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Abstract. We describe a probabilistic reference disambiguation mechanism de-
veloped for a spoken dialogue system mounted on an autonomous robotic agent.
Our mechanism receives as input referring expressions containing intrinsic fea-
tures of individual concepts (lexical item, size and colour) and features involving
more than one concept (ownership and location). It then performs probabilistic
comparisons between the given features and features of objects in the domain,
yielding a ranked list of candidate referents. Our evaluation shows high reference
resolution accuracy across a range of spoken referring expressions.

1 Introduction

In this paper, we describe the reference disambiguation mechanism ofScusi? — the
spoken language interpretation module of a robot-mounted dialogue agent. Our mecha-
nism interprets referring expressions such as “the blue mugon the table near the lamp”
by performing probabilistic comparisons between the requirements stated in a referring
expression and the features of candidate objects (e.g., those in the room).

The contributions of our mechanism are (1) probabilistic procedures that perform
feature comparisons; and (2) a function that combines the results of these comparisons.
These contributions endow our mechanism with the ability tohandle imprecise or am-
biguous referring expressions. For instance, the expression “the bag near the green ta-
ble” is ambiguous if there is a bagon a green table, and there is a bag next to a table
that isn’t green. Such candidate objects are ranked according to how well they match the
specifications in an utterance. Our system handles the following feature types: lexical
item, colour, size, ownership and location. Our evaluationshows that our mechanism
exhibits high resolution accuracy for different types of referring expressions.

This paper is organized as follows. Section 2 outlines the interpretation process and
the estimation of the probability of an interpretation. Section 3 describes the proba-
bilistic feature comparison. The results of our evaluationappear in Section 4. Related
research and concluding remarks are given in Sections 5 and 6respectively.

2 Interpretation Process

Scusi? processes spoken input in three stages: speech recognition, parsing and seman-
tic interpretation (Figure 1). First, it runs Automatic Speech Recognition (ASR) soft-
ware (Microsoft Speech SDK 5.1) to generate candidate textsfrom a speech signal.



ICG  −− Instantiated Concept Graph
UCG −− Uninstantiated Concept Graph
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Fig. 1. Stages of the interpretation process
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Fig. 2.UCG and ICG for a sample utterance

Each text is assigned a score that reflects the probability ofthe words given the speech
wave. Next,Scusi? applies Charniak’s probabilistic parser (ftp://ftp.cs.brown.

edu/pub/nlparser/) to generate parse trees from the texts. The parser producesup
to N (= 50) parse trees for each text, associating each parse tree witha probability.

During semantic interpretation, parse trees are successively mapped into two rep-
resentations based on Conceptual Graphs [1]: firstUninstantiated Concept Graphs
(UCGs), and thenInstantiated Concept Graphs (ICGs) (Figure 2). UCGs are obtained
from parse trees deterministically — one parse tree generates one UCG. A UCG repre-
sents syntactic information, where the concepts correspond to the words in the parent
parse tree, and the relations are derived from syntactic information in the parse tree and
prepositions. Each UCG can generate many ICGs. This is done by nominating differ-
ent instantiated concepts and relations from the system’s knowledge base as potential
realizations for each concept and relation in a UCG.

Our interpretation process applies a selection-expansioncycle to build a search
graph, where each level of the graph corresponds to one of thestages of the inter-
pretation process (Figure 1). In each selection-expansioncycle, our algorithm selects
an option for consideration (speech wave, textual ASR output, parse tree or UCG). At
any point after an expansion,Scusi? can return a list of ranked interpretations (ICGs)
with their parent sub-interpretations (text, parse tree(s) and UCG(s)).

Figure 2 illustrates a UCG and an ICG for an utterance containing the composite
referring expression (“the long yellow tray on the table near the lamp”). Theintrinsic
features of an object (e.g., colour and size of the tray) are stored in the UCG node
for this object. In contrast,structural features, which involve at least two objects (e.g.,
“the table near thelamp”), are represented as sub-graphs of the UCG (and then the
ICG). This distinction is made because intrinsic features can be compared directly to
features of objects in the knowledge base, while features that depend on the relationship
between several objects require the identification of theseobjects and the verification
of this relationship. In our example, all the tables and all the lamps in the room need to
be considered, and the table/lamp combination that best matches the given specification
is eventually selected. The procedures for selecting objects that match intrinsic and
structural features are described in Section 3.



2.1 Estimating the probability of an ICG

Scusi? ranks candidate ICGs according to their probability of being the intended mean-
ing of a spoken utterance. Given a speech signalW and a contextC, the probability of
an ICGI is represented as follows.

Pr(I|W, C) ∝
∑

Λ

Pr(I|U, C) · Pr(U |P ) · Pr(P |T ) · Pr(T |W ) (1)

whereU , P andT denote a UCG, parse tree and text respectively.
The summation is taken over all possible pathsΛ={P, U} from a parse tree to the

ICG, because a UCG and an ICG can have more than one parent. As mentioned above,
the ASR and the parser return an estimate of Pr(T |W ) and Pr(P |T ) respectively; and
Pr(U |P )=1, since the process of generating a UCG from a parse tree is deterministic.
The estimation of Pr(I|U, C) is described in detail in [2]. Here we present the final
equation obtained for Pr(I|U, C), and outline the ideas involved in its calculation.

Pr(I|U, C)≈
∏

k∈I

Pr(u|k) Pr(k|kp, kgp) Pr(k|C) (2)

wherek is an instantiated node in ICGI, u is the corresponding node in UCGU , kp is
the parent node ofk in ICG I, andkgp the grandparent node. For example,near is the
parent oflamp03, andtable01 the grandparent oflamp03 in the ICG in Figure 2.

– Pr(u|k) is the “match probability” between the specifications for nodeu in UCGU
and the features of the corresponding nodek in ICG I, e.g., how similar an object
in the room is to the “long yellow tray” (Section 3.1).

– Pr(k|kp, kgp) represents the structural probability of ICGI, simplified to node tri-
grams, e.g., whethertable01 is near lamp03 (Section 3.2).

– Pr(k|C) is the probability of a concept in light of the context, whichat present in-
cludes only domain knowledge.

3 Probabilistic Feature Comparison

Scusi? handles three intrinsic features, viz lexical item, colourand size; and two struc-
tural features, viz ownership and several types of locativereferences. The procedure for
generating ICGs for a referring expression and calculatingtheir probability is described
in Algorithm 1. First, the intrinsic features of the objectsin our world are used to cal-
culate the probability of a match with each UCG concept (firstfactor in Equation 2,
Step 2 in Algorithm 1). These probabilities are used to builda list of candidate objects
that are a reasonable match for each UCG concept (Step 3). Theobjects in each list are
iteratively combined into candidate ICGs, where each candidate represents an interpre-
tation of the referring expression (Step 5).Scusi? then considers the structural features
of each ICG to calculate its structural probability (Step 7,second factor in Equation 2),
and combines the intrinsic and structural probabilities tocalculate the probability of the
ICG (Step 8). Finally, the ICGs are ranked according to theirprobability (Step 10).

For example, consider a request for “the blue mug on the table”, assuming that the
knowledge base contains several mugs, some of which are blue. First, for all the objects



Algorithm 1 Generate candidate ICGs for a referring expression
Require: UCGU comprising concepts and relationsu, knowledge baseK of objects
1: for all objectsu ∈ UCGU do
2: Estimate Pr(u|k), the probability of the match between the features ofu and those of each

objectk ∈ K.
3: Rank the candidate objectsk ∈ K in descending order of probability.
4: end for
5: Construct candidate ICGs by iteratively going down the list of objects generated for each

conceptu in UCGU — each candidate ICG contains one object from each list.
6: for all ICGsI do
7: Estimate the probabilities Pr(k|kp, kgp) for eachobject-relation-object trigram inI .
8: Combine these estimates with the probabilities from Step2 to obtain the probability ofI .
9: end for

10: Rank the candidate ICGs in descending order of probability.

in the knowledge base, we estimate the probability that theycould be called ‘mug’ (e.g.,
mugs, cups), and the probability that their colour could be considered ‘blue’; similarly,
we calculate the probability that an object could be called ‘table’ (Section 3.1). The
candidates for ‘blue mug’ and ‘table’ are then ranked in descending order of probability.
Candidate ICGs are built by iteratively combining each candidate blue mug with each
candidate table. The structural probability of each ICG is then calculated on the basis
of the location coordinates of the mug and table instances inthe ICG (Section 3.2).

At present, we make the following simplifying assumptions:(1) the robot is co-
present with the user and the possible referents of an utterance; and (2) the robot has
an unobstructed view of the objects in the room and up-to-date information about these
objects. This information could be obtained through a sceneanalysis system [3] acti-
vated upon entering a room. These assumptions obviate the need for planning physical
actions, such as moving to get a better view of certain objects, or leaving the room to
seek objects that better match the given specifications.

3.1 Estimating the Probabilities of Intrinsic Features

The probability of the match between a nodeu specified in UCGU and a candidate
instantiated conceptk ∈ K (Step 2 of Algorithm 1) is estimated as follows.

Pr(u|k) = Pr(uf1
, . . . ,ufp

|kf1
, . . . ,kfp

) (3)

where(f1, . . . , fp) ∈ F are the features specified with respect to nodeu, F is the set
of features allowed in the system,ufi

is the value of thei-th feature of UCG nodeu,
andkfi

is the value of this feature for the instantiated conceptk.
Assuming that the features of a node are independent, the probability that an in-

stantiated conceptk matches the specifications in a UCG nodeu can be rewritten as

Pr(u|k) =

p
∏

i=1

Pr(ufi
|kfi

) (4)

In the absence of other information, it is reasonable to use alinear distance function
h :R+→ [0, 1] to map the outcome of a feature match to the probability space. That is,



the higher the similarity between requested and instantiated feature values (the shorter
the distance between them), the higher the probability of a feature match. Specifically,

Pr(uf |kf ) = hf (uf ,kf ) (5)

Below we present the calculation of Equation 5 for the intrinsic features supported
by our system (lexical item, colour and size). In agreement with [4, 5], lexical item and
colour are consideredabsolute features, and size arelative feature (its value depends
on the size of other candidates).

Lexical item. We employ the Leacock and Chodorow [6] similarity measure, denoted
LC, to compute the similarity between the lexical feature ofu andk. This measure is
applied to the words in a database constructed with the aid ofWordNet (theLC measure
yielded the best results among those in [7]). TheLC similarity score, denotedsLC, is
converted to a probability by applying the followinghlex function.

Pr(ulex|klex)=hlex(sLC(ulex,klex))=
sLC(ulex,klex)

smax

wheresmax is the highest possibleLC score.

Colour. The colour model chosen forScusi? is the CIE 1976(L, a, b) colour space,
which has been experimentally shown to be approximately perceptually uniform [8].
TheL coordinate represents brightness (L = 0 denotes black, andL = 100 white),a
represents position between green (a < 0) and red (a > 0), andb position between blue
(b < 0) and yellow (b > 0). The range ofL is [0, 100], while for practical purposes,
the range ofa andb is [−200, 200]. Thus, the probability of a colour match between a
UCG conceptu and an instantiated conceptk is

Pr(ucolr|kcolr)=hcolr(ucolr,kcolr)=1 −
ED(ucolr,kcolr)

dmax

whereED is the Euclidean distance between the(L, a, b) coordinates of the colour
specified foru and the(L, a, b) coordinates of the colour ofk, anddmax is the maximum
Euclidean distance between two colours (=574.5).

Size. Unlike lexical item and colour, size is considered a relative feature, i.e., the prob-
ability of a size match between an objectk ∈ K and a UCG conceptu depends on the
sizes of all suitable candidate objects inK (those that have a reasonable match for lex-
ical and colour comparisons). The highest probability for asize match is then assigned
to the object that best matches the required size, while the lowest probability is assigned
to the object which has the worst match with this size.

This requirement is achieved by the followinghsize function, which like Kelleher
et al.’s pixel-based mapping [9], performs a linear mapping betweenusize andksize.

Pr(usize|ksize) = hsize(usize,ksize) =







αksize
maxi{ki

size}
if usize∈ {‘large’/‘big’/ . . .}

α mini{k
i

size}
ksize

if usize∈ { ‘small’/‘little’/ . . .}

whereα is a normalizing constant, andki
size is the size of candidate objectki (this

formula is adapted for individual dimensions, e.g., length).



Combining Feature Scores.To determine how intrinsic features are used in our do-
main, we conducted a survey where people were asked to refer to household objects
laid out in a space [10]. The results of our survey agree with Dale and Reiter’s find-
ings [4], whereby people often present features that are notstrictly necessary to identify
an item, and use features in the following order of frequency: type ≻ absolute adjectives
≻ relative adjectives, where colour is an absolute feature and size is a relative feature.

These findings prompted us to incorporate a weighting schemeinto Equation 4,
whereby features are weighted according to their usage in referring expressions. That
is, higher ranking or more frequently used features are assigned a higher weight than
lower ranking or less frequently used features. Specifically, given a match probability
Pr(ufi

|kfi
) and a weightwfi

for featurefi (0 < wfi
≤ 1), the adjusted match proba-

bility for this feature is

Pr′(ufi
|kfi

) = Pr(ufi
|kfi

) × wfi
+ 1

2 (1 − wfi
)

The effect of this mapping is that features with high weightshave a wide range of
probabilities (and hence a substantial influence on the match probability of an object),
while features with low weights have a narrow range (and a reduced influence on match
probability).

3.2 Estimating the Probabilities of Structural Features

As shown in Equation 2, the overall probability of an ICG structure can be decomposed
into a product of the probabilities of the trigrams that makeup the ICG. A trigram
consists of a relationshipkp (e.g., ownership or location) and two instantiated concepts
k andkgp, e.g.,table01–near–lamp03 in Figure 2. A probability is assigned to this
trigram based on the physical coordinates oftable01 andlamp03.

Below we present the probability calculation for the two structural features sup-
ported by our system (ownership and location). This calculation involves validating the
structural feature against the information in our world, and, as for intrinsic features,
performing a linear mapping from the result of this validation to a probability.

Ownership. In our world, an object is either owned by one or more people orno owner
has been recorded for this object. This leads to a simple probabilistic mapping.

Pr(k|own,kgp) =







0 if k /∈ owner-of(kgp)
β if owner-of(k) is unknown
1 if k ∈ owner-of(kgp)

whereβ is currently set to0.5.

Location. At present, we assume that all the objects in our world are rigid, and hence
can be represented by a circumscribing box, e.g., a lamp is represented by the small-
est box that contains the lamp. As a result, each objectk has three dimensions and
one position coordinate. The dimensions are(kl,kw,kh), corresponding to the object’s
length, width and height respectively. The position coordinate is(kx,ky,kz), measured
between a starting coordinate(0, 0, 0) and the closest corner of the box. The system
handles the following locative prepositions:on, under, above, in (inside) andnear (by).



– on, under, above –these prepositions have the following directional semantics.
• on means thatkgpz

= kz + kh, wherekz + kh represents the height of the top
surface of the bounding box for objectk;

• undermeans thatkgpz
+ kgph

≤ kz; and
• abovemeans thatkgpz

> kz + kh.
If the objectsk andkgp in an ICG satisfy the directional requirement of their loca-
tion preposition (loc∈{on,under,above}), we say that Pr(k|loc,kgp) is proportional
to the area shared by the horizontal surfaces of (the bounding boxes of) the two ob-
jects. Otherwise, Pr(k|loc,kgp) is set to a low probability (ǫ). Specifically, letA(k)
denote the area of the top face of objectk, and letA(k,kgp) denote the overlapping
area between the top faces of objectsk andkgp in thexy plane. The probability of
a trigram involving location relationson, under or above is

Pr(k|loc,kgp) =

{

A(k,kgp)
min{A(k),A(kgp)} if directional requirement is satisfied
ǫ ≪ 0.1 otherwise

For example, consider the utterance “the book on the table”,for which one of the
candidate ICGs isbook01→on→table02. The directional semantics foron stipu-
late that thez coordinate of (the bottom of) the book (kgp) must be equal to thez
coordinate of the table (k) plus the height of the table. If this condition is satisfied,
then the degree of overlap between the surface of the book andthat of the table is
calculated. That is, a book that is entirely on a table top satisfies theon relationship
with a higher probability than a book overhanging the table.

– in (inside) – the probability of an object being inside another is proportional to
the volume shared by their bounding boxes (one object could be partially inside
another). Formally, letV (k) denote the volume of (the bounding box of) object
k, and letV (k,kgp) denote the shared volume between (the bounding boxes of)
objectsk andkgp. The probability of anin-trigram is

Pr(k|in,kgp) =
V (k,kgp)

min {V (k), V (kgp)}

For example, if we are asked for “the mug inside the box”, a mugthat is wholly con-
tained within a box would yield a higher probability than a mug whose top exceeds
the top of a box.

– near – following [9], we employ a formulation inspired by the gravitational model
to calculate the probability of two objects being near each other. However, since
the density of objects is not specified in our world, we approximate the mass of an
object by its volume. Formally, letd(k,kgp) represent the shortest distance between
the bounding boxes ofk andkgp. The probability of anear-trigram is

Pr(k|near,kgp) =
V (k)V (kgp)

d2(k,kgp)Gmax

whereGmax, the maximum gravitational pull in our world, is obtained when the
two biggest objects in our world abut (i.e.,d is arbitrarily small).
This model enables the size of the objects to influence the nearness probability. For
example, if one asks for “the ball next to the table”, and there is a tennis ball a few
centimeters from the table, and a beach ball farther from thetable, this model will
identify the ambiguity, and support the generation of a clarification question.
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Fig. 3. Sample area from our world

1 A desk
2 The purple bowl
3 Paul’s book
4 The green mug in the lounge
5 Sarah’s bowl in the lounge
6 The long pants in the bathroom
7 The wardrobe under the fan
8 A bin near the small plant
9 The mug near the book on the table

10 The shirt in the bag near the plant

Fig. 4. Sample referring expressions

4 Evaluation

To evaluate our system, we constructed a simulated world that represents an open-plan
house (in keeping with our co-presence assumption, Section3). The world contains54
objects distributed among four areas in the house, and five people (Figure 3 illustrates
one of the areas of the house, with various objects labeled).The objects were chosen so
that they had similar features, i.e., several objects couldbe referred to by the same lexi-
cal item (there were 2-4 instances of each type of object), had similar colours and sizes,
and were placed in adjacent locations. The ownership of mostobjects was distributed
among the five people in our world, and some objects had no known owner.

In total, 90 referring expressions of varying complexity were used for the system
evaluation. Each referring expression consisted of a noun phrase comprising between
one and three concepts (sample expressions are shown in Figure 4). Mean utterance
length was 4.27 words, with a maximum length of 8 words. The expressions were con-
structed to testScusi?’s ability to identify target objects (the intended book, mug, table,
etc) in different situations. Specifically, objects were referred to by near synonyms (e.g.,
“mug” and “cup”), by colours and sizes that were shared by several objects, and by their
proximity to a reference object that was adjacent to severalobjects. For example, the
utterance “the book near Paul’s mug” tests the system’s ability to identify an object by
its ownership and location in a world that contains several books and mugs.

Scusi? was set to generate at most300 sub-interpretations in total (including texts,
parse trees, UCGs and ICGs) for each referring expression. An ICG proposed byScusi?
was deemed correct if it matched the speaker’s intention, which was represented by one
or more Gold ICGs. These ICGs were manually constructed by one of the authors for
each referring expression on the basis of the information inScusi?’s knowledge base.
Multiple Gold ICGs were allowed if several objects in the domain matched a specified
object, e.g., “a bowl”. A baseline measure of performance was obtained by executing
a beam search. That is, only the top-ranked ASR result was parsed, and only the top-
ranked parse tree yielded a UCG, which in turn produced only one top-ranked ICG.

Table 1 summarizes our results. Column 1 shows the procedure(Scusi?’s or base-
line). Columns 2 and 3 show how many of the descriptions had Gold ICG referents
whose probability was the highest (top 1) or among the three highest (top 3), e.g.,Scusi?
yielded82 Gold ICGs with the top probability, and all the90 referring expressions had



Table 1.Scusi?’s interpretation performance

# Gold ICGs with prob in Average Not Avg # to Gold
top 1 top 3 adj rank(rank) found ICGs (iters)

BASELINE 44 44 0 (0) 46 0 (4)
Scusi? 82 90 0.96 (0.11) 0 2.45 (25)

Gold referents within the top 3 probabilities. The averageadjusted rank andrank of the
Gold referent appear in Column 4. The rank of a referentr is its position in a list sorted
in descending order of probability (starting from position0), such that all equiprobable
referents are deemed to have the same position. The adjustedrank of a referentr is the
mean of the positions of all referents that have the same probability asr. For example,
if we have 3 top-ranked equiprobable referents, each has a rank of 0, but an adjusted
rank of 0+2

3 . Column 5 indicates the number of referring expressions forwhich a Gold
ICG was not found, and Column 6 shows the average number of referents created and
iterations performed until the Gold referent was found (from a total of 300 iterations).

Our results show that maintaining multiple hypotheses at each stage of the interpre-
tation process yields a substantial improvement in interpretation accuracy in compari-
son to the baseline approach.Scusi? found the Gold interpretation for all90 utterances
tested, in contrast to the baseline approach, which found only 44 Gold ICGs. The aver-
age rank of the correct text in the output returned by the ASR was 1.5 (where the top
rank is 0), and the correct text was top ranked by the ASR in 70%of the cases. This
level of accuracy is higher than the accuracy of the baselineapproach with respect to
Gold ICGs (44/90 = 49%), which indicates that even when presented with the correct
text, the baseline approach may not find the intended interpretation. Furthermore, ASR
accuracy is lower thanScusi?’s accuracy for top-1 Gold ICGs (82/90 = 91%), demon-
strating the robustness of the probabilistic multi-stage interpretation process in the face
of ASR inaccuracy.

5 Related Research

Reference disambiguation is an essential aspect of discourse understanding to which
a large research effort has been devoted. Much of the research on reference resolution
has focused on the generation of referring expressions, which involves constructing
expressions that single out a target object from a set of distractors, e.g., [4, 5]. Methods
for understanding referring expressions in dialogue systems are examined in [9, 11]
among others. Kelleheret al. [9] propose a reference resolution algorithm that accounts
for four attributes: lexical type, colour, size and location, where the score of an object
is estimated by a weighted combination of the visual and linguistic salience scores of
each attribute. Like inScusi?, the values of the weights are pre-defined and based on
empirical observations. However, Kelleheret al. limit the probabilistic comparison of
features to size and location, and use binary comparisons for lexical item and colour.
Pflegeret al. [11] use modality fusion to combine hypotheses from different analyzers
(linguistic, visual and gesture), choosing as the referentthe first object satisfying a
‘differentiation criterion’. As a result, their system does not handle situations where
more than one object satisfies this criterion.



6 Conclusion

We have offered a probabilistic reference disambiguation mechanism which considers
intrinsic and structural features. Our mechanism performsprobabilistic comparisons be-
tween features specified in referring expressions (specifically lexical item, colour, size,
ownership and location) and features of objects in the domain. Our mechanism was em-
pirically evaluated for these features, exhibiting very good interpretation performance
for a range of referring expressions.

In the future, we propose to extend the weighting mechanism devised for intrinsic
features to cater for structural features and their combination with intrinsic features. We
also propose to integrate our mechanism with a vision system, which will affect the type
of information we can obtain from our knowledge base. Finally, we intend to remove
the co-presence and unobstructed-view assumptions (Section 3), which will demand the
integration of our feature comparison mechanism with planning procedures.
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