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Abstract

Most Natural Language Generation systems developed to date assume that a user will learn only
what is explicitly stated in the discourse. This assumption leads to the generation of discourse that
states explicitly all the information to be conveyed, and does not address further inferences from the
discourse. In this paper, we describe a student model which provides a qualitative representation
of a student’s beliefs and inferences, and a content planning mechanism which consults this model
in order to address the above problems. Our mechanism performs inferences in backward reasoning
mode to generate discourse that conveys the intended information, and in forward reasoning mode to
draw conclusions from the presented information. The forward inferences enable our mechanism to
address possible incorrect inferences from the discourse, and to omit information that may be easily
inferred from the discourse. In addition, our mechanism improves the conciseness of the generated
discourse by omitting information known by the student. The domain of our implementation is the
explanation of concepts in high school algebra.

Keywords: content planning, student beliefs, inferences, backward reasoning, forward reasoning.

1 Introduction

The observation that much of what is intentionally conveyed during language use is not explicitly ex-
pressed (Grice, 1978) has been generally accepted by the Natural Language Understanding community
and by researchers in Plan Recognition. Systems for discourse understanding, such as those described
in (Dyer, 1982; Norvig, 1989), perform extensive inferences to understand the meaning of a piece of
discourse. Similarly, plan recognition systems, such as those described in (Carberry, 1988; Litman and
Allen, 1987), draw inferences from the discourse to recognize a user’s intentions.

In recent times, there has been an increase in the number of Natural Language Generation (NLG)
systems that take into consideration inferences which can be made from statements issued by these
systems (Joshi et al., 1984; van Beek, 1987; Reiter, 1990; Zukerman, 1990a; Cawsey, 1991; Horacek, 1991;
Lascarides and Oberlander, 1992). However, traditional NLG systems, e.g., (Appelt, 1982; McKeown,
1985; Paris, 1988; Moore and Swartout, 1989; Cawsey, 1990; Dale, 1990; Maybury, 1990), operate under
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the implicit assumption that the only inferences a hearer will make from a piece of discourse are direct
inferences (which reflect exactly the content of the discourse without adding to it). This assumption

causes two problems:

e Possible indirect inferences from the discourse are not addressed — For example, a possible indirect
inference from the statement “wallabies are like kangaroos” is that wallabies are the same size as

kangaroos. Although this inference is incorrect, it would not be addressed by current systems.

e The resulting text is explicit in the sense that all the beliefs which must be communicated are stated
— That is, at least one proposition is generated for each communicative goal. For instance, consider
the following dialogue between a user and P.E.A.  a system which gives advice about programming
enhancements (Moore and Swartout, 1989):

System (1): “You should replace (setq x 1) with (setf x 1).”

User: “Why?”

System (2): “I’'m trying to enhance the maintainability of the program by applying
transformations that enhance maintainability. Setq-to-setf is a
transformation that enhances maintainability.”

The mechanism described in (Moore and Swartout, 1989) represents an important contribution to
the field of NLG, owing to its ability to handle follow-up questions and vaguely articulated queries
posed by the user. However, the explanations it generates trace the entire reasoning sequence that
links the action recommended by the system with the user’s goal, which in this case is enhancing
the maintainability of the user’s program. More concise explanations may be produced by taking
advantage of the user’s ability to infer some of the relationships that were explicitly stated (Horacek,

1991). This would result in text such as the following:

System (2)”:  “Because we are applying transformations that enhance maintainability.”
OR
System (2)”: “Because setq-to-setf is a transformation that enhances maintainability.”

In this paper, we present a content planning mechanism which addresses these problems. Our mech-
anism, which has been implemented in a system called WISHFUL, generates Rhetorical Devices (RDs),
such as Descriptions, Instantiations and Similes. To this effect, it consults a student model which rep-
resents three aspects of a student: (1) his/her beliefs and skills, (2) the inference rules s/he is likely to
apply, and (3) his/her ability and attitude. This student model is an extension of the model discussed in
(Zukerman, 1990a; Zukerman, 1990b).

The inference rules relate RDs to beliefs (Section 3.2). They are applied in two different ways during

the discourse planning process: forward reasoning and backward reasoning.

e Forward reasoning — reasoning from the RDs to their possible effects. For instance, the appli-
cation of a similarity-based inference rule to the Simile “wallabies are like kangaroos” conjectures

that the user will transfer what s/he knows about kangaroos to wallabies. In order to block the



transfer of features which are incorrect with respect to wallabies, such as size, a disclaimer, such as

)

“but smaller,” must be added. This reasoning mechanism was used in (Zukerman, 1990a) for the

generation of Contradictions and Revisions to possible inferences drawn by a student.

¢ Backward reasoning — reasoning from the goal to be accomplished to the RDs that may be used
to accomplish it. For instance, the concept of a stack may be conveyed to a student by means of
a Definition, an Analogy (say to a stack of plates in a cafeteria), an Example, or a combination of
these RDs. This reasoning mechanism has been widely used in NLG systems, e.g., (Appelt, 1982;
Hovy, 1988; Moore and Swartout, 1989; Cawsey, 1990; Maybury, 1990). Some of these systems,
e.g., (Moore and Swartout, 1989; Cawsey, 1990), have encoded particular inferences into discourse
planning operators. However, these operators are applicable only in one direction, namely backward
reasoning. In addition, this encoding does not represent explicitly the inferential process that allows
a user to deduce a belief from an RD. For instance, the following operator (Moore, 1989) supports
the generation of an exhaustive set of examples to convey a concept, but it does not indicate why

the user will infer the concept in question from these examples.

NAME: describe-by-example
EFFECT: (BEL ?hearer (CONCEPT ?concept))
CONSTRAINTS: (AND (ISA ?concept OBJECT)
(IMMEDIATE-SUBCLASS ?7example ?concept))
NUCLEUS: (FORALL 7example
(ELABORATE-CONCEPT-EXAMPLE ?concept ?7example))

SATELLITES: nil

Our content planner also follows Grice’s Maxim of Quantity (Grice, 1975) in that it omits information
known by the student. To this effect, it consults our model of the student’s beliefs and skills. This feature
is particularly useful in situations such as those described in (Sleeman, 1984), where a student knows
most of the steps in a procedure, and needs to be instructed only with respect to a few of them.

In the next section, we discuss previous research that focuses on addressing a user’s inferences during
discourse planning. In Section 3, we describe our student model. In the remainder of the paper, we
describe the tasks performed by the content planner, and the contribution of the student model to each

of these tasks.

2 Related Research

The research reported in (Joshi et al., 1984; van Beek, 1987; Zukerman 1990a) considers the addition of

information to planned discourse to prevent or weaken a user’s erroneous inferences from this discourse.



Joshi et al. (1984) and van Beek (1987) characterize situations where explanations must be added to
expert responses to a user’s queries in order to block a user’s erroneous inferences from these responses.
Zukerman (1990a) adds Contradictions and Revisions to planned propositions based on the conjectured
effect of the user’s inferences from these propositions on his/her beliefs.

The research described in (Horacek, 1991; Lascarides and Oberlander, 1992) considers the omis-
sion of information that may be inferred by the user from planned discourse. Horacek (1991) omits
domain-related information from the explanation of the solution of constraint satisfaction problems if
this information may be inferred by the user from the explanation (possibly in combination with the
user’s domain knowledge). Lascarides and Oberlander (1992) remove temporal information that may be
easily inferred from the manner in which discourse is presented.

Finally, Cawsey (1991) takes into consideration inferences which result from the inheritance of at-
tributes in hierarchical domains in order to convey the attributes of objects by means of Similes and

Instantiations rather than Descriptions.

3 The Student Model

Our student model is composed of three main parts: (1) representation of a student’s beliefs and skills, (2)

representation of his/her possible inferences, and (3) representation of the student’s ability and attitude.

3.1 Representation of a Student’s Beliefs and Skills

The representation of beliefs and skills in our student model is based on the representation described in
(Zukerman, 1990a; Zukerman, 1990b). The beliefs and skills in our model pertain to technical information,
which is characterized by the presence of procedures which achieve certain goals when applied to particular
objects.

Our model distinguishes between two aspects of relations which involve actions: (1) the student’s
belief in the correctness of these relations, and (2) the student’s skill with respect to the actions specified
in these relations. This distinction allows us to represent situations where a student believes a proposition
to be correct, even though s/he lacks the skill to perform the action mentioned in this proposition. For
example, a student may believe that [+ apply-to Like-Terms], even though s/he may not know how to
perform addition of Like Terms.

In order to represent propositions whose correctness depends on the truth of other propositions, we
require an explicit representation of context. For example, Factorization yields a product of factors when
applied to decomposable expressions, i.e., expressions of the form amz?+(bm+an)z+bn. However, when
Factorization is applied to non-decomposable expressions, it yields an expression that is not a product

of factors. We use the following notation to represent the circumstances under which a relation holds:



[conceply relation concepls context]. The meaning of this representation is that the relation between
concept; and concepts holds in a particular contezt, where the contezt is either the global context or an
arbitrary sequence of nested relationships. Such a sequence provides a uniform representation for chains
of conditions. In our example, the relation [Factorization has-goal Product-of-Factors (Factorization apply-
to Decomposable-Expressions)] means that Factorization will produce a product of factors when applied
to expressions of the form amz? + (bm + an)z + bn.

Our model is implemented by means of a network whose nodes represent concepts, and whose links
represent relationships between concepts. Figure 1, adapted from (Zukerman, 1990a), depicts a network
that represents part of the knowledge of a student who has been taught the steps of Bracket Simplifica-
tion, and told that Bracket Simplification applies to Numbers. In addition, this network represents the
assumption that the student has inferred correctly that Bracket Simplification also applies to Like Terms,
and inferred incorrectly that Bracket Simplification applies to Algebraic Terms and Unlike Terms.

The network in Figure 1 contains the objects Numbers, Algebraic-Terms, Like-Terms and Unlike-Terms
(represented by ovals); the procedures Bracket-Simplification, x and +/— (represented by rectangles);
and the goal state Brackets-Eliminated (represented by an oval). The links in this network are labelled
with the predicates apply-to, use-i, has-goal, isa and similar. The relation [P use-i (J] means that @ is
the ith step of P. For instance, the use-1 link of Bracket Simplification indicates that the first step of
Bracket Simplification is addition or subtraction (4+/—), and the use-2 link indicates that the second step
is multiplication. Thus, given an expression composed of Like Terms, such as 2(4z + 5z), the Bracket
Simplification procedure first adds the terms in the brackets, yielding 2(9z), and then multiplies the result
in brackets by the factor outside the brackets, yielding 182 (an expression without brackets). Contextual
information is represented by attaching a qualifier to the predicate which labels a link. For instance, the
qualifier (BrS apply-to N) attached to one of the has-goal links between Bracket-Simplification and Brackets-
Eliminated indicates that Bracket Simplification achieves the goal of eliminating brackets when applied to
Numbers. Similarly, the qualifiers of the remaining has-goal links, i.e., (BrS apply-to AT), (BrS apply-to
LT) and (BrS apply-to UT), indicate that Bracket Simplification achieves the goal of bracket elimination
when applied to Algebraic Terms, Like Terms and Unlike Terms, respectively. Both the links and the
nodes are labelled according to the manner in which they were acquired by the student, i.e., Inferred (by
means of an inference rule), Told (by the system) or Known Previously. In Figure 1, Inferred links have
normal thickness, while links that are Told and links that are Known Previously appear in boldface.

The information in the student model is represented at a level of detail which is consistent with the
level of expertise required to learn the subject at hand. That is, well-known concepts, such as x and
+/—, are represented by singleton nodes, while relatively new concepts, such as Bracket-Simplification,

are broken down into their components. This level of detail is initially determined by the designers of the
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Figure 1: Network Model of a Student’s Beliefs

network. The development of a mechanism which automatically adjusts the level of detail of a network

to reflect the progress of a student is the subject of future research.

3.1.1 Representation of the Strength of a Student’s Beliefs

Each of the links and nodes in the student model is assigned a value which represents the strength of
a student’s conjectured belief in the information in question. In the current implementation, this value
is represented by means of the following qualitative belief states (Driankov, 1986; Bonarini et al., 1990):
{DISBELIEVED (D), RATHER DISBELIEVED (RD), UNKNOWN (U), CONTRADICTORY (C), RATHER
BELIEVED (RB), BELIEVED (B)}. A qualitative representation is justified by the type of assessment of
a student’s beliefs and skills that is useful for discourse planning, i.e., a broad assessment, rather than a
pinpoint numerical assessment. For example, students with widely different capabilities and attitudes will
usually receive explanations which differ in their approach and level of detail (Paris, 1988), while students
with similar capabilities are likely to receive similar explanations. This representation also avoids other
problems inherent in numerical methods (Clark, 1990) without forcing the abandonment of some of the
useful underpinnings of such methods.

Driankov’s qualitative belief states are composed of two related measures:
e Support s(A) — which gives the positive evidence for a proposition A.

e Plausibility p(A) — which is defined as p(A) = 1 — s(—A), i.e., the absolute certainty of A minus
the support for the negation of A. The plausibility of a proposition A reflects the user’s certainty

with respect to the evidence for A.



The maintenance of separate measurements for support and plausibility has clear semantics, thereby
avoiding the ambiguity which results from having a single number associated with a belief. Both of these
measures are represented in the system by fuzzy numbers in the interval [0 — 1]. It is envisioned that
for each student or each type of student, a teacher will input the initial values of these measures for all
the concepts and assertions that are relevant to the material being taught. After interacting with the
student, the system will update these values using operators defined in (Bonarini et al., 1990).

Support for a proposition may come from many different pieces of evidence. The level of support
resulting from several individual pieces of evidence depends on (1) the number of pieces of evidence, and
(2) the support that each piece of evidence lends to the proposition. The plausibility of a proposition
qualifies the support for this proposition. The plausibility of A will be high when there is little or no
evidence against it, and low when the support for —=A is high. If there are large quantities of unreliable
evidence for a proposition A, the aggregation of this evidence will result in A having a high level of
support. However, since the evidence is unreliable, thereby having a low plausibility, A will also have a

low plausibility.

Increasing plausibility p(A)

D

B - BELIEVED
RB — RATHER BELIEVED RD U
C - CONTRADICTORY .
U - UNKNOWN Increasing
RD - RATHER DISBELIEVED support
D - DISBELIEVED u

s(4) C RB |B

Figure 2: The Effect of Support and Plausibility on the Belief State

The measures of support and plausibility are combined as shown in Figure 2 (Bonarini et al., 1990) to
give the six possible belief states. For example, if we have significant evidence for both of the propositions
A and —A, then both s(A) and s(—A) will be large, but both p(A4) and p(—A4) will be small. In this case,
from Figure 2 we see that both the belief in A and the belief in = A are represented as CONTRADICTORY.
This agrees with what most people would think when faced with evidence in favour of two mutually
exclusive events.

In our research, we have used the measures of belief and the combination rules as defined in (Bonarini
et al., 1990). However, it is possible that in borderline cases, these combination rules will lead to results
that do not match human intuition. For example, consider a proposition X with values for s(X) and
p(X) that place the belief in X at the junction of the lines intersecting between the belief states RD, U,
RB and Cin Figure 2. Now, if new evidence for X is found, s(X) will increase, and the new belief state

will be on the line separating the states C and RB somewhere below the original belief state. This means



that although the support for X has increased, the belief state will remain essentially unchanged. This
problem can be solved by slightly tilting the two long intersecting lines in Figure 2 so that they both have
a positive gradient. In our example, this will result in the belief in X shifting to RB as the support for
X increases. The consideration of the effect of these modifications on the original theory is the subject

of future research.

3.2 Representation of a Student’s Inferences

Our mechanism takes into consideration three types of inferences: (1) direct inferences, (2) indirect
inferences, and (3) uniqueness implicatures. These inferences are represented by means of inference rules
which have the following general format:
Inference(RD, [beliefs]) EruleCrute Belief and/or Skill,

where L,y is the likelihood that a student will retain an inference drawn by a particular inference rule,
and Clyie is the confidence the student has in the rule. That is, a rule infers a Belief and/or a Skill from an
RD possibly in combination with beliefs already held by the student. This belief (or skill) is retained with
likelihood Ly and rejected otherwise. Further, the confidence in the retained belief (or skill) is adjusted
by the factor Cyyie. For instance, the rule Generalize(Assert(P(Z)),[Z inst Z']) LotCo+ Belief(P(Z"))
states that given an Assertion of proposition P(Z) and a student’s belief that Z is an instance of Z,
the student will conclude with probability Lg4 that P(Z’) is true. Further, the student’s belief in P(Z")
is a function of Cg4 and of his/her belief in the proposition [Z inst Z’]. To illustrate the application
of this rule, consider the Assertion of the proposition [Bracket-Simplification use-1 +/—] accompanied by
an Instantiation with respect to the expression 2(4z + 3z). This RD results in text such as “In bracket
simplification we first add or subtract the terms inside the brackets, e.g., 2(4x 4+ 32) = 2(7z).” From this
RD and the belief that [2(42 + 3z) inst Like-Terms], the generalization inference rule will yield the belief
that [Bracket-Simplification apply-to Like-Terms].

In this manner, our inference rules allow our system to conjecture the effect of an RD on a student’s
beliefs, and act accordingly, i.e., omit information that may be inferred from this RD, and add informa-
tion that addresses incorrect inferences from the RD. In the current version of WISHFUL, the beliefs
represented in the student model may be updated only by means of the inferences postulated by the
inference rules. Clearly, such a model may eventually diverge from the real status of the student beliefs.
Hence, in a fully interactive system, the beliefs postulated by the student model should be validated

against the student’s performance.

3.2.1 Direct Inferences

A direct inference from an RD yields an understanding of the information in this RD. In our model, this

means that when proposition P is asserted, a belief in P is generated, and when P is negated, a belief



in =P is generated. The Abstract-Understand inference rule assesses the likelihood that a student will
understand an Assertion or a Negation by means of a direct inference and the confidence the student
will place in the resulting belief and/or skill (Table 1'). Both of these factors are affected by (1) the
abstractness and complexity of the proposition to be conveyed, which depend on the complexity of the
nodes that participate in the proposition (Section 3.1); and (2) the addressee’s ability to understand
abstract and/or complex information. For instance, a capable student is likely to understand an abstract
statement, while a mediocre student will be lost if a more concrete explanation does not accompany the

abstract statement.

Abstract-Understand (AU) -
Abstract-Understand(Assert(P)) Lavt Cavs Belief(P) and/or Skill(P)

AU—7CAU—

Abstract-Understand(Negate(P)) bav=€ Belief(—P)
Generalization (G) -
Lg+,CG+

Generalize(Assert(P(Z)),[beliefs]) "=="" Belief(P(Z')) and/or Skill(P(Z"))
Generalize(Negate(P(Z)),[beliefs]) Foz.Co- Belief(=P(Z")),

where Z' is a super-class of Z.
Specialization (S) -
Specialize(Assert(P(Z)),[beliefs]) betGos Belief(P(Z')) and/or Skill(P(Z"))

Specialize(Negate(P(Z)),[beliefs]) Loz G- Belief(=P(Z")),

where Z’ is a subclass of Z.
Uniqueness Implicature (UI) -

Uniqueness-Implicate(Assert(P(S, O)),[beliefs]) LurCor Vz# O Belief(=P(S, z))

Table 1: Sample Inference Rules Used in WISHFUL

3.2.2 Indirect Inferences

Indirect inferences draw conclusions that are removed from what was said by one or more inference
steps. The indirect inference rules considered at present in our model are based on the rules described
in (Zukerman, 1990a; Zukerman, 1990b), namely: generalization, specialization (Table 1), similarity and
applicability. The first three rules reflect student behaviour observed in (Matz, 1982). The generalization
rule was also postulated in (van Lehn, 1983; Sleeman, 1984). The similarity rule transfers the attributes of
a source concept to a target concept, e.g., from kangaroos to wallabies. The applicability rule is a simple
deductive reasoning rule. It states that if the first set of steps of a procedure is applicable to an object
of a certain type, then the entire procedure is applicable to this object. For example, since addition
and subtraction are applicable to Numbers, and the first step of Bracket Simplification is addition or
subtraction, this rule allows us to conclude that Bracket Simplification applies to Numbers.

The likelihood that an indirect inference will be retained by a student is affected by the following

IThe 4+ and — subscripts represent inferences from Assertions and Negations respectively.



factors: (1) the student’s ability and attitude (Section 3.3); (2) the correctness of the inference; and (3)
the soundness of the rule that yields the inference. The first two factors are used to model the behaviour
observed by Sleeman whereby good students retain more correct conclusions than mediocre students
(Sleeman, 1984). For instance, given the Instantiation (x —3)(x —4) =0=>2—-3=0o0r2z—4=20, a
student may perform the wrong generalization (x — A)(z# — B)= K = 2 — A=K or z — B = K (Matz,
1982). According to Sleeman, both a good and a mediocre student may perform this mis-generalization.
However, the good student will be more critical of the conclusion than the mediocre student, and will
usually discard the incorrect conclusion. The mediocre student, on the other hand, is more likely to
retain an incorrect inference obtained in this manner. The third factor is necessary in order to model
the amount of faith different types of students place in different types of inference rules. For example, a
good student is more likely to retain the conclusions drawn by sound inference rules than the conclusions
drawn by unsound rules. On the other hand, a mediocre student may be unable to discriminate between
sound and unsound inference rules, making him/her equally likely to accept the conclusions drawn by
both types of rules.

The factors that affect a student’s confidence in a conclusion from an indirect inference are: (1)
the soundness of the inference rule that yields the conclusion, (2) the student’s ability and attitude, (3)
the strength of the student’s beliefs which participate in the indirect inference in question, and (4) the
strength of the existing belief in the conclusion. For instance, given the Assertion “kangaroos hop,” a
student’s confidence in the proposition “wallabies hop” depends on the student’s knowledge about the
relationship between wallabies and kangaroos and on his/her confidence in the similarity inference rule,
which in turn depends on the soundness of this rule and on the student’s ability and attitude. Thus, the
first two of the above factors determine the confidence factor (C') that the system assigns to each of the
different types of inference rules for each type of student. For example, a good student may be rather
cautious with respect to a conclusion drawn by an unsound inference rule, while a mediocre student may
believe this conclusion more strongly (Section 3.3). If a (retained) conclusion affects a belief currently held
by a student, then the plausibility and support of the conclusion will be combined with the plausibility
and support of the student’s existing belief as described in (Bonarini et al., 1990).

Indirect inferences are categorized into three types based on their soundness: (1) sound, (2) acceptable,

and (3) unacceptable.

e Sound inferences — inferences which are logically sound, such as a specialization from a positive
statement or a generalization from a negative statement. For example, the Assertion “Marsupials are
indigenous of Australia” specializes to “Kangaroos are indigenous of Australia,” and the Negation
“Bracket Simplification does not apply to Unlike Terms” generalizes to “Bracket Simplification does

not always apply to Algebraic Terms.”

10



e Acceptable inferences — common-sense inferences whose results hold most of the time, e.g., a

generalization from a positive instance to a class or a specialization from a negative statement.

e Unacceptable inferences — inferences whose results hold only sometimes, and hence should not
be sanctioned, e.g., the transfer of features between two items with superficial similarities, without

the transfer being specifically suggested by means of a Simile.

Our characterization of acceptable and unacceptable inferences is incomplete in the sense that there
are factors other than frequency that affect the acceptability of an unsound inference. For example, in
the case of a generalization from a positive statement, the typicality of the subclass or the instance from
which the generalization is made affects the correctness of the resulting inference, e.g., since 3z + by is
more typical of Algebraic Terms than 3z +5z, a generalization from 3z+5y to all Algebraic Terms is more
likely to be correct than a generalization from 3z + 5z. Similarly, similarity-based inferences between
items that are in close proximity in a concept hierarchy are more likely to be correct than similarity-
based inferences between items that are far apart in a concept hierarchy. For instance, a similarity-based
inference from kangaroos to wallabies is more likely to yield correct conclusions than a similarity-based
inference from canaries to penguins. The consideration of the effect of these factors on our inference rules

1s left for future research.

3.2.3 Uniqueness Implicatures

Given an asserted proposition P(S, ), a uniqueness implicature licenses the inference that O is the only

” most

instance of ¢ for which P(S, z) is true. For example, upon hearing the statement “Joe has one leg,’
people will infer that Joe has one leg only (Hirschberg, 1985).

Several researchers have addressed context dependent implicatures by means of rules or operators
which embody the characteristics of a situation. Hirschberg (1985) provided rules that license scalar
implicatures, which are based on an ordering between the entities affected by a piece of discourse. Horacek
(1991) used rules which license implicatures from the information in a user’s query and in the reply to
this query in order to omit information from this reply. Green and Carberry (1992) used discourse plan
operators which are similar to Hirschberg’s licensing rules in order to interpret and generate replies that
involve scalar implicatures. Finally, Reiter (1990) embodied implicatures from lexical items in rules for
lexical selection.

A uniqueness implicature is a type of scalar implicature which is particularly relevant to knowledge
acquisition settings. This is because in these settings, the aim is to extend a student’s knowledge,
but infelicitous wording could lead to a false uniqueness implicature which would replace rather than
extend correct beliefs held by a student. For instance, if a speaker says “Bracket Simplification applies

to Like Terms,” a uniqueness implicature will license the inference that Bracket Simplification applies
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Figure 3: Partial Algebraic Concept Hierarchy

only to Like Terms. Now, if the student believes that Bracket Simplification applies to Numbers, the
uniqueness implicature will cause a conflict with this belief. In order to address this conflict, an RD which
acknowledges the correctness of the student’s belief must be included in the discourse, e.g., “Bracket
Simplification applies to Like Terms, as well as to Numbers.” We call this type of RD Mention.

Given the RD Assert(P(S,0)), a false uniqueness implicature is anticipated by conducting a top-
down traversal of the hierarchical relations in the network representing the student’s beliefs, and retrieving
the highest concepts in the hierarchy, {C4,..., Cy}, for which the student correctly believes that P(S, C;)
holds. These concepts are then referred to when the uniqueness implicature is addressed. For example,
consider the asserted proposition [Distributive-Law apply-to Numbers] and the concept hierarchy in Figure
3 (the underlined concepts are those for which the student correctly believes in the applicability of
Distributive Law). After traversing the concept hierarchy, the concepts {Like-Terms, Unlike-Terms} are
returned. Note that although it is true that [Distributive-Law apply-to Algebraic-Terms], Algebraic-Terms is
not returned, since the student does not believe in the correctness of this proposition. The resulting RD
is Mention [Distributive-Law apply-to {Like-Terms, Unlike-Terms}], which may be realized as “In addition
to Like Terms and Unlike Terms, Distributive Law applies to Numbers.”

Uniqueness implicatures differ from the other types of inferences in that they do not yield lasting
beliefs in memory, rather they cause conflicts with existing beliefs. For example, if a student has no
previous beliefs with respect to a proposition P, a uniqueness implicature from the RD Assert(P(S,01))
does not result in the permanent belief that P(S, z) is false for all objects «. Hence, if P(S, O3) is asserted

later on, a false uniqueness implicature will contradict only the student’s belief in P(S, Oy).

3.3 Modeling a Student’s Ability and Attitude

At present, the system has five predefined profiles which represent a student’s ability: EXCELLENT,
GOOD, AVERAGE, MEDIOCRE and BAD?. When we apply the inference rules discussed in Section 3.2 in
the context of these profiles, the results emulate behaviour observed in (Sleeman, 1984), whereby good
students are discerning about the inferences they make and retain more correct conclusions than incorrect

ones, while the opposite happens for mediocre students. Informal observations of students indicate that

2The names associated with the different profiles are not value judgments of individual students, rather these categories
represent different levels of correctness and conviction of a student’s presumed beliefs and inferences.
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good students have more faith in their indirect reasoning skills than mediocre students. That is, stronger
students are more certain of the results of their indirect inferences than weaker students. This observation
was also incorporated in the student profiles.

The student profiles are implemented as files with entries for the likelihoods and confidence factors
of the different inference rules. These likelihoods and confidence factors were set to reflect common
behaviour patterns observed in students, and were adjusted empirically based on the generated output.
Table 2 illustrates the likelihoods and confidence factors of the inference rules used by an EXCELLENT
student. As one would expect from an EXCELLENT student, the likelihood of retaining an inference
is much higher when it is correct than when it is incorrect. The likelihoods for weaker students reflect
a different behaviour, where the proportion of correct to incorrect conclusions that are retained is less
favorable than for good students. Lg_, Ly and Lp always have a value of 0 for incorrect inferences, since
generalizations of Negations, specializations of Assertions and deductive inferences are sound, and hence
can never be incorrect. L4y has a value for absent inferences rather than for incorrect ones, because the
system models lack of learning from a direct inference, rather than mislearning. That is, according to our
model, a student may or may not understand an Assertion or a Negation to the required level, but s/he
will not learn the wrong thing. We assume that EXCELLENT students are confident with respect to the
inferences they draw by means of sound and acceptable inference rules. However, they are less confident
with respect to unsound inferences. Hence, the confidence factor is 1 for all the inference rules except for
the Similarity-based inferences. As stated before, weaker students may have different confidence factors
associated with the different types of inference rules, e.g., they may have more confidence in unsound
rules than the stronger students. Finally, Ly has a value of 1, because in the current implementation
the student is assumed to draw uniqueness implicatures from all Assertions. Changing this assumption

so that only certain false uniqueness implicatures are anticipated and addressed is a current research

problem.
Soundness Inference is
of an Inference Rule Correct Incorrect Absent
Inference L C L C L
Abstract-Understand (AU) 0.9 1 0.1
Generalization from Negation (G—) || 0.95 | 1 0 0
Sound Specialization from Assertion (S+) || 0.95 | 1 0 0
Deduction (D) 095 |1 0 0
Acceptable Gene.ra.lizatlgion from Assertfion (G+) 1| 0.9 1 0.2 1
Specialization from Negation (S—) 0.9 1 0.2 1
Unacceptable || Similarity (Sim) 0.75 | 0.5 0.25 | 0.5
Uniqueness Implicature (UT) 1 1 1 1

Table 2: Sample L and C' Values for an EXCELLENT Student

The five student types are further refined using the attitude modifiers ABSTRACTLY-INCLINED
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and CONFIDENT and their negations (Table 3). For example, an EXCELLENT student is usually
ABSTRACTLY-INCLINED and CONFIDENT about his/her conclusions. Changing this student’s atti-
tude to NOT-ABSTRACTLY-INCLINED has the effect of making our student no better at understanding
complicated abstract statements than an AVERAGE student. However, a student of this type will still be
more capable than an AVERAGF student at other sorts of reasoning, such as reasoning involving indirect
inferences. The modifier NOT-ABSTRACTLY-INCLINED is implemented for the EXCELLENT student
as follows: the Ly and Cup factors for correct inferences are reduced to reflect a lower likelihood of
understanding an abstract statement and a lower level of confidence in the understood information, re-

spectively. In addition, the L4y factor for absent inferences is raised to a value similar to that of an

AVERAGE student.
Modifier Main Effect
Increase the student’s ability to understand abstract explanations.
ABSTRACTLY-INCLINED (Increase Ly and Cap for correct inferences, and

decrease L,y for absent inferences.)
NOT-ABSTRACTLY-INCLINED | Opposite to the above.

Increase the student’s conviction in any inferences s/he makes.
(Increase the C' values of all the inference rules.)

TIMID Opposite to the above.

CONFIDENT

Table 3: Student Attitude Modifiers

The predefined student classes express conveniently the characteristics of common stereotypical stu-
dents. In addition, the modification of student types by means of attitudes supports the maintenance of
many different student profiles. There are several ways to choose an initial profile for a student. One
way consists of allowing a teacher to determine which profile fits best a particular student. In a fully
operational interactive system, the system could deduce a profile by querying the student, or alternatively
it could simply start with an AVERAGE profile and update it based on the student’s performance. New
student profiles and modifiers can be easily added to the system, since they are merely input files which
contain values for the various likelihoods and confidence factors used in the inference rules.

The clear separation between the profile of the student’s ability and attitude and the model of the
concepts and relations known by the student enables us to model a wide range of students. At present,
the student’s type and modifiers are kept constant, while the network representing the student’s factual
knowledge base is allowed to grow as the student learns new information. This represents a student who
is able to learn new facts, but whose reasoning ability does not improve as a result of his/her new factual
knowledge. An interesting avenue of future research involves simulating a student whose modifiers and
type change gradually as his/her knowledge base grows, thereby modeling a student whose deductive

powers improve as his/her knowledge increases.
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3.4 Comparison with Our Previous Work

As stated above, the student model presented in this paper is based on the model discussed in (Zukerman,

1990a; Zukerman, 1990b). However, our current model differs from the previous model in the following

aspects:

4

e Representation of a student’s ability and attitude — This aspect, which is required in order

to express the differences between various types of students, did not exist in our previous model.

Representation of a student’s beliefs and skills — The parts of our representation that differ
from the previous representation are: (1) the distinction between beliefs and skills, (2) the rep-
resentation of contextual information, and (3) the representation of the strength of a student’s
conjectured beliefs. As stated in Section 3.1, the distinction between beliefs and skills is necessary
in order to represent these two facets of a student’s knowledge. The representation of contextual in-
formation is necessary in order to represent propositions whose correctness depends on the truth of
other propositions (Section 3.1). Finally, our previous representation of the strength of a student’s
belief was similar to the representation used in MYCIN (Buchanan and Shortliffe, 1985), while our
current representation is based on the qualitative belief states developed by Driankov (1986) and
expanded by Bonarini et al. (1990). The reasons for the shift in representation are twofold: (1) the
inadequacy of MYCIN’s Certainty Factors for combining several pieces of evidence (Buchanan and

Shortliffe, 1985), and (2) the need to make a broad assessment of a student’s beliefs and skills.

Representation of a student’s inferences — The explicit representation of direct inferences and
the inclusion of uniqueness implicatures constitutes an expansion of our previous representation. In
addition, our inference rules differ from those described in our previous model in their domain. The
current rules draw inferences from RDs possibly in combination with beliefs already held by the
student, while the rules used in the earlier research draw inferences from already acquired beliefs
only. This change in domain is necessary since drawing inferences only from beliefs and not from

RDs presupposes the beliefs that will be inferred from an RD.

Operation of the Content Planner

Our content planner receives as input a concept to be conveyed to a student (e.g., Distributive Law), a

list of aspects that must be conveyed about this concept (e.g., operation and domain), and a commu-

nicative goal, which states the degree to which these aspects must be known by the student (e.g., well

known). This type of information can be provided by an Intelligent Tutoring System (ITS), but in our

system it is hand-coded. The output of the content planner is a list of RDs, where each RD is composed

of a rhetorical action, such as Assert or Instantiate, applied to a proposition (Section 4.2).
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In order to convey the intended aspects of a concept, our mechanism first determines the information
to be presented, and then proposes RDs to convey this information. However, it is possible that the
student does not understand the concepts mentioned in a particular RD well enough to understand this
RD. Therefore, the generation process is repeated with new communicative goals and aspects with respect
to the concepts mentioned in the proposed RDs, in order to present information about these concepts if
necessary.

The block diagram in Figure 4 illustrates the tasks performed by the content planning process.
In the following sub-sections, we discuss these tasks, with particular reference to the following sample
input: (Bracket-Simplification, KNOW, {domain,operation}). That is, the communicative goal is for
the student to know the domain and operation of the Bracket Simplification procedure. Other discourse
planning tasks, such as organizing the generated RDs and generating referring expressions, are constrained
by the outcome of the content planning process. However, they are not an integral part of this process.

Rather, they are separate tasks which deserve independent consideration (Suthers, 1991).

WISHFUL: concept, communicative-goal, aspects

1. Decide which information to present
(Map Filter)
|
2. Propose Rhetorical Devices
(Address inferences)
|
3. For each concept in the generated messages:
WISHFUL(concept, communicative-goal’, aspects’)

Figure 4: Tasks Performed by the Content Planner

Our content planner works in the paradigm of first deciding what to say, and then determining
how to say it, where the latter decision is left to a separate text realization component. An alternative
paradigm consists of interleaving these decisions, since after deciding what to say, it may not be possible
to generate a legal text that actually conveys the intended information (Appelt, 1982; Meteer, 1991). The
first paradigm was adopted for our content planner because interleaving content planning with discourse

realization would obscure the issues addressed in this research.

4.1 Deciding which Information to Present

The content planner stresses the presentation of information that the student does not know and infor-
mation that addresses misconceptions held by the student. In order to generate such a discourse, our
system consults our model of the student’s beliefs and skills. The following procedures are applied to

perform this task: Mapping and Filtering.
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4.1.1 Mapping

The mapping procedure expresses the aspects to be conveyed with respect to a concept in a manner
which is compatible with the student model. For instance, in the current implementation, aspects such
as domain and operation are mapped into predicates such as apply-to and use-i for ¢ = 1,...,n (n is the
number of steps in a procedure), respectively. According to this mapping, the above input to the system

(Bracket-Simplification, KNOW {domain,operation}) is mapped into the following propositions:

Aspect Domain Predicate

[Bracket-Simplification apply-to Like-Terms]

domain [Bracket-Simplification apply-to Numbers]

[Bracket-Simplification use-1 +/—]

operation [Bracket-Simplification use-2 x]

Table 4: Propositions Relevant to the Sample Aspects

As seen in this example, the mapping process is often trivial. However, it is required for theoretical
clarity, as it distinguishes between high level didactic decisions regarding the aspects to be conveyed

about a concept and the representation of these aspects in the student model.

4.1.2 Filtering

In this step, the system removes the propositions that are already known by the student from the list of
propositions to be conveyed, and adds to this list propositions which correct information that is wrongly
believed by the student with respect to the given aspects. This process expands on the process discussed in
(Moore and Paris, 1992), where a user model is consulted in order to omit from the discourse information
that the user is presumed to know. Propositions that are weakly believed by the student are presented,
but they must be prefixed with a Meta Comment which credits the student with the belief in question
(Zukerman, 1991), e.g., “As you probably know, Bracket Simplification applies to Numbers.” This process
is particularly useful when a student’s knowledge is lacking with respect to a few items of information
only.

To illustrate the filtering process, consider a situation where the student believes the following with

respect to Bracket Simplification:

[Bracket-Simplification apply-to Algebraic-Terms]
[Bracket-Simplification apply-to Numbers]
[Bracket-Simplification use-2 x]

In this case, the propositions [Bracket-Simplification apply-to Numbers] and [Bracket-Simplification use-2 x]
are filtered out from the list of propositions to be conveyed. In addition, the negation of the proposition

[Bracket-Simplification apply-to Algebraic-Terms] is added to the list of propositions to be conveyed, since
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it is incorrectly believed by the student. This process results in the list of propositions in Table 5.

Aspect Domain Predicate

[Bracket-Simplification apply-to Like-Terms]

domain [Bracket-Simplification —(always) apply-to Algebraic-Terms]

operation | [Bracket-Simplification use-1 +/—]

Table 5: Propositions to be Conveyed

4.2 Proposing Rhetorical Devices

In this step, the content planner proposes RDs to convey the set of propositions produced in the pre-
vious step. To this effect, it takes into consideration inferences a user is likely to perform from these
RDs. Our procedure is based on the tenet that while processing a piece of discourse in an interactive
setting, a user will draw immediate inferences from the discourse, but will perform further reaching
inferences only after the entire discourse has been processed. In order to address these immediate in-
ferences, our procedure draws one round of inferences from a proposed RD. For instance, given the RD
Assert[Bracket-Simplification apply-to Like-Terms], the generalization rule produces the incorrect infer-
ence [Bracket-Simplification apply-to Algebraic-Terms], and the similarity rule yields the correct inference
[Bracket-Simplification apply-to Numbers]. The content planner then omits from the planned discourse
the correct inferences the user is likely to make, and generates discourse which addresses the incorrect
inferences. This process is carried out by the procedure Propose-RDs, which produces a list of RDs, i.e.,

rhetorical actions applied to propositions.
Propose-RDs(list-of-propositions-to-be-conveyed, aspect)
1. If aspect = nil or there are no more propositions to be conveyed that pertain to aspect, then
Select an aspect to be conveyed, and assign it to aspect.

2. Select a proposition which pertains to aspect.

3. Apply inference rules in backward reasoning mode in order to propose a set of RDs which convey
this proposition.

(Each RD in this set constitutes a different alternative for conveying the proposition in question.)

4. For each alternative RD in the set of RDs, apply inference rules in forward reasoning mode in order
to draw the inferences that can be made from this RD.
(a) Update the list of propositions to be conveyed as follows:

1. If an inference is correct and it corresponds to one of the propositions to be conveyed,

then
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A. If the inference is strong enough then mark the proposition as deleted from the list of
propositions to be conveyed, i.e., it no longer has to be said.
(An inference is strong enough if it satisfies the input parameter communicative
goal, which stipulates what is an acceptable level of belief, e.g., BELIEVED or RATHER

BELIEVED.)

B. Otherwise, do nothing.
(The inference has had some effect on the proposition to be conveyed, but this effect

is not sufficient to determine that the proposition is known by the addressee.)

ii. If an inference is correct, but does not correspond to a proposition in the list of propositions
to be conveyed, then do nothing.

(The inference has no effect on the discourse®.)

iii. If an inference is incorrect, then
If the belief in the affected proposition has fallen below the requirements
established by the given communicative goal, then
Add the proposition to the list of propositions to be conveyed.
(Note that if the proposition in question was previously marked as deleted

Step 1), 1t will be reinstated as a proposition that must be conveyed.
p1), prop Y
(b) Update the student model with the above inferences.

(c) If the updated list of propositions to be conveyed is not empty, then
Add the RDs produced by Propose-RDs(updated-list-of-propositions-to-be-conveyed, aspect) to

the RD proposed in this alternative.

To illustrate the workings of this algorithm, let us return to our Bracket Simplification example. For our
discussion, we assume that the student is able to understand abstract explanations, i.e., Lay and Cay,
the likelihood and confidence factor of the rule Abstract-Understand, are high. Now, the aspects to be
conveyed with respect to Bracket Simplification are domain and operation. In the current implementation,
we select operation first, since the inferences from the RDs generated to convey this aspect tend to affect
other propositions to be conveyed. Next, we apply rules of inference in backward reasoning mode to
generate RDs that can convey the proposition [Bracket-Simplification use-1 +/—]. This step yields the RDs
{Assertion} and {Assertion + Instantiation}, where an {Assertion + Instantiation} contains an Assertion
complemented with an Instantiation of the predicate in the asserted proposition. In our example, this
predicate refers to the first step of Bracket Simplification. Both of these RDs have a high likelihood of
conveying the intended proposition with a degree of belief that meets the input requirements given to

the system. In both alternatives, the relationship use-1 in the Assertion is conveyed by a descriptor such

3Zukerman (1990a) describes a mechanism which produces discourse that addresses such inferences if they are weak.
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as “before multiplying” which identifies the position of the 4+/— operation in the Bracket Simplification
procedure. The generation of this descriptor is performed by a procedure which generates referring
expressions for the predicates in the propositions. Since the second step of Bracket Simplification is
known and will not be described, the procedure proposes the descriptor “before multiplying.” If both
steps of Bracket Simplification are described, then ordinal conjunctive expressions, such as “first” and
“second,” are more suitable.

Let us now consider the alternative initiated by {Assertion}. In this case, the application of the
inference rules in forward reasoning mode does not affect any of the other propositions to be conveyed.
Hence, we update the student model to reflect the fact that the student has been informed of the first step
of Bracket Simplification, and re-activate our algorithm with respect to the propositions in the aspect
domain.

During the backward reasoning step, our mechanism determines that the RDs {Assertion} and
{Assertion + Instantiation} may be used to convey the proposition [Bracket-Simplification apply-to Like-
Terms]. In both cases, during the forward reasoning stage, the following inferences may be drawn from
the Assertion: (1) a similarity-based inference based on the user’s belief that Like Terms are similar to
Numbers; (2) a generalization based on the belief that Like Terms are a subset of Algebraic Terms; and
(3) a uniqueness implicature. The similarity-based inference corroborates the user’s correct belief that
Bracket Simplification applies to Numbers; the generalization corroborates his/her incorrect belief in the
applicability of Bracket Simplification to Algebraic Terms; and the uniqueness implicature concludes that
Bracket Simplification applies only to Like Terms, and hence not to Numbers or to Algebraic Terms.

The uniqueness implicature, which conflicts with the similarity-based inference and with the user’s
correct belief that Bracket Simplification applies to Numbers, is prevented by prefixing the proposed
Assertion with a Mention that corroborates the user’s belief, e.g., “In addition to Numbers, Bracket

” At first glance, it appears that information that was omitted in

Simplification applies to Like Terms.
the filtering process (Section 4.1.2) is now being reinstated. However, the generation of this preamble
links the Assertion to an existing belief held by the user, rather than presenting this belief as if it were
new information.

The generalization, which conflicts with the uniqueness implicature and corroborates the user’s er-
roneous belief that Bracket Simplification applies to Algebraic Terms, is already being addressed by the
second domain proposition in Table 5, which was proposed to contradict the erroneous belief. Hence,
nothing needs to be added to the list of propositions to be conveyed. However, the fact that the gen-
eralization can be inferred from the proposed Assertion enables the system to record an expectation

violation relation between the Assertion and the RD(s) that will be generated to convey the second do-

main proposition in Table 5. This relation, and other relations inferred in a similar way, are used to
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guide the discourse organization process (Zukerman and McConachy, 1993), and to generate appropriate
Meta Comments which link the RDs in question (Zukerman, 1991). For instance, if RDs that contradict
each other are juxtaposed in the discourse, Meta Comments such as “but” or “however” are suitable.
However, if these RDs are separated by other RDs, more explicit Meta Comments, such as “Despite X,”
will be generated.

The generation of RDs that convey the second domain proposition in Table 5 is performed as described
above, yielding {Negation} and {Negation + Instantiation}. This results in the output in Table 6 for
the alternative where an Assertion was generated for the first and third proposition in Table 5, and a
Negation for the second proposition. Our current implementation produces the rhetorical actions of the

RDs and the propositional representation. The English text has been added for illustrative purposes.

[Bracket-Simplification apply-to Numbers]

Mention 9

“In addition to Numbers,
Assert [Bracket-Simplification apply-to Like-Terms]

Bracket Simplification applies to Like Terms,
Negate [Bracket-Simplification (always)apply-to Algebraic-Terms]

but it does not always apply to Algebraic Terms.

[Bracket-Simplification use-1 +/—]
Assert In Bracket Simplification, we add or subtract the terms
inside the brackets before multiplying.”

Table 6: Sample Set of RDs Generated by the Content Planning Process

We conclude this discussion by describing briefly the alternative headed by {Assertion + Instantiation }
of the proposition [Bracket-Simplification use-1 4+/—]. The Instantiation of this proposition with respect
to Like Terms, such as 3(2x + 5z), results in discourse which is markedly different from the discourse in
Table 6. This is due to the fact that in the forward inference step, the generalization inference rule pro-
duces the inference [Bracket-Simplification apply-to Like-Terms] from this Instantiation. As a result, this
proposition is deleted from the list of propositions to be conveyed. Table 7 depicts the output generated

for this alternative.

[Bracket-Simplification use-1 +/—] 3(2z + 52) = 3(7x)
“In Bracket-Simplification, we add or subtract the terms inside
the brackets before multiplying, e.g., 3(22 4+ 52) = 3(7z).

Assert +
Instantiate

[Bracket-Simplification (always)apply-to Algebraic-Terms]
Negate Notice that Bracket Simplification does not always apply to
Algebraic Terms.”

Table 7: Alternative Set of RDs Generated by the Content Planning Process

At this point in the content planning process, we have a number of candidate sets of RDs, where each

set conveys the specified aspects of the intended concept. If a particular set of RDs contains a concept
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that is not well understood by the hearer, WISHFUL generates subordinate sets of RDs, each of which is
an alternative way of conveying this concept (Section 4.3). Upon completion of this step, the alternative

with the least number of RDs is selected, which in our example is the alternative in Table 7.

4.3 Conveying the Concepts in each RD

In order to ensure that the user understands all the RDs in a set of RDs, the content planner performs
the following actions for each of the concepts mentioned in a set of RDs: (1) it determines the aspects of
the concept which are relevant to the understanding of the propositions which contain the concept, (2) it
determines a communicative goal for these aspects, and (3) it regresses to generate RDs that accomplish
this communicative goal with respect to the selected aspects of the concept.

The determination of the aspects the user must know about a concept in order to understand a
proposition which contains this concept is based on the main predicate of the proposition and on the role
of the concept with respect to this predicate. For example, in order to understand the RD Assert[Bracket-
Simplification apply-to Like-Terms] proposed above, the user must know what Like-Terms are and what
they look like. Hence, the system returns the aspects membership-class and structure.

The determination of a communicative goal with respect to the selected aspects of a concept is based
on the relevance of this concept to the concept given originally as input to the system. That is, the more
relevant a concept in an RD is to the original concept, the better it should be known by the user. This
consideration is implemented by lowering the expertise requirements with respect to a concept as the
recursion becomes deeper. In this manner, we preclude the elaboration of concepts which are far removed
from the main concept to be conveyed, while at the same time, ensuring a minimal level of competence

with respect to these concepts.

5 Future Research

Several aspects of the student model stand out as candidates for future work. As indicated in Section
3.1, the initial level of detail of the material is determined by the designers of the knowledge base.
An interesting enhancement to our knowledge representation scheme involves the implementation of a
mechanism that automatically collapses a node representing complex information and its related satellites
into a single node when the student has a sufficient grasp of the concepts involved. This is equivalent to
a student learning to perform a complex procedure, e.g., Bracket Simplification or Short Division, in a
single step, rather than in a sequence of discrete component steps, as s/he would if s/he was unfamiliar
with the procedure. Conversely, if the initial level of detail is too difficult for a particular student, a
mechanism that expands already collapsed nodes is also required.

A second area of interest involves extending and refining the set of inference rules supported by the
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system. For example, the following inference rule may be incorporated into the set of inference rules:
{Known: [A isa B] AND [C isa D]} AND {Assert [Bisa C]} =
Either D is an ancestor of A or there is an inconsistency.

This rule checks the consistency of the knowledge which results from the combination of newly asserted
information with existing beliefs. As stated in Section 3.2.2, another possible refinement of our inference
rules consists of incorporating typicality considerations into them to reflect the fact that unsound inference
rules which are applied to items that are typical of a group are more likely to yield correct results than
unsound rules which are applied to atypical items.

At present, our mechanism generates stand-alone explanations. However, when this mechanism is
incorporated into a fully interactive system, the different aspects of our student model must be verified
and possibly adjusted after interacting with a student. An interesting avenue of investigation involves
examining the effect of the system’s output on the student’s confidence in his/her acquired beliefs. For
example, it is possible that after an extended interaction with WISHFUL, the student will trust the
system to dispel all his/her erroneous inferences. In this case, any inference that is not dispelled (including
erroneous ones) may be strongly believed by the student. Another interesting line of investigation for
such a system consists of activating the inference rules in a reflective mode after a session with a student
has been completed. In this mode, the system would draw further reaching inferences from the generated
discourse. Typically, these inferences would interact with each other, thereby requiring a processing
mechanism that combines the inferences until the beliefs in the student model reach quiescence. The
result of this process would then be the starting point of the next interaction with the student.

Finally, Propose-RDs is a cautious procedure rather than an optimal one. That is, it presents at
least as much information as is necessary to achieve the given communicative goal. However, owing to
its sequential operation, it may miss opportunities to omit superfluous information. This happens when
an RD generated at a later stage conveys indirectly information for which an RD was generated earlier.
This situation is addressed in part by our heuristic for selecting the aspects to be conveyed, but this
heuristic does not guarantee optimality. A mechanism which optimizes the output of the content planner

is currently under investigation.

6 Conclusion

The content planning mechanism presented in this paper generates RDs by consulting a student model
which represents three aspects of a student, namely his/her beliefs and skills, the inferences s/he is likely
to draw from the presented information, and his/her ability and attitude. Our mechanism improves the
conciseness of the generated discourse by omitting information that is known by the student or which the

student can easily infer from the discourse. In addition, our mechanism addresses a student’s erroneous
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beliefs and his/her possible incorrect inferences from the discourse.

Our mechanism has been implemented in Sun Common Lisp on a SPARCstation 2. It takes less than
1 second of CPU time to execute the example discussed in the paper and other examples in high school
algebra involving several RDs.

The student model consulted by our content planning mechanism must represent accurately the beliefs
and skills of individual students. Such a model may be acquired with the help of a diagnostic system, such
as those described in (Sleeman, 1982; Burton, 1982). In contrast, uniqueness implicatures are influenced
by expectations which are common to all users, in addition to the wording of the discourse. The inference
rules are also commonly applied by all types of students, but the conditions for the application of the
direct and indirect inference rules and for the acquisition of the conclusions they draw vary for different
types of students.

Since at present our system is not interactive, a preliminary validation of our student model and
our content planning mechanism was performed as follows: WISHFUL was activated with the different
student profiles, and its output was translated manually into English. We then showed these translations
to tutors and lecturers in the Department of Computer Science at Monash University, and to students,
both at university and in school. The tutors and lecturers were asked to select texts that best suited
certain types of students, e.g., they had to select which text they would show to an EXCELLENT student,
a MEDIOCRE student, etc, and they also had the option to indicate that a text was not suitable for any
student. The students were shown all the texts, and were asked to select the text they thought was the
clearest. There was general agreement between the discourse planned by WISHFUL for particular types
of students and the texts selected by the interviewed students and teaching staff. Further, comparison
of WISHFUL’s output with texts found in introductory textbooks showed that WISHFUL’s output for
MEDIOCRE students is similar in content to the material found in these textbooks. Once the system
generates textual output, a more complete evaluation will be performed by showing the generated texts
to significant populations from the various target audiences, and comparing their response to the text

generated by WISHFUL with their response to texts from algebra textbooks.
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