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Abstract. This paper examines the problem of uncertainty due to in-
strumentation in user modeling systems within spatial domains. We con-
sider the uncertainty of inferring a user’s trajectory within a physical
space combined with the uncertainty due to inaccuracies in measuring a
user’s position. A framework for modeling both types of uncertainties is
presented, and applied to a real-world case study from the museum do-
main. Our results show that this framework may be used to investigate
the effects of layout in a gallery, and to explore the degradation in the
predictive performance of user models due to measurement error. This
information in turn may be used to guide the curation of the space, and
the selection of sensing technologies prior to instrumenting the space.

1 Introduction

Advances in mobile computing and sensing technology have enabled the instru-
mentation of physical spaces in order to track the movements of people and
model their behaviour [1, 2]. Typically, these systems are implemented by equip-
ping the space or the users with sensing technology, and applying machine learn-
ing or probabilistic techniques to build user models from logged sensor input [3,
4]. In principle, this approach appears to be sound. However, in practice it may
be error prone, and hence expensive, as the selected sensor technology or config-
uration may turn out to be inadequate for the task. Further, compared to virtual
spaces, physical spaces pose additional challenges to user modeling, owing to the
inaccuracies inherent in sensory observations.

In this paper, we propose a framework for investigating the impact of differ-
ent sensing technologies on the predictive performance of user models prior to
deploying a particular technology. To this effect, we simulate sensor logs of users,
and compare the predictive performance of a user model derived from these logs
with that of a user model derived from perfect observations. Our framework was
implemented in the context of the Marine Life Exhibition at Melbourne Museum
(Figure 1(a)), where the derived models were used to predict exhibits viewed by
museum visitors (the perfect observations were obtained by manually recording
the exhibits actually viewed by visitors [5]). These predictions will eventually be
used by a recommendation system that suggests exhibits of interest.



(a) Entropy mapping of the exhibition:
darker colour indicates higher entropy.

(b) Probability of viewing exhibit ‘Eat
or be Eaten’ from a square: darker
colour indicates higher probability.

Fig. 1. The Marine Life Exhibit at Melbourne Museum

Our approach requires the following models: (1) a predictive user model of
exhibits to be viewed, which also provides an upper bound of performance; (2) a
spatial viewing model representing positions from which each exhibit can be
seen; and (3) models of sensor characteristics for different types of sensors. Our
predictive model is built from logs obtained by manually tracking the exhibits
viewed by visitors [5]. To link this information to logs that can be obtained
from sensors, we first need to infer a plausible viewing position for each exhibit;
we employ the spatial viewing model to make this inference. Owing to sensor
inaccuracies, a visitor’s position recorded by a sensor may differ from his/her
actual position. The nature and magnitude of this difference depends on the
type of sensor (and even on the specific sensor). Models of sensor behaviour are
needed to incorporate such distortions into the inferred position of a visitor.1

This paper is organized as follows. Sections 2-4 describe our three models.
Section 5 describes the integration of the predictive user model and the spatial
viewing model to generate synthetic pathways through the exhibition and predict
viewed exhibits from positional information. The results of our evaluation are
presented in Section 6, followed by concluding remarks.

1 In principle, we could manually record a person’s position and viewed exhibit di-
rectly. However, our experience shows that recording two separate information items
at the same time places an excessive burden on human trackers, making their logs
more error prone. More importantly, one of our objectives is to produce useful in-
sights from a relatively small amount of easily recorded information.



2 Predictive User Model

There is a range of statistical models used in collaborative systems for predicting
users’ interests from observed behaviour, e.g., [6–8]. These systems have focused
on making predictions in the virtual rather than the physical space. The body
of work pertaining to building predictive models from sensory observations in
physical spaces is more reduced, e.g., [3–5], with [5] being the main proponent
of such models for the museum domain.

Our approach requires a user model that exhibits good predictive perfor-
mance, and can be easily sampled from to generate synthetic visitors (Sec-
tion 5.1). In this paper, we have adopted Bohnert et al.’s Transition Model

to represent visitors’ movements between exhibits in a museum [5]. This model
is a stationary 1-stage Markov model, where Pi,j approximates the probability
of moving from exhibit i to exhibit j (i, j = 1, . . . , M and M is the number of
exhibits). The Transition Model has a reasonable predictive performance on a ho-
mogeneous exhibition, such as Marine Life, where visitors’ behaviour is mainly
determined by the layout of the exhibition [5] (a hybrid model combining in-
terest with transitions outperforms a pure Transition Model, but it includes a
non-parametric component, which makes sampling more difficult).

The main issue in fitting the Transition Model is estimating the transition
probabilities from the available traces. The sparse data problem (also known as
the ‘small n, large p’ problem) occurs when there is a small number of data points
n compared to the number of parameters p to be estimated (in our case p = M2,
M = 22 exhibits, and n = 317 total exhibits viewed by 44 visitors). As a result
of this problem, many transitions between exhibits have zero observed counts.
Hence, estimating transition probabilities using a method such as Maximum
Likelihood will lead to zero transition probabilities for these transitions (even
when there is no physical reason for this to happen).

To overcome the sparse data problem, we employ a Bayesian approach, where
our prior distribution over the possible transition probabilities (Pi,1, . . . , Pi,M )
from a particular exhibit i is given by a Dirichlet distribution, Dir(αi, . . . , αi)
(i.e., all the parameters have been set to αi). The posterior distribution of these
transition probabilities is given by another Dirichlet distribution, Dir(ni,1 +
αi, . . . , ni,M + αi), where ni,j is the number of times a user was observed to
have moved from exhibit i to j. To estimate the probabilities Pi,j it is common
to employ the mean a posteriori estimates

P̂i,j =
ni,j + αi

Ni + Mαi

(1)

where Ni =
∑M

k=1
ni,k is the total number of times visitors viewed exhibit i, and

αi can be interpreted as the number of a priori observed counts per exhibit.2

However, as Hausser and Strimmer [9] point out, there is no general agree-
ment regarding the value of αi. Moreover, they demonstrate that for a small n
and large p, in terms of Mean Square Error, a better estimate of Pi,j is obtained
by choosing the αi for an exhibit i to be

2
αi is often assigned a single value, in which case it is called a ‘flattening constant’.



αi =
Ni

(

1 −
∑M

k=1
θ̂2

i,k

)

M

(

∑M

k=1
θ̂2

i,k + (Ni − 1)
∑M

k=1

(

1/M − θ̂i,k

)2

− 1

) (2)

where θ̂i,j = ni,j/Ni denotes the Maximum Likelihood estimate of the transition
probability from exhibit i to exhibit j.

3 Spatial Exhibit Viewing Model

One of the most interesting and difficult aspects of instrumenting a space such
as a museum is inferring abstract concepts, such as interest or intention, from
measured coordinates. In the museum domain, the time a visitor spent viewing
an exhibit is treated as proportional to his/her interest, and thus provides a form
of implicit rating, which can then be used by a recommender system. Therefore,
in order to infer interest from measurements, one must be able to infer which
exhibit is being viewed by a visitor when standing in a particular place.

Our approach consists of building a probabilistic model of the viewing areas
for each exhibit in the physical space. To facilitate this, we divided the physical
space into a grid. The dimensions of the grid were chosen to balance level of detail
with computational expense (a fine-grained grid provides a lot of detail, but its
integration into a viewing model is computationally expensive). The actual grid
size we chose is 61× 47 = 2, 867 squares, where a square is about 30cm× 30cm.

At each square we placed a multinomial distribution which represents the
probability that a visitor standing at that square is observing each exhibit. Fig-
ure 1(b) illustrates this distribution for the ‘Eat or be Eaten’ exhibit in the
Marine Life Exhibition — the darker squares indicate a higher probability of
viewing the exhibit from there. We now need to specify the probability of view-
ing each exhibit from each square. This was done as follows. We observed visitors’
behaviour in the Marine Life exhibition, and for each exhibit, marked out ar-
eas on the grid where people stood most often to view the exhibit. These high
probability areas (the darkest in Figure 1(b)) were assigned an unnormalized
probability of 1. The probability of the remaining areas was determined by mak-
ing G(i; x, y) – the unnormalized probability of viewing exhibit i from square
(x, y) – proportional to the distance between square (x, y) and the closest high-
probability square (xh, yh) as follows

G(i; x, y) ∝ exp

(

−
(x − xh)2 + (y − yh)2

λi

)

where λi is chosen to control the rate of decay. This parameter, which may differ
for each exhibit, reflects how large the viewing areas are in the physical space,
and must be chosen by the space modeler. Based on our observations, we chose
the same λi (= 3) for all the exhibits (i = 1, . . . , M), as the gallery space was
quite homogeneous.



Clearly, squares from which it is not physically possible to view an exhibit
should have a zero probability associated with them. This is handled by simply
marking the squares that correspond to walls, and setting G(i; x, y) to zero if a
straight line cannot be drawn from square (x, y) to any of the exhibit squares.

The final probability of viewing exhibit i from square (x, y) is estimated by
normalizing over all the exhibits

P(i|x, y) =
G(i; x, y)

∑M
j=1

G(j; x, y)
(3)

An interesting use of our viewing model is for assessing the clutter in a gallery.
For each square in the gallery, we have an M -state multinomial distribution
over the M exhibits (i.e., a list of probabilities that a visitor standing at that
square is observing each exhibit). We represent the clutter at each square by the
entropy of this multinomial. Specifically, the entropy H(P) of an M -nomial with

probabilities P = (P1, . . . , PM ) is given by H(P) = −
∑M

j=1
Pj log Pj. H(P) is

maximized when all exhibits are equally likely to be viewed, and is minimized
when one Pj = 1 and the rest are zero (i.e., there is no uncertainty). Figure 1(a)
illustrates the entropy of each viewing square in the Marine Life Exhibition; dark
shading indicates high entropy, and light shading indicates low entropy.

4 Sensor Models

The final component of the user modeling system is the sensor model. This com-
ponent allows us to simulate real-life sensing technologies that are required to
deploy a predictive model in a physical space. Ideally, a sensor model should be
simple enough to easily integrate into a user modeling system, and also abstract
enough to be able to represent a wide range of real-life sensing possibilities. A
suitably abstract sensor model would allow different types of sensing technolo-
gies to be simulated by changing several parameters. Our basic model is that the
measured coordinates (x′, y′) are a realization of a random variable whose prob-
ability distribution depends on the true location (x, y) and the type of sensor
technology deployed. This distribution should be chosen to represent the be-
haviour of some real-life sensor technology. Below we propose models for indoor
GPS, RFID tags and accelerometers. Our evaluation is based on our indoor GPS
model (Section 6).

Indoor GPS or localization technologies. We adopt a simple model whereby
the (x, y) coordinates are distorted by additive Gaussian noise. Under this regime,
the measured coordinates are found by sampling from a bivariate normal distri-
bution N((x, y),C) with mean (x, y) and covariance C. Usually one can assume
that the accuracy is the same in all directions, and so we can make the simpler
model choice C = σ2I, where I is the identity matrix, and σ is a constant that is
chosen to reflect the expected accuracy of the device. For example, if the GPS is
nominally accurate to within ν meters, and the (x, y) coordinates are measured
in meters, then σ = ν/2 would be a suitable value, as such a choice places the
bulk of the probability mass within the circle defined by x2 + y2 = ν2.



RFID-tag arrays. An array of RFID tags positioned through the physical
space can be modeled in a similar fashion to an indoor GPS. Given an array of
active RFID tags, the physical space is divided into a set of (possibly overlapping)
cells that are covered by the RFID tags — each cell potentially spanning several
squares. When a user (wearing a passive RFID tag) moves into a cell, and the
active RFID is activated, the system is aware of the user’s approximate position.
The uncertainty of the user’s exact (x, y) position within a cell may be modeled
by treating the measured (x′, y′) as a Gaussian distribution N((ak, bk),Ck),
where (ak, bk) are the coordinates of the center of the cell covered by active
RFID tag k, and the covariance matrix Ck is chosen to approximate the area of
the cell. A more refined model of a user’s position may be devised by treating
the different cells as discrete states in a Markov model, and noting that a user’s
likely (x, y) position on entering a cell depends on the previous cell s/he was in
(and thus, the direction from which s/he moved into the new cell). However, the
Gaussian model will be insufficient to represent this extra information.

Accelerometer based sensing. The behaviour of accelerometer-based tech-
nology may be modeled as a state-space evolution of (x, y) coordinates with
suitable Gaussian process noise over acceleration (rather than position, as for
the previous devices). In order to model the behaviour of accelerometer-based
technology, we need to simulate trajectories of users’ (x, y) coordinates through
the physical space. Such trajectories should include a sequence of points in the
path between two consecutively visited exhibits, and the time required to tra-
verse this path. The path may be approximated using a shortest path algorithm,
and the traversal time may be approximated using average speeds of visitors and
the length of the path. This information enables the calculation of acceleration
vectors (ẍ, ÿ)t at each time t along the trajectory. Thus, given a starting position
(x, y)0, the measured positions of the user (x′, y′) evolve over time according to
the state-space equations

(x′, y′)t+δ = (x′, y′)t + (ẋ′, ẏ′)tδ (4)

(ẋ′, ẏ′)t+δ = (ẋ′, ẏ′)t + (ẍ′, ÿ′)tδ + εt (5)

where εt is distributed as N((0, 0),C), and C is a suitable covariance matrix
representing the noise due to imperfect measurement of acceleration.

A major problem with acceleration-based tracking is measurement drift. That
is, this technology produces relative positions (in contrast with absolute positions
generated by GPS and RFID tags). Hence, the noise distorting the acceleration
measurements will cause the estimated positions to increasingly drift away from
the truth; the longer the sequence of acceleration measurements, the bigger the
expected drift. This problem may be alleviated by deploying several absolute
positioning devices (e.g., RFID tags) around the space, and using them to reset
a user’s position when s/he moves past them.3

3 If a Kalman filter [10] is used to estimate a user’s current position from the state-
space model (Equations 4 and 5), the effect of resetting a user’s position to within the



5 Integrating the User Model with the Viewing Model

The Transition Model presented in Section 2 is based on precise knowledge of the
last exhibit viewed by a visitor. However, if information on the visitor’s behaviour
is being automatically gathered by instruments, then all that is available is a
sequence of (possibly distorted) (x, y) coordinates. Assuming that there exists
some criterion for detecting that a visitor is stationary (and hence viewing an
exhibit), we can decompose the complete (x, y) sequence into a sub-sequence
of stationary (x, y) coordinates (at present, we do not model ‘hovering’ around
an exhibit). From these, we must attempt to infer which exhibit the visitor is
viewing, and then employ our user model to predict which exhibit the visitor
will view next on the basis of this information.

Recall that our manually gathered data consists of a sequence of viewed ex-
hibits (rather than (x, y) coordinates). Hence, in order to make predictions from
(x, y) coordinates, we must first generate positional pathways from information
regarding viewed exhibits. We generate synthetic pathways, driven by the pre-
dictive user model, rather than pathways tailored to the 44 observed users. This
is done to ensure that any deterioration in predictive performance can be at-
tributed to the use of positional coordinates (instead of precise exhibits) and to
sensing distortion due to instrumentation error. Synthetic users were also gener-
ated by [11] for plan-based activities in the virtual space. However, their objective
was to generate new, plausible users, while ours is to filter out prediction errors
made by the user model.

5.1 Generating User Pathways

We generate realistic synthetic trajectories for the Marine Life Exhibition as
follows. We first use the Transition Model (Section 2) to generate a tour (ordered
list) of viewed exhibits, and then apply our spatial viewing model (Section 3) to
transform this list of exhibits to a sequence of plausible spatial coordinates within
the physical space (these coordinates are subsequently distorted by measurement
error).

Generating a tour. The Transition Model proposed in Section 2 assumes that
the primary driving force behind a tour is the layout of the gallery, and that
the probability that a visitor moves to an exhibit depends entirely on the last
exhibit viewed. As mentioned above, this model yields reasonable predictions for
our dataset. Also, Markov models are easy to sample from, thus facilitating the
generation of synthetic tours. Our tours begin at a (fictitious) ‘start’ position,
with the first viewed exhibit being drawn from the possible transitions from this
position; the next exhibit is drawn from the transition probabilities of the first
exhibit, and so on, until a (fictitious) ‘end’ exhibit is drawn.

accuracy provided by an RFID tag may be naturally incorporated into the Kalman
filtering process by setting the covariance matrix of the Kalman-filter state estimate
to the covariance matrix of the RFID-tag noise model.



The generated tours depend on the estimates of the transition probabilities
obtained in Section 2. Due to the small amount of data used to estimate the
multinomial distributions that comprise the Transition Model, these estimates
have a large variance. This variance is not taken into account when point es-
timates, such as those in Equation 1, are employed to define the multinomial
distributions from which samples are drawn. To overcome this problem, we use
the complete Bayesian predictive distribution to generate tours, as follows. For
each exhibit i in a tour, we first sample φ1, . . . , φM from the Dirichlet distri-
bution Dir (ni,1 + αi, . . . , ni,M + αi) for the exhibit (ni,j and αi are given in
Section 2), and then sample the next exhibit from the multinomial distribution
Multi(φ1, . . . , φM ). For small samples sizes, if one was to use a point estimate
to generate tours, the resulting tours would contain less variability than war-
ranted by the data. The full predictive distribution takes this overdispersion
into account, yielding tours with higher variability.

Generating User Coordinates. Once a tour of exhibits has been generated,
we need to place the visitors in physical (x, y) coordinates within the gallery in
a plausible fashion. We employ Bayes’ theorem to produce the probability of a
visitor being at square (x, y) conditioned on the fact that s/he has been viewing
exhibit i, where x = 1, . . . , 61 and y = 1, . . . , 47 (Section 3). This yields

P(x, y|i) =
P(i|x, y)π(x, y)

∑

x

∑

y P(i|x, y)π(x, y)

where P(i|(x, y) is obtained from Equation 3.
It remains to specify a prior distribution π(·) over the possible (x, y) positions

where a visitor may be standing. Assuming a simple prior of ignorance, whereby
every square is equally likely to be occupied by a visitor, we obtain

P(x, y|i) =
P(i|x, y)

∑

x

∑

y P(i|x, y)
(6)

Now, given that a synthetic visitor is viewing exhibit i, we just need to
sample from a multinomial distribution representing all the squares in the space
to determine a square occupied by the visitor.

5.2 Predicting Exhibits from Positional Information

When a visitor stands in a particular location, there is some uncertainty regard-
ing which exhibit s/he is viewing. The more exhibits are in close proximity (i.e.,
the more cluttered is an exhibit area), the higher the uncertainty. We consider
two approaches for inferring viewed exhibits from positional information in light
of this uncertainty: Argmax and Weighted.

– Argmax selects the most probable exhibit given the coordinates (x, y) of
the user, i.e.,

jmax = arg max
j∈{1,...,M}

{P(j|x, y)} (7)



The Transition Model is then used to estimate the probability of the next
exhibit i assuming that the current exhibit being viewed is jmax

P̂(i|x, y) = Pjmax,i (8)

– Weighted employs the Transition Model to estimate the probability of going
to the next exhibit i from each other exhibit in the gallery, and calculates
a weighted average of these probabilities on the basis of the probability of
viewing each exhibit from coordinates (x, y).

P̂(i|x, y) =

M
∑

j=1

{P(j|x, y) × Pj,i } (9)

We expect the differences in the performance of Argmax and Weighted to be
greatest when the (x, y) coordinates are in areas of high uncertainty, i.e., areas
with many exhibits. When only one exhibit is feasibly viewable from a particular
(x, y) coordinate, the two predictors are expected to coincide (Section 6).

6 Evaluation

We first review the data collection process, followed by a description of our
experiments and the results we obtained.

6.1 Data collection

As mentioned above, our framework was evaluated on data obtained from the
Marine Life Exhibition at Melbourne Museum (Figure 1). The dataset, which
was gathered manually, consists of tour traces from 44 visitors (Section 2). These
traces contain an ordered list of the exhibits viewed by each visitor, and the
time spent at each exhibit (which is not used in our models, but is necessary for
assessing interest [5]). There are M = 22 exhibits in the Marine Life Exhibition,
and on average, a visitor viewed 7.2 exhibits. We augmented the exhibit list with
fictitious ‘start’ and ‘end’ exhibits in order to naturally incorporate an initial and
final event into our predictive model.

The data for the viewing model were obtained separately from the user mod-
eling data. This was done by observing the movements of visitors to the Marine
Life Exhibition as they viewed the exhibits, and manually annotating a grid-
divided map of the gallery to record their positions (Section 3).

6.2 Experimental setup

We conducted two experiments as follows. First we evaluated the performance of
our two position-based prediction models, Argmax and Weighted (Section 5.2),
compared with the performance obtained by the Transition Model alone, i.e.,
from direct observations of the exhibits viewed. We then introduced distortions
modeled by our indoor GPS sensor model (Section 4) into the position-based
predictive models in order to examine the effect of sensor inaccuracy on predic-
tive performance. For both experiments we generated 1000 synthetic tours as
described in Section 5.1.
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Fig. 2. Results for the Marine Life Exhibition at Melbourne Museum

6.3 Results

Figure 2(a) shows the results obtained by the three predictive models, Argmax,
Weighted and Transition Model, in terms of the average log-loss of the predic-
tions made at each of the 22 exhibits (i.e., the negative-log of the probability
with which the exhibit actually viewed next was predicted). This average, which
is calculated over all the synthetic visitors, summarizes how well the predictive
models perform at each exhibit. The curve is plotted in order of decreasing pre-
dictive performance of the Transition Model, and the crosses mark exhibits for
which the difference between the Argmax and Weighted models is statistically
significant at the 0.05 level. For the position-based models, this plot was pro-
duced on the basis of the (x, y) coordinates where each synthetic visitor ‘stood’
to view each exhibit in his/her tour. The predictions made by the Transition
Model were obtained directly from viewed exhibits. These predictions represent
an upper bound on predictive performance (lower bound on log-loss).

In general, the Weighted method outperforms the Argmax method. When
Weighted does better than Argmax, as for Exhibit 19 (‘Tool Time’) and 21
(‘Deep Freaks’), the difference is quite substantial. In contrast, when Argmax
outperforms Weighted, as for exhibit 18 (‘Sea Floor’), the difference is rather
marginal. It is worth noting that the viewing areas for both ‘Tool Time’ and
‘Deep Freaks’ have a significant amount of overlap with the viewing areas of other
exhibits, while ‘Sea Floor’ is quite separate from its neighbour ‘Sea Mounts’.
Thus, these models behave according to the expectations set out in Section 5.2.

The effect of instrumentation accuracy on predictive performance was tested
with respect to indoor GPS — the instrumentation option being considered at
present by Melbourne Museum. We calculated the average predictive accuracy of
our models under various levels of sensor noise (the average was computed over
all the exhibits in all the tours). The predictive accuracy of a model was calcu-



lated by scoring 1 if one of the top-3 most probable exhibits was viewed next, and
0 otherwise. We chose top-3 (rather than top-1) because top-1 ignores the fact
that top probabilities are often quite similar in our scenario. Figure 2(b) shows
the degradation in the predictive performance of the Weighted and Argmax
models as a function of increasing sensor error ν (Section 4). The true predic-
tion error baseline, which is obtained when the viewed exhibit is known, is 0.54
on average (0.32 for top-1 accuracy),4 compared with 0.44 for Weighted and 0.39
for Argmax when ν = 0. This drop in performance as one changes from precise
observations to positional observations may be largely attributed to the clutter
in the gallery (recall that error due to the predictive model has been filtered out,
since this model is also used to generate the synthetic pathways). Our results
show that performance degrades slowly as sensor error increases. For instance,
an error of ν = 5 squares (1.5 meters) results in only approximately 10% drop in
performance. This indicates that a fairly inaccurate sensor technology or a fairly
coarse instrumentation of the museum space may be suitable, which can signifi-
cantly lower instrumentation costs. At the same time, more accurate predictive
user models may be necessary to improve the baseline predictive performance,
possibly in combination with a reduction in the clutter of certain exhibit areas.

7 Conclusion and Future Work

We have offered a framework for investigating the impact of sensing technologies
on the predictive performance of user models in physical spaces. Our framework
combines a predictive user model with a spatial viewing model to produce path-
ways of synthetic users from a relatively small dataset. It then incorporates sim-
ulated sensing distortions from different types of instruments. This framework
was applied to a small, real-life dataset obtained from Melbourne Museum. Our
results show that the Weighted position-based predictive model outperforms the
Argmax model, and that the Weighted model can attain tolerable predictive
performance, even in the presence of a substantial sensory distortion.

There are several interesting avenues for further investigation. Firstly, we
propose to implement models of the other positioning devices mentioned in Sec-
tion 4, viz RFID tags and accelerometers. In addition, in order to improve the
realism of our models we intend to do the following.

– Devise a more accurate spatial viewing model by considering particular re-
strictions of museums. For example, our model could reduce the probabilities
of squares that are too close to walls or exhibits, and take into account size
of exhibits (bigger exhibits are more likely to be viewed from farther away
than smaller exhibits). The association of suitable attributes with exhibits
will in turn enable the application of machine learning techniques to learn
models of viewing areas for new exhibits.

4 The predictive performance of the baseline model is lower than that in [5] due to
our sampling approach, which generates tours with higher variability.



– Combine a tour generated from a predictive user model and the (x, y) coordi-
nates generated from the spatial model into a dynamic trajectory through the
physical space (rather than just stops at particular exhibits). This requires
the derivation of a path between exhibits (e.g., by using a shortest-path al-
gorithm), and a suitable stopping criterion to determine when a visitor has
paused to interact with an exhibit or is ‘hovering’ around the exhibit. This
criterion could be based on factors such as the direction and velocity of a
visitor’s approach to a particular square.
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