objects being near eaitteio However, since
the density of objects is not specified in our world, we apprate the mass of an
object by its volume. Formally, lei(k, k,,,) represent the shortest distance between
the bounding boxes df andk,,. The probability of enear-trigram is

VKV (kgp)
Pr(k|near, k,,) = Pk, G

whereG .., the maximum gravitational pull in our world, is obtained evhthe

two biggest objects in our world abut (i.€.is arbitrarily small).

This model enables the size of the objects to influence theass probability. For

example, if one asks for “the ball next to the table”, and¢hera tennis ball a few

centimeters from the table, and a beach ball farther frontahke, this model will
identify the ambiguity, and support the generation of aifitation question.

Pr(k|in, k,,) =
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The wardrobe under the fan
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The shirt in the bag near the plant
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Fig. 3. Sample area from our world Fig. 4. Sample referring expressions

4 Evaluation

To evaluate our system, we constructed a simulated wortd¢paesents an open-plan
house (in keeping with our co-presence assumption, Se8jiorhe world contains4
objects distributed among four areas in the house, and fioplpéFigure 3 illustrates
one of the areas of the house, with various objects lab€eldé@) objects were chosen so
that they had similar features, i.e., several objects cbeldeferred to by the same lexi-
cal item (there were 2-4 instances of each type of object) sirailar colours and sizes,
and were placed in adjacent locations. The ownership of wlgstcts was distributed
among the five people in our world, and some objects had no kewner.

In total, 90 referring expressions of varying complexityreveised for the system
evaluation. Each referring expression consisted of a ndwase comprising between
one and three concepts (sample expressions are shown ireEuMean utterance
length was 4.27 words, with a maximum length of 8 words. Th@essions were con-
structed to tesBcusi?’s ability to identify target objects (the intended book,gntable,
etc) in different situations. Specifically, objects werfereed to by near synonyms (e.g.,
“mug” and “cup”), by colours and sizes that were shared bgss#wbjects, and by their
proximity to a reference object that was adjacent to sewssgdcts. For example, the
utterance “the book near Paul's mug” tests the system’gyatnl identify an object by
its ownership and location in a world that contains sevenakis and mugs.

Scusi? was set to generate at ma$i0 sub-interpretations in total (including texts,
parse trees, UCGs and ICGSs) for each referring expressiotC& proposed b{cusi?
was deemed correct if it matched the speaker’s intentioighwiias represented by one
or more Gold ICGs. These ICGs were manually constructed lyobthe authors for
each referring expression on the basis of the informatidgcisi ?’s knowledge base.
Multiple Gold ICGs were allowed if several objects in the dommatched a specified
object, e.g., “a bowl”. A baseline measure of performance wlatained by executing
a beam search. That is, only the top-ranked ASR result wagg@aand only the top-
ranked parse tree yielded a UCG, which in turn produced oméytop-ranked ICG.

Table 1 summarizes our results. Column 1 shows the procétcus?'s or base-
line). Columns 2 and 3 show how many of the descriptions haldl G&G referents
whose probability was the highest (top 1) or among the thigdedst (top 3), e.gScusi?
yielded82 Gold ICGs with the top probability, and all tfé referring expressions had



Table 1.Scusi?'s interpretation performance

# Gold ICGs with prob in Average Not Avg # to Gold
top 1 top 3 adj rank(rank) found ICGs (iters)
BASELINE 44 44 0(0) 46 0(4)
Scusi? 82 90 0.96 (0.11) 0 2.45 (25)

Gold referents within the top 3 probabilities. The averadj@isted rank andrank of the
Gold referent appear in Column 4. The rank of a referdstits position in a list sorted
in descending order of probability (starting from posit®nsuch that all equiprobable
referents are deemed to have the same position. The adpastedf a referent is the
mean of the positions of all referents that have the sameapitity asr. For example,
if we have 3 top-ranked equiprobable referents, each haskaofa, but an adjusted
rank of%. Column 5 indicates the number of referring expressions/fach a Gold
ICG was not found, and Column 6 shows the average numberearfergs created and
iterations performed until the Gold referent was foundrtfra total of 300 iterations).

Our results show that maintaining multiple hypotheses el séage of the interpre-
tation process yields a substantial improvement in ingggtion accuracy in compari-
son to the baseline approa&usi? found the Gold interpretation for a0 utterances
tested, in contrast to the baseline approach, which fouhd4inGold ICGs. The aver-
age rank of the correct text in the output returned by the ASR W5 (where the top
rank is 0), and the correct text was top ranked by the ASR in 80%e cases. This
level of accuracy is higher than the accuracy of the baselpproach with respect to
Gold ICGs {¢4/90 = 49%), which indicates that even when presented with the correct
text, the baseline approach may not find the intended irg&afon. Furthermore, ASR
accuracy is lower thaficusi?’s accuracy for top-1 Gold ICGS82/90 = 91%), demon-
strating the robustness of the probabilistic multi-stagerpretation process in the face
of ASR inaccuracy.

5 Related Research

Reference disambiguation is an essential aspect of diseaurderstanding to which

a large research effort has been devoted. Much of the rdseareference resolution
has focused on the generation of referring expressions;shainivolves constructing
expressions that single out a target object from a set afdistrs, e.g., [4,5]. Methods
for understanding referring expressions in dialogue systare examined in [9, 11]
among others. Kellehet al. [9] propose a reference resolution algorithm that accounts
for four attributes: lexical type, colour, size and locatiovhere the score of an object
is estimated by a weighted combination of the visual andulistic salience scores of
each attribute. Like irScusi?, the values of the weights are pre-defined and based on
empirical observations. However, Kelletetral. limit the probabilistic comparison of
features to size and location, and use binary comparisarieXizal item and colour.
Pflegeret al. [11] use modality fusion to combine hypotheses from déféranalyzers
(linguistic, visual and gesture), choosing as the refetiatfirst object satisfying a
‘differentiation criterion’. As a result, their system doeot handle situations where
more than one object satisfies this criterion.



6 Conclusion

We have offered a probabilistic reference disambiguatiechmnism which considers
intrinsic and structural features. Our mechanism perfgrrababilistic comparisons be-
tween features specified in referring expressions (spatifiexical item, colour, size,
ownership and location) and features of objects in the don@ir mechanism was em-
pirically evaluated for these features, exhibiting verpdanterpretation performance
for a range of referring expressions.

In the future, we propose to extend the weighting mechanisvisdd for intrinsic
features to cater for structural features and their contlmnavith intrinsic features. We
also propose to integrate our mechanism with a vision systdnch will affect the type
of information we can obtain from our knowledge base. Fipalle intend to remove
the co-presence and unobstructed-view assumptions ¢8etiwhich will demand the
integration of our feature comparison mechanism with plagprocedures.
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