Modeling Suppositionsin Users Arguments*

Sarah George and Ingrid Zukerman and Michael Niemann

School of Computer Science and Software Engineering
Monash University
Clayton, VICTORIA 3800, AUSTRALIA
{sarahg,ingrid,niemann}@csse.monash.edu.au

Abstract. During conversation, people often make assumptions or suppositions
that are not explicitly stated. Failure to identify these suppositions may lead to
mis-communication. In this paper, we describe a procedure that postulates such
suppositions in the context of the discourse interpretation mechanism of BIAS—a
Bayesian Interactive Argumentation System. When a belief mentioned in a user’s
discourse differs from that obtained in BIAS’ user model, our procedure searches
for suppositions that explain this belief, preferring suppositions that depart min-
imally from the beliefs in the user model. Once a set of suppositions has been
selected, it can be presented to the user for validation. Our procedure was evalu-
ated by means of a web-based trial. Our results show that the assumptions posited
by BIAS are considered sensible by our trial subjects.

1 Introduction

During conversation, people often make assumptions or suppositions that are not explic-
itly stated. The identification of these suppositions is important in order to understand
the intentions or reasoning of one’s conversational partner, and to provide cooperative
responses. For instance, if someone says “Jack is tall, so Jill must be tall”, s/he is proba-
bly assuming that Jack and Jill are related. This assumption must be taken into account
in order to respond cooperatively. In this example, rather than responding “I disagree,
Jill may or may not be tall”, it would be more helpful to say “Actually, Jack and Jill are
not related, so we can’t infer that Jill is tall”.

In this paper, we describe a procedure that postulates such suppositions in the con-
text of the discourse interpretation mechanism of BIAS — a Bayesian Interactive Argu-
mentation System [8, 7]. This mechanism receives as input arguments for a goal propo-
sition, and generates interpretations.

An interpretation is a representation of what an interlocutor said in terms of the
mental model maintained by the addressee. When the addressee is a computer, this rep-
resentation is constrained by the knowledge representation and reasoning formalism
employed by the system, and by the purpose for which the system is used. The interpre-
tations generated by the version of BIAS described in [8, 7] consist of propositions asso-
ciated with degrees of belief, and relations between propositions. For example, if a user
said “If | walk to the main road, then I’ll probably be in Sydney tomorrow”, one pos-
sible interpretation would be “WalkMainRoad — TakeBus — ArriveSydney [Likely]”,
and another would be “WalkMainRoad — HitchRide — ArriveSydney [Likely]”.

* This research was supported in part by the ARC Centre for Perceptive and Intelligent Machines
in Complex Environments. The authors thank David Albrecht and Yuval Marom for their help
with the analysis of the evaluation results.

The procedure described in this paper incorporates suppositions into such interpre-
tations in order to account for the beliefs stated by a user. For example, if the user had
been previously discussing the perils of hitchhiking, and then said “If | walk to the main
road, I’ll have to hitch a ride to Sydney”, the system could posit that the user is sup-
posing that no buses are available. If such a supposition departs significantly from the
beliefs recorded in the user model, it is presented to the user for confirmation, where-
upon it is incorporated into the user model.

In the next section, we discuss related research. Section 3 outlines our interpretation-
generation process, and Section 4 describes our mechanism for positing suppositions.
We then present a user-based evaluation of this mechanism, and concluding remarks.

2 Reated Research

An important aspect of discourse understanding involves filling in information that is
omitted by the interlocutor. In our previous work, we have considered inferential leaps,
where BIAS filled in intermediate reasoning steps left out by a user [8, 7], and unstated
premises, where BIAS postulated which premises from the user model were considered
by the user, but omitted from his/her argument [9]. In this paper, we consider supposi-
tions, which according to the Webster dictionary “consider as true or existing what is
not proved”. Suppositions are beliefs that differ from those in the user model, but are
posited by the system to account for the beliefs expressed in the user’s argument.

Several researchers have considered presuppositions, a type of suppositions implied
by the wording of a statement or query [3, 5,4, 2]. For instance, “How many people
passed CS101?” presupposes that CS101 was offered and that students were enrolled
in it [3]. Mercer [4] used default logic together with lexical information to identify a
speaker’s presuppositions. Gurney et al. [2] used active logic plus syntactic and lexi-
cal information to update the discourse context presupposed by an utterance. Kaplan
[3] considered the information in a database and applied language-driven inferences to
identify presumptions in database queries, and generate indirect cooperative responses,
e.g., “CS101 was not offered” rather than “nobody passed CS101”. Motro [5] extended
this work using information about the database, such as integrity constraints, in addition
to the information in the database.

The presuppositions considered by these researchers are typically few and can be
unequivocally inferred from the wording of a single statement. In contrast, the supposi-
tions considered in this paper are postulated to justify the relations between statements
made by a user, and differ from what our system thinks that the user believes. Further-
more, there may be several alternative suppositions that explain a user’s statements, and
their probability depends on the other beliefs held by a user.

3 Outlineof BIAS

BIAS uses Bayesian networks (BNs) [6] as its knowledge representation and reasoning
formalism.* Our domain of implementation is a murder mystery, which is represented
by a 32-node binary BN. That is, each node in the BN may be set to either True or False.
In addition, an unobserved node may remain unset (with a probability between 0 and 1
inferred by means of Bayesian propagation).

! However, BNs are not essential. Our mechanism requires a set of propositions that represent
the system’s domain knowledge, and a representation of relations between propositions.

GreenlnGardenAt11 [VeryLikely]
AND
Murder WeaponFiredByGreen [Likely]

IMPLIES GreenHadMeans GreenHadOpportunity
GreenMurderedBody [Better ThanEvenChance]

GreenMurderedBody

MurderWeapon GreenInGardenAt
FiredByGreen TimeOfDeath
>

TimeOfDeathll| GreenlnGardenAtl1

Fig. 1. Sample argument and interpretation

In the context of a BN, an interpretation consists of the tuple {SC, IG}, where SC
is a supposition configuration, and /G is an interpretation graph.

— A Supposition Configuration is a set of suppositions made by BIAS to account for
the beliefs in a user’s argument.

— An Interpretation Graph is a subnet of the domain BN which links the nodes that
correspond to the antecedents in an argument to the nodes that correspond to the
consequents. Each node is associated with a degree of belief.

Figure 1 shows a sample argument (left-hand side) and interpretation (the Bayesian
subnet on the right-hand-side). The argument is composed of propositions (obtained
from a menu in an argument-construction interface [7]) linked by argumentation con-
nectives. The italicized nodes in the Bayesian subnet are those mentioned in the argu-
ment, and the boxed node is a supposition (posited by the system) that accounts for the
beliefs in the argument. If the time of death is unknown according to the user model,
then GreenIinGardenAt11 does not necessarily imply that Mr Green was in the garden
at the time of death, yielding a belief of LessThanEvenChance in GreenMurderedBody.
In order to account for the user’s belief of BetterThanEvenChance for this consequent,
BIAS posits that the user supposes TimeOfDeath11=True.

The problem of finding the best interpretation {SC, IG} is exponential. Hence, we
use the anytime algorithm in Figure 2 for this task [1]. This algorithm activates the fol-
lowing three modules until it runs out of time (after 20 seconds), retaining the top N
(=4) interpretations at any point in time: one module for proposing a supposition con-
figuration, one for proposing an interpretation graph, and one for evaluating the resul-
tant interpretation.? This algorithm typically generates a few supposition configurations
(Section 4), and several interpretation graphs for each suppaosition configuration.

An interpretation is evaluated by calculating its posterior probability, where the best
interpretation is that with the highest posterior probability.

SysIntBest = argmax,_, _,,Pr(SC;, IG;|UserArg)
where n is the number of interpretations.

2 We have also implemented a module that matches Natural Language (NL) sentences in an ar-
gument with nodes in the domain BN, This module, which should be called before the other
modules, is not part of the version of BIAS described here, where the propositions in an argu-
ment are copied from a menu.

Algorithm Generatelnterpretations(UserArg)
while {there is time}

1. Propose a supposition configuration SC' that accounts for the beliefs stated in the argument.

2. Propose an interpretation graph I'G that connects the nodes in UserArg under supposition
configuration SC.

3. Evaluate interpretation {SC, IG}.

4. Retaintop N (=4) interpretations.

Fig. 2. Anytime algorithm for generating interpretations

After applying Bayes rule and making independence assumptions, we obtain

SysIntBest = argmax,_, ,,{Pr(UserArg|SC;, IG;) x Pr(IG;) x Pr(SC;)} (1)

This calculation implements Occam’s Razor, which may be stated as follows: “If
you have two theories both of which explain the observed facts, then you should use
the simplest until more evidence comes along”. This principle balances data fit against
model complexity. The data fit component (Pr(UserArg|SC;, IG;)) reflects how well
an interpretation matches a user’s argument both in structure and beliefs. The model
complexity component reflects the simplicity of the interpretation, or how easily it can
be derived from existing information. Pr(IG;), the prior probability of an interpreta-
tion graph, reflects how easy it is to obtain this graph from the domain BN (e.g., small
graphs are easy to derive); and Pr(SC;), the prior probability of a supposition configu-
ration, indicates how close are these suppositions to the beliefs in the user model. The
calculation of Pr(UserArg|SC;, IG;) is based on Pr(UserArg|/G;) (the calculation of
Pr(UserArg|IG;) and Pr(IG;) is described in [7], where we considered only interpre-
tation graphs, not suppositions). In this paper, we describe the calculation of Pr(SC;)
and the influence of suppositions on the probability of an interpretation (Section 4).

4 Positing Suppositions

As stated in Section 3, the nodes in our BNs are binary. Hence, the possible supposition
states are: SET TRUE — suppose that a node is True; SET FAL SE — suppose that a node is
False; and UNSET — suppose that a node has not been observed (i.e., ignore any evidence
supplied by this node). Making a supposition may strengthen the influence of a node on
its consequents, as shown in the example in Figure 1, or weaken it.

A supposition configuration describes the state of every node in the BN, hence there
are 3~ such configurations (where N is the number of nodes in the BN). Since the num-
ber of nodes in the BNs implemented in BIAS ranges between 32 and 85, we cannot
consider all possible supposition configurations, and we certainly cannot combine them
with large numbers of interpretation graphs in the next step of algorithm Generatelnter-
pretations. We therefore find promising supposition configurations by generating only
a limited number (=200) of supposition configurations that are close to the beliefs in
the user model, and selecting from these the best three configurations as the basis for
the generation of interpretation graphs. This is done by applying algorithm GetSuppo-
sitionConfig (Figure 3).

Algorithm GetSuppositionConfig, which is called in Step 1 of algorithm Generateln-
terpretations, receives as input an argument UserArg and returns a supposition con-

Algorithm GetSuppositionConfig(UserArg)
1. If SuppositionConfigList is empty
(@) Call MakeNewConfig(Supposition) K (=200) times, where each time MakeNewConfig
returns the best supposition configuration.
(b) Assign the top k (=3) supposition configurations to SuppositionConfigList.
2. Select an element from SuppositionConfigList at random.
3. Return the chosen configuration.

Algorithm MakeNewConfig(ConfigType)

1. Ifthe priority queue is empty, propose an initial configuration, calculate its probability, and
add the configuration and its probability to the priority queue.

2. Remove the first configuration from the queue.

3. Generate the children of this configuration, calculate their probability, and insert them in
the queue so that the queue remains sorted in descending order of the probability obtained for
a configuration.

4. Return the chosen (removed) configuration.

Fig. 3. Algorithm for generating suppositions

figuration randomly selected from a short-list of & (=3) configurations. This short-
list, which is denoted SuppositionConfigList, is generated by calling MakeNewCon-
fig(Supposition) K (=200) times, and selecting the best three configurations.

Algorithm MakeNewConfig, which is called in Step 1(a) of GetSuppositionConfig,
maintains a priority queue of configurations and their probabilities. Each time it is
called, it removes the configuration at the top of the queue (which has the highest proba-
bility), generates its “child configurations” (derived from the removed one), inserts them
in the queue according to their probability, and returns the removed configuration.® The
bold-italicized segments of the algorithm are explained later in this section.

We have adopted this process for the generation of supposition configurations, be-
cause observations of our system’s behaviour indicate that there are only a few promis-
ing supposition configurations among the many possible options, but these configura-
tions generally do not follow a monotonic pattern. Hence, a procedure that just descends
a priority queue will not yield good results reliably. Further, trials performed during sys-
tem development show that the top 200 supposition configurations (obtained by repeat-
edly accessing a priority queue) provide a suitable basis for selecting three promising
configurations.

The generation of supposition configurations and their children employs a struc-
ture called Supposition Score Table, which maps nodes to suppositions (Table 1). Each
column in the Supposition Score Table corresponds to a node in the BN. Each node is
associated with a list of <supposition: probability> pairs — one pair for each supposi-
tion — sorted in descending order of probability. Each pair represents the probability of
making this supposition about the node in question, which is obtained by applying the
following heuristics:

— No change is best: There is a strong bias towards not making suppositions.

— Users are unlikely to change their mind about observed evidence: If a user has
observed a node (e.g., its value is True or False), s/he is unlikely to change his/her
belief in this node.

3 This algorithm is also used to generate interpretation graphs and node configurations that
match NL sentences, but here we focus on its use for generating supposition configurations.

Table 1. Sample Supposition Score Table

node; node; e nodess
unser: 0.7 sertruer 0.8 ... uUNsET: 0.7
seT TRUE. 0.21 unseT: 0.15 ... sertrue: 0.15
seT FaLSE: 0.09 serraLse: 0.05 ... serracse: 0.15

Table 2. Probability of making suppositions

Node has been observed by the user |[Node has not been observed by the user

Probability| Node=FALSE | Node= TRUE

Pr(unser) 0.15 0.15 Prunset (=0.7)

Pr(set FaLsE) 0.8 0.05 Pr(raLse) X Priioating + Prfixed
Pr(set TrRuE) 0.05 0.8 Pr(true) X Prfigating + Plfixed

— Small changes in belief are better than large changes: If a node that is left unset has
a propagated value of 0.9, then it is more likely that the user is assuming it True than
if the propagated value was 0.6.

These heuristics are implemented by means of the probabilities in Table 2. The
left side of Table 2 specifies the probabilities of making suppositions about nodes that
have been observed by the user. For example, if the user knows that GreenInGarde-
nAt11=True, then the probability of setting this node to True (leaving it unchanged)
is 0.8, the probability of unsetting this node is 0.15, and the probability of setting it to
False is 0.05. The right side of Table 2 specifies the probabilities of making suppositions
about nodes which have not been observed by a user (i.e., nodes that are unset). As per
the above heuristics, the bulk of the probability mass is allocated to leaving a node un-
set. The remainder of the probability mass is allocated in proportion to the propagated
probability of the node (Priipaiing = 0.2 is used to normalize this component). However,
we include a fixed component of Prsixeg = 0.05 to ensure that some probability mass is
allocated to every value (i.e., the probability of setting a node to True or False can not
go below 0.05). For instance, if the propagated belief of unobserved node GreenHad-
Means is Pr(GreenHadMeans) = 0.8, then the probability of leaving it unset is 0.7, the
probability of setting it to True is 0.8 x 0.2 4+ 0.05 = 0.21 and the probability of setting
it to False is 0.2 x 0.2 4+ 0.05 = 0.09.

The Supposition Score Table is used by elements of algorithm MakeNewConfig
(Figure 3) to generate supposition configurations as follows.

Propose an initial configuration (Step 1 of MakeNewConfig). Select the first row
from the Supposition Score Table. This yields supposition configuration {node;: unser,
nodes: set TruE, ..., Nodess: unser} for the Supposition Score Table in Table 1.

Generate the children of a configuration (Step 3). The ith child is generated by mov-
ing down one place in column ¢ in the Supposition Score Table, while staying in the
same place in the other columns. For the Supposition Score Table in Table 1, this yields
{nodel: SET TRUE, nOdEQZ SET TRUE, ..., node32: UNSET}, {nodel: UNSET, nOdEQZ UNSET, ...,
nodess: unset}, ..., where the underlined node-supposition pair is the element being
replaced in the parent supposition configuration.

Calculate the probability obtained for a configuration (Steps 1 and 3). According to
Equation 1 (Section 3), the probability of an interpretation is given by

Pr(UserArg|SC;, IG;) x Pr(IG;) x Pr(SC;)

The probability of a supposition configuration, Pr(SC;), is the product of the prob-
abilities of the entries in the Supposition Score Table for the configuration in question.
For instance, the initial configuration selected above has probability 0.7x 0.8 x...x 0.7,
and configuration {node;: ser Trug, NOdes: seT TRUE, ..., Nodess: unser} has probability
0.21 x 0.8 x ... x 0.7. Thus, the more SC; departs from the beliefs in the user model,
the lower is Pr(SC;), thereby reducing the overall probability of the interpretation.

However, recall that Pr(UserArg|SC;, IG;) depends both on the structural match
between IG; and UserArg and the match between the beliefs in IG; (influenced by
the suppositions in SC;) and those in UserArg. Thus, if SC; yields a better match
between the beliefs in the interpretation and those in the user’s argument, then the prob-
ability of Pr(beliefs in UserArg|SC;, IG;) increases. As a result, the “cost” incurred
by the suppositions in SC; may be overcome by the “reward” resulting from the bet-
ter match between the beliefs. This cost-reward balance is represented by the product
Pr(beliefs in UserArg|SC;, IG;) x Pr(SC;), which determines the position of configu-
ration SC; in the priority queue maintained by algorithm MakeNewConfig (this product
is also used to calculate Equation 1). Thus, the configurations that yield the best cost-
reward balance among those inspected until now are at the top of the queue (children
that are more promising may be discovered next time MakeNewConfig is called).

Our process for generating supposition configurations proposes promising configu-
rations in terms of improvements in the belief match between an argument and an inter-
pretation. However, it does not take into account other types of interactions which may
cause locally optimal supposition configurations and interpretation graphs to combine
into interpretations that are sub-optimal as a whole or even invalid. For example, if a
user says A — C and the most direct path between A and C inthe BNis A — B — C,
then if B has been set to True in the user model, this path is blocked [6], as B prevents
A from influencing C' (which does not reflect the reasoning employed in the user’s
argument). Thus, the shortest interpretation graph together with the best supposition
configuration (which retains the beliefs in the user model) yield an invalid interpreta-
tion. In this case, unsetting the value of B (supposing that it was not observed) makes
the above interpretation valid. However, this may still not be the best interpretation, as
there may be a longer interpretation, e.g., A — D — E — C, which is not blocked
and requires no suppositions. Such global effects are considered during the evaluation
of an interpretation as a whole (Step 3 of algorithm Generatelnterpretations).

5 User Evaluation

Our evaluation of the module for postulating suppositions was conducted as follows.
Using a Web interface, we presented four scenarios: Crimson and Lemon (Figure 4),
Sienna and Mauve. These scenarios test various supposition alternatives as follows.
The Crimson and Sienna scenarios required supposing that a node is True in order to
strengthen the belief in the goal proposition of an argument; the Lemon scenario re-
quired a True supposition in order to unblock a path; and the Mauve scenario required
unsetting or “forgetting” the value a node to weaken the belief in the goal proposition
of an argument. Each scenario contained background evidence (not shown in Figure 4)

CRIM SON SCENARIO

LEMON SCENARIO

We think that If forensics matched the bullets
in Mr Body’s body with the found gun, then the

We think that If broken glass was found, then
Mr Body’s window probably wasn’t broken

suspect Mr Green possibly had the means to||from outside.
murder Mr Body.

I f someone says Forensics matching the bullets
with the found gun means Mr Green very prob- {|means Mr Body’s window probably was broken
ably had the means to murder Mr Body. from outside.
Then it would be reasonableto think that they are assuming
S1) Mr Green fired the gun found in the garden,| S1) Broken glass was found inside the window.

S2) The gun found in the garden is the murder|[S2) The suspect Mr Green argued with Mr Body

If someone says Broken glass being found

weapon. last night.

S3) Mr Green fired the murder weapon. S3) Mr Body was killed from outside the win-
dow.

S4) Mr Green murdered Mr Body. S4) Mr Green was in the garden at the time of
death.

S5) None of the above are suitable as assumptions. A more likely assumption (in light of what
our system understands) is [LINK TO LIST OF PROPOSITIONS]
S6) It is not appropriate to think they are assuming anything.

Fig. 4. Crimson and Lemon scenarios for user trials

and two versions of a short argument for a goal proposition in our BN. One version (de-
noted “We think that”) stated the belief obtained for the goal proposition by performing
Bayesian propagation from the evidence, and the other version (denoted “If someone
says™) gave a different belief for this proposition. The trial subjects were then asked to
determine what this “someone” may be assuming in order to account for his/her belief
in the goal proposition.

We have used this “indirect” evaluation method (instead of having subjects interact
freely with the system), because we wanted to remove extraneous factors (such as in-
terface usability) from the evaluation, and we wanted to focus on a particular behaviour
of the system (the postulation of suppositions) that does not occur for every argument.

Since the purpose of our evaluation is to determine whether BIAS generates sensible
suppositions in the context of its domain knowledge, we needed to limit the supposi-
tions available to our trial subjects to the propositions known to BIAS. However, at
the same time, we did not wish to burden our subjects with the need to look through
BIAS’ knowledge base to find out what BIAS knows. Additionally, we wanted to allow
respondents some freedom to state their views, if they disagreed with BIAS’ supposi-
tions. These requirements were addressed by presenting our subjects with the following
options (Figure 4): (S1-S4) a list of four candidate suppositions (one was the top sup-
position recommended by BIAS, and most of the others were considered by BIAS to be
reasonable options); (S5) an option to include an alternative supposition (the subjects
were provided a link to a list containing the propositions in the BN, but could also write
a supposition of their own); and (S6) an option to state that they didn’t believe that any
suppositions were required.

The order of presentation of the suppositions was randomized across the scenarios.
However, for the discussion in this paper, BIAS’ preferred supposition is always S1. The
trial subjects had to award a rank of 1 to one option and could optionally rank additional
alternatives (with inferior ranks). This allowed respondents to ignore suppositions that

Table 3. Ranking of candidate suppositions for the four scenarios

LEMON SCENARIO |Total R1 R2 Other |[MAUVE SCENARIO|Total R1 R2 Other
Supposition S1 30 30 0 O |[Supposition S1 25 19 4 2
Supposition S3 11 0 11 0 ||Supposition S5 14 8 5 1
Total responses 51 34 12 5 ||Total responses 62 34 16 12
CRIM SON SCENARIO|Total R1 R2 Other ||SIENNA SCENARIO|Total R1 R2 Other
Supposition S1 20 10 8 2 ||Supposition S1+S3 30 20 6 4
Supposition S2 18 11 3 4 ||Supposition S4 6 7 6 3
Total responses 75 34 21 20 ||Total responses 69 34 19 16

didn’t make sense to them, while enabling them to include more than one option that
seemed reasonable. At the same time, the results obtained by this method enable us to
determine whether BIAS’ suppositions are considered sensible, even if they are not our
subjects’ top-ranked preferences.

Our four scenarios were considered by 34 participants. Many of the respondents had
not been exposed to BIAS previously and were from outside the industry. The responses
for the Lemon and Mauve scenarios were clear cut, while the responses for the Crimson
and Sienna scenarios were more ambiguous, but still positive. The results for these
scenarios are shown in Table 3. The top rows for each scenario contain the suppositions
that were preferred by the trial subjects, and the bottom row lists the total responses for
each scenario and for the different ranks (recall that the only rank that had to be given
was 1). The columns contain the total number of respondents that ranked a supposition
(Total), and the number of respondents that ranked it first (R1), second (R2) or gave it
a lower rank (Other). Our results are summarized below.

— Supposition S1 was clearly the most favoured choice for the Lemon scenario, with
30 of the 34 respondents ranking it first. Supposition S3 was clearly the next best
choice, with 11 trial subjects giving it a rank of 2.

— Supposition S1 was the preferred choice for the Mauve scenario, with 19 of the 34
respondents giving it a rank of 1. The next best choice was the Alternate Supposi-
tion, with only 8 subjects ranking it first. There were no clear preferences for rank
2, with all options receiving this rank at least once, but never more than five times.

— Suppositions S1 and S2 for the Crimson scenario were similarly ranked (each
ranked first by about 1/3 of the subjects), with Supposition S1 being favoured slightly
over S2, but not significantly so. The other options were ranked first only by a few
trial subjects.

— The responses for the Sienna scenario presented us with a special case. The results
of the first 22 responses and the comments provided by our trial subjects indicated
that there was some confusion due to the wording of the instructions and the fact
that, unlike the other scenarios, the Sienna scenario included a True and False ver-
sion of the same node (Supposition S1 was “The time of death was 11 pm last night”
and S3 was the negation of S1). Further, Supposition S3 supports the “We think that”
version, while S1 supports the “If someone says” version. As a result, most of the
respondents were divided between giving a rank of 1 to Supposition S1 or Supposi-
tion S3. Nonetheless, the main outcome from this scenario is that regardless of how
the respondents read it, they clearly felt that a supposition had to be made about the
“time of death” node, which was ranked first by 20 of the 34 respondents.

— Overall, very few trial subjects felt that no suppositions were warranted (9 for all the
scenarios combined). Further, BIAS® preferred supposition was consistently ranked
first or second, with its average rank being the lowest (best) among all the options.

These results justify the importance of making suppositions, and indicate that the
suppositions made by BIAS not only are considered reasonable by people, but also have
significant support.

6 Conclusion

We have offered a mechanism that postulates suppositions made by users in their ar-
guments, and have shown how this mechanism is incorporated into our argument in-
terpretation process. Our mechanism includes a procedure for generating suppositions,
a method for calculating the probability of a set of suppositions, and a formalism for
incorporating this probability into the probability of an interpretation.

An important feature of our system is its stability, in the sense that it does not match
spurious beliefs (that don’t follow a “sensible” line of reasoning). That is, the system
will posit a supposition for a node only if it yields a payoff, i.e., a substantially better
match between the beliefs in an interpretation and those in a user’s argument. This
behaviour is a result of BIAS” inherent reluctance to posit suppositions, combined with
its reliance on a rigorous reasoning formalism, such as BNs, which requires the beliefs
in the system to be consistent.

Finally, the results of our evaluation show that our trial subjects found BIAS’ sup-
positions to be both necessary and reasonable, with its preferred suppositions being
top-ranked or top-2 ranked by most subjects.

References

1. Sarah George and Ingrid Zukerman. An anytime algorithm for interpreting arguments. In
PRICAI2004 - Proceedings of the Eighth Pacific Rim International Conference on Artificial
Intelligence, 311-321, Auckland, New Zealand, 2004.

2. John Gurney, Don Perlis, and Khemdut Purang. Interpreting presuppositions using active
logic: From contexts to utterances. Computational Intelligence, 13(3):391-413, 1997.

3. S.J. Kaplan. Cooperative responses from a portable natural language query system. Artificial
Intelligence, 19:165-187, 1982.

4. Robert E. Mercer. Presuppositions and default reasoning: A study in lexical pragmatics. In
J. Pustejovski and S. Bergler, editors, ACL SIG Workshop on Lexical Semantics and Knowl-
edge Representation (SIGLEX), 321-339. 1991.

5. Amihai Motro. SEAVE: a mechanism for verifying user presuppositions in query systems.
ACM Transactions on Information Systems (TOIS), 4(4):312-330, 1986.

6. Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers,
San Mateo, California, 1988.

7. Ingrid Zukerman and Sarah George. A probabilistic approach for argument interpretation.
User Modeling and User-Adapted Interaction, Special Issue on Language-Based Interaction,
2005.

8. Ingrid Zukerman, Sarah George, and Mark George. Incorporating a user model into an infor-
mation theoretic framework for argument interpretation. In UMO03 — Proceedings of the Ninth
International Conference on User Modeling, 106-116, Johnstown, Pennsylvania, 2003.

9. Ingrid Zukerman, Michael Niemann, and Sarah George. Improving the presentation of argu-
ment interpretations based on user trials. In Al’04 — Proceedings of the 17th Australian Joint
Conference on Artificial Intelligence, 587-598, Cairns, Australia, 2004.

