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Abstract. In this paper we describfgcusi? the speech interpretation component
of a spoken dialogue module designed for an autonomousicahgént.Scusi?
postulates and maintains multiple interpretations of {heken discourse, and
employs a probabilistic formalism to assess and rank hgseth regarding the
meaning of spoken utterances. These constituents in catidinenableScusi?

to cope gracefully with ambiguity and speech recognitiawoms: The results of
our evaluation are encouraging, yielding good interpi@taperformance for ut-
terances of different types and lengths.

1 Introduction

The DORIS project aims to develop a spoken dialogue module for an autoos
robotic agent, which supports the generation of respoisgsequire physical as well
as dialogue actions. In this paper, we descoeisi? DORISs language interpreta-
tion component, focusing on the techniques used to postalad assess hypotheses
regarding the meaning of a spoken utterance.

Minimally, a language interpretation component must be &dbpostulate promising
interpretations, and decide whether there is a clear wionseveral likely candidates
to be passed to the dialogue system. These capabilitiegprthe basis for additional
desiderata, viz recovering from erroneous interpretatiand adjusting interpretations
dynamically as new information becomes available. Theodiaé system in turn must
determine an appropriate action. For example, consideretjeest “get me the blue
mug”. If there is an aqua mug, an indigo mug and a light blue mugew, the robot
could do one of the following: (1) pick the ‘bluest’ mug amahgse candidates, (2) se-
lect one of these mugs at random, (3) ask a clarification gquesir (4) look for a mug
that better fits the request. The chosen action depends aettanty associated with
the options returned by the language interpretation modulthe decision procedures
applied by the dialogue system.

In order to support the above capabilities, a discoursepnggation system should
(1) maintain multiple interpretations, and (2) apply a iagkprocess to assess the rela-
tive merit of each interpretatio@cusidoes this, employing a probabilistic mechanism
for the ranking component. Its interpretation process aisep three stages: speech
recognition, parsing and semantic interpretation. Eaabesproduces multiple candi-
date options, which are ranked according to their prolgmfimatching the speaker’s



intention (Section 3). This probabilistic framework, ttiyer with the maintenance of
multiple interpretations at each stage of the process,leisausi?to cope with ambi-
guity and speech recognition errors (Section 5). In addltibese constituents support
the re-ranking of interpretations as new information beesmavailable, and hence the
recovery from erroneous interpretations; and they en@biesi?o abstract features of
the interpretations which support the generation of apeite dialogue or physical
actions. Examples of these features are: number of hignlyedhinterpretations, the
difference in their probability, and the similarity betwethem.

This paper is organized as follows. Section 2 outlines ttexjimetation process. The
estimation of the probability of an interpretation appearSection 3, and the semantic
interpretation procedure in Section 4. Section 5 detaitewaluation. Related research
and concluding remarks are given in Sections 6 and 7 resp8cti

2 Multi-stage Processing

Scusi?processes spoken input in three stages: speech recogpiticeing and seman-
tic interpretation (Figure 1(a)). Our probabilistic apach resembles that of Millext
al. [1]. However, they considered textual input, and used séimgnammars tailored
to a slot-filling application. In contrast, our grammars syatactic, and we incorporate
domain-related information only in the final stage of theeiptetation process, which
yields Conceptual Graphs [2] — a more general structure fitzemes.

In the first stage of our interpretation proceSsysi?uns Automatic Speech Recog-
nition (ASR) software (Microsoft Speech SDK 5.1) to generm@ndidate texts from a
speech signal. Each text is assigned a score that reflecpgdbability of the words
given the speech wave. The second stage applies Charniakaljlistic parserf(t p:

/1 ftp.cs.brown. edu/ pub/ nl parser/)to generate parse trees from the texts. The
parser generates up 16 (= 50) parse trees for each text, associating each parse tree
with a probability. During semantic interpretation, paft®®s are successively mapped
into two representations based on Conceptual Graphs:Uingistantiated Concept
Graphs (UCGs) and thenInstantiated Concept Graphs (ICG4)CGs are obtained
from parse trees deterministically — one parse tree gegreoate UCG (buta UCG can
have more than one parent parse tree).

A UCG represents syntactic information, where the conceptsespond to the
words in the parent parse tree, and the relations betweerotieepts are directly de-
rived from syntactic information in the parse tree and psimns. Each UCG can gen-
erate many ICGs. This is done by nominating different ins&sed concepts (relations)
from DORISs knowledge base as potential realizations for each cdr{celation) in
a UCG (Section 4). Instantiated concepts are objects avrectn the domain, and in-
stantiated relations are similar to semantic role labelsH&yure 1(b) illustrates the
generation of one ICG for the request “leave the blue mug entable”. The noun
“mug” in the parse tree is mapped to the concepg in the UCG, which in turn is
mapped to the instantiated concept03 in the ICG. The preposition ‘on’ in the parse
tree is mapped to the relatiam in the UCG, and then to the relatiddestinationin
the ICG. Noun modifiers, such as colour and size, are treatéshtures to be matched
to those of instantiated objects in the knowledge base.riavamce, the coloBLUE is
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Fig. 1. Scusi® spoken language interpretation process

represented as a set of colour coordinates, which are th&shethagainst the colour
coordinates of stored objects [4].

The consideration of all possible options at each stageeoirtterpretation process
is computationally intractabl&cusi?uses two computational devices to generate inter-
pretations in real time: (1) aanytimealgorithm [5], and (2) a processing threshold.

Theanytime algorithm ensures that the system can return a list of ranked interpre-
tations at any point after generating an interpretationmmment (text, parse tree, UCG
or ICG). In each stage of the interpretation process, therilgn applies a selection-
expansion cycle to add an element to a search graph (Figajg dg follows. First,
it selects an option for consideration (speech wave, t&X&8& output, parse tree or
UCG), and expands this option to the next level of intergieta When an option is
expanded, a single candidate is returned for this next,|éladditional options re-
side in a buffer, which is created the first time the optionxpanded. For example,
when we expand a particular text, the parser returns themest probable parse tree
(but the first time this text is expanded, a buffer with at m¥gparse trees is created).
Similarly, when we expand a UCG, the ICG-generation modetferns the next most
probable ICG, but the first time the UCG is expanded, a buffet onostk,,,... ICGs
is created (Section 4). Buffers are used, rather than pieakgeneration of alterna-
tives, due to two reasons: (1) the ASR and parser return @lbfitions at once; and
(2) owing to the complex interactions between the companehiCGs, ICGs are not
generated in descending order of probability (i.e., the B@&s are often generated
later on). By maintaining an ICG buffer for each UCG, higlpeobability ICGs that are
generated later can be slotted into the buffer (and coresidey the selection-expansion
process) in the order that reflects their probability. THec®n-expansion process is
repeated until one of the following happens: all optionsfallg expanded, a time limit
is reached, or a specific number of iterations is performé@né point after complet-



ing an expansion, the anytime algorithm can return a lisaoked interpretations with
their parent sub-interpretations (text, parse tree(s)#Da(s)).

Thethresholding approach is based on the observation that the probabditite
texts returned by the ASR drop quite dramatically after th&t fiew texts, as do the
probabilities of the parse trees. We take advantage of tisgrvation to prevent the
consideration of unpromising alternatives as follows. Wttee probability of the next
child of a parent node drops below a thresholdhr relative to the probability of the
most probable child of,, no additional children ofi are considered. For example, for
Thr = 50%, if the probability of the next parse tree for tekt is less than half of
the probability of the first (best) parse tree generatedifpmo more parse trees are
considered foff;.

3 Probability of an Interpretation

Scusi%anks candidate ICGs according to their probability of behre intended mean-
ing of a spoken utterance. The principles of this calcufatiere set out in [6]. Here we
refine this process, focusing on the calculation of the poditbaof ICGs.

Given a speech signéll and a context, the probability of an ICG is represented
as follows.

Pr(I|W,C) x Z Pr(I|U,C) - Pr(U|P) - PH(P|T) - P{(T|W) (1)

A

where the UCG, the parse tree and the textual interpretasi@denoted by, P andT’
respectively. The summation is taken over all possibleqéts { P, U} from the parse
tree to the ICG, because a UCG and an ICG can have more tharaoerg.prhe ASR
and the parser return an estimate ofTiV) and P(P|T') respectively. In addition,
Pr(U|P) = 1, since the process of generating a UCG from a parse treegendeistic.
Hence, we still have to estimate(P{U, C).

Consider an IC@ containing concepits® € (2. and relations'® € (2,. (£2. and{2,.
are the concepts and relations in the domain knowledgectgply). The parent UCG
(denoted bylJ) comprises concepts©® < I'. and relations“¢ e I',. (I, and[l;. are the
concepts and relations from which UCGs are built). The piodity of 7 givenU and
contextC can be stated as follows.

PrI|U,C) = ] Pr(c®,re|ee, e, 2, 2, ,C) 2)
d°C e .
TICG c 0,
— H{ F)r-(,,,ICG|CICG7 CUCG’ ,,,UCG7 QC—’ Q; , C) X Pr(CICG|CUCG7 TUCG’ 90—7 ‘Qr_a C) }
d°C e .
TICG c .
wherec“°¢ and r'“¢ denote the UCG concept and relation corresponding to the ICG
conceptc“® and relation'® respectively; and2. and{(2,~ denote the set&. and{(2.
without the concept'® and relation°® respectively.
It is difficult to estimate Equation 2, as each concept aratim in an ICG depends
on the other ICG concepts and relations. We therefore makéotlowing simplifying
assumptions.



— The probability of an ICG relation'“® depends only on the corresponding UCG
relation, the parent ICG conceptdf®, and the context.

— The probability of an ICG concept*® depends only on the corresponding UCG
concept, the parent ICG relation and grandparent ICG cdrudefs®, and the con-
text (e.g., the parent relation ofig03 in the ICG in Figure 1(b) i¥atient and its
grandparent concept jgit 01).

These assumptions are justified by the information in therkedge base, which
stores the location and ownership of many objects, and bypvthaable linguistic in-
formation regarding concepts and relations (e.g., th@aétt ch01 has a mandatory
Patientrelation, but an optiondeneficiary and any mug is a suitabRatientfor most
actions). Now, say we have the request “get the mug from tiietaand one of the can-
didate ICGs has the fragmemi{g03 — Location—t abl e01] (Locationis the parent
of t abl e01, andnug03 is its grandparent). Ifug03 is indeed or abl e01, the prob-
ability of this ICG increases, otherwise it decreases. éndbsence of this information,
we back off to bigram probabilities (e.g., whetheabl e01 is a possibld_ocation).
These assumptions yield

Pr(I|U,C) ~ H { Pr(r'°¢|rce, cf¢, C) x Pr(c“®|cV¢, r5¢, b, C) } 3)

A e .
TICG c Qr

where the parent concept of relatidff € (2, is ¢ € (2., and the grandparent concept
and parent relation of concegt® € (2. arecy; € 2. andry® € (2, respectively.

After applying Bayes rule, and making additional simplifgiassumptions about
conditional dependencies, we obtain

Pr(ree| /%) Pr(r°[dS®)  PH(cSe|C)x

prrv.c)~ [ 4 PHEI) Pl o) @
—_——T o —
d©co. | segmentl  segment2 Segment3
T € 2

The first segment in Equation 4 represents the probabiliyahuser who intended
r'°¢ andc'°® saidr'°¢ andc'“° respectively; the second segment represents the probabil-
ities of relations and concepts in the ICG in light of theirgrat and grandparent nodes;
and the third segment represents the prior probabilitigeetoncepts in the ICG (ju-
dicious conditionalization obviates the calculation abpiprobabilities of relations in
the ICG). Ideally, all these probabilities should be estadarom data, but this would
require the development of a large database of UCGs and 18@ssponding to differ-
ent utterances. Such a database is currently not availdblece Scusi?estimates the
necessary probabilities using functions which give a podlssic interpretation to the
closeness between requested features and features ofnitidat@ concepts and rela-
tions. These functions are described in detail in [7, 4].eHee outline our approach.

— The probabilities in the first segment of Equation 4 are ettt on the basis of
the goodness of the match between candidate instantiateepts (relations) in the
ICG and concepts (relations) mentioned in the UCG [4]. Ftati@ns, this prob-
ability depends on the lexical match between a stated oeland an instantiated



relation. For concepts we also take into account the leftifisvsl of the head noun
— at present we consider colour and size. For example, ifske said “blue mug”,
then a light blue cup will yield a lower probability than a edylue mug.

— The probabilities in the second segment are estimated lwasbdw well children
nodes match the expectations of their parent (and grandpaedes in the ICG [7].
For example, the probability of the ICG bigragop2 — Destinatior} depends on
whetherDestinationis a compulsory complement gb02 (high probability) or op-
tional (lower probability); the probability of the trigrafeup05 — Owned-by—
Susan01] is 1 if Susan01 ownscup05, and 0.5 if ownership is unknown. At
present, grandparent concepts are considered only fardaand ownership of ob-
jects, which may be determined from the system’s knowledgpebln other cases
or if the information is unknown, we back-off to the parenat®n of a concept,
e.g., the probability oki t chen being al ocation

— The prior probability of an instantiated concept dependthercontext. At present,
the context includes only domain knowledge, i.e., all inStged concepts have the
same prior, hence it does not affect the performance of tstesy However, visual
and dialogue context will come into play wh&ausi?nteracts with the robot’s vi-
sion system andORISs dialogue module. To support these interactions, in the
future, we propose to estimate the prior probabilities afagpts by combining
salience scores obtained from dialogue history [8] witlhualsalience [9].

4 Generating ICGs

The process of generating ICGs from a UCG and estimating pvebability is car-
ried out by Algorithm 1, which refines the procedure presgime6]. This algorithm
generates a buffer containing up £g,... (= 400) ICGs ranked in descending order
of probability the first time a UCG is expanded (the size of biwfer was empiri-
cally determined). Every time a new ICG is requested for @G, the next ranked
ICG is returned. The algorithm has two main stagesicept and relation postulation
(Steps 2—-10), ankCG construction(Steps 11-16).

4.1 Postulating concepts and relations

In this stage, the algorithm proposes instantiated cosdeglations) from the knowl-
edge base for each UCG concept (relation), and sorts eadidedm list of instantiated
concepts (relations) in descending order of probability.

In Step 5 for each concept’*® in the UCG, the algorithm estimates the probability
that each instantiated concept in the knowledge base nm&t¢fieThe same is done for
relations. The probability of this match, which correspstaithe first segment in Equa-
tion 4, is estimated by means of comparison functions [4& piobability of a match
between an instantiated relation and a UCG relation depemnigtison the goodness of
the lexical match between these relations. In contrasprblgability of a concept match
also depends on the match between intrinsic features nmextim the UCG, such as
colour and size, and the actual values of these featurescam@idate instantiated con-
cept. For instance, given the UCG concepp, the instantiated conceptsig01, .. .,



Algorithm 1 Generate candidate ICGs for a UCG

Require: UCG U comprising conceptg’® and relations:
1: Initialize bufferZy of sizekmax (=400)
{ Postulate concepts and relations for UCG}

2: for all concepts“® (relationsr’“®) in U do

3: Initialize a list of candidate concepis« « 0 (list of relationsL,« « )

4:  for all instantiated concepts (instantiated relations) do

5: Compare:"® with ¢' (r“°® with r'), yielding a probability for the match (segment 1 in

Uee contextC

Equation 4)
6: Calculate the prior probability of' according to the context (segment 3 in Equa-
tion 4)
7 Multiply the probabilities obtained in Steps 5 and 6
8: Insertc' in the list L. (r' into L, ) in descending order of probability
9:  endfor
10: end for

{ Construct ICGs }

11: for 5 = 1 to kmaxdo

12:  Generate the “next best” ICG by going down each list., andL.., inturn

13:  Perform internal consistency checks to calculate tbeatilities of the bigrams and tri-
grams in ICGI; (segment 2 in Equation 4)

14:  Estimate Ri;|U,C) by multiplying the probabilities obtained in Step 7 with theba-
bilities obtained in Step 13

15:  Insertl; into bufferZy in descending order of probability

16: end for

mug05 andcup01, ..., cup04 have a good lexical match with the UCG concept. If the
UCG concept had bedrlue cup then the colour coordinates of the mugs and cups in
the knowledge base would be matched against the coordifoaté® term ‘blue’.

Upon completion of Step 5, we prune ICG candidates that dban a good match
with the concept (relation) in the UCG. For example, the U@Goeptchair could refer
to an armchair, a stool, a pouf, etc. Hence, all the armchstiosls, poufs, etc in the
knowledge base are retained for further processing, waitgk, tables, cups, etc are
discarded. Similarly, red cups are discarded if a blue mugdsiested, and there are
blue mugs in the knowledge base.

The prior probability of the retained candidate concegtgdtsegment in Equa-
tion 4) is estimated itstep 6 In Step 7, this probability is multiplied by the probability
calculated in Step 5.

This stage of the algorithm yields a list of candidate insédad conceptd. .. for
each UCG concept®, and a list of candidate instantiated relatidns for each UCG
relationr°¢. These lists are sorted in descending order of probabiiiy.example,
Table 1 shows the sorted lists of concepts and relationsifaost for the request in
Figure 1(b) “leave the blue mug on the table”; there are fdajects that are a good
match for the conceffiiue mugthree candidate tables, three candidate actiorlséoe
(leave the rooml(eave01), put in a specific placep(it 01), and put downfut 02)),
two relations foron, and one foobject



Table 1. Concepts and relations used to build ICGs for the utteralezaé the blue mug on the
table”
leave blue mug table on object
| eave0l1l nug02 tabl e01 Destination Patient
put 01 cup01 tabl e02 Location
put 02 nug03 t abl e03
cup02

4.2 Constructing ICGs

In this stage, the algorithm uses the list of instantiatedcepts (relations) built for
each concept (relation) in a UCG to construct candidate IfoGthis UCG, and sorts
these ICGs in descending order of probability. Fi&tiep 12applies an enumerative
process to generate different combinations of conceptselations from the list..,
(L,) maintained for each UCG concept (relation). This is don&dmatively selecting
one candidate concept (relation) from each list. For irctathe concepts and rela-
tions in Table 1 are combined as follows to build candidat€dCFirst, the top line
{l eave01, mug02, ...}, which has the highest probability, is used. The next founco
binations are generated by replacing one element fromitigst a time, i.el, eave0l

is replaced withput 01, yielding {put 01, nug02, ...}; thennug02 is replaced with
cup01, yielding{l eave01, cup01, ...}; and so on.

The probabilities of the bigrams and trigrams in each IC@dad segment in Equa-
tion 4) are then estimated Btep 13 These probabilities reflect the extent to which the
relationships between neighbouring nodes in an ICG mathkrbwn reality. As men-
tioned in Section 3, for relations this calculation is doasdd on the type of relations
admitted by each concept (e.g., compulsory, optional oeripsand for concepts the
calculation reflects the current state of the world. For gxanif we request “the mug
on the table” and according to the knowledge basg03 is ont abl e02, the proba-
bility of an ICG that containsfug03— Location— t abl e02] is increased, whereas if
cup01 is not on a table, the probability of an ICG containitigp01 is decreased. In
Step 14 these ‘structural’ probabilities are combined with thelmbility calculated in
Step 7 (candidate postulation stage) to obtain the finalghitiby of an ICG produced
for a given UCG. This ICG is inserted in the buffer for that UG@Gdescending order
of the ICG’s probability.

5 Evaluation

Our evaluation test set compris@d0 utterances43 declarative (e.g., “the book is on
the desk”, “in the kitchen”, “the red mug”) aritf imperative (e.g., “open the door?).
These utterances were based on interactions between uskas‘eobot” (enacted by

1 We acknowledge the modest size of this test set comparedtaotisome publicly available
corpora, e.g., ATIS and GeoQuery. However, we must genetatewn test set since our task
differs significantly from the slot-filling tasks where tleelsrge corpora are used. This is due
to the domain itself and the open-ended nature of the uttegan



one of the authors) in a virtual home scenario; they wererdszbby one of the authors,
as the ASR software is speaker dependent, and at presentmgt Handle features of
spontaneous speech. The utterances (which were not used dystem development)
were chosen to teScusi? ability to identify target objects (the intended book, gnu
table, etc), and its ability to handle phenomena such asngyns (e.g., “wash” and
“clean”) and homonyms (e.g.l¢avethe mug on the table” versuseavethe room”).
The average utterance length v$as words, with a maximum length df2 words.

Scusi?was set to generate at ma$i0 sub-interpretations in total (including texts,
parse trees, UCGs and ICGs) for each utterance in the tesirsewerage, it took 6
seconds to go from parse trees to ICGs. An interpretationdsasned successful if it
correctly represented the speaker’s intention within imétations of Scusi? knowl-
edge base, which compris&ss items @4 relations and 11 concepts, which consist of
abstract concepts and concrete objects normally found muad). This intention was
represented by one or maB®ld ICGs that were manually constructed by one of the au-
thors. Multiple Gold ICGs were allowed if there were sevefgjects in the knowledge
base that matched a requested object, e.g., “get a mug”.

Ideally, we would like to evaluate separately the impactwfprobabilistic frame-
work and that of maintaining multiple interpretations. Hewer, the design of an alter-
native, baseline hypothesis-ranking framework is outti@escope of this project. We
therefore designed our experiments to measuré&€Lsi’s overall interpretation per-
formance, (2) the impact of maintaining multiple interpait&ins on performance, and
(3) the impact of different thresholds (Section 2). Thustdevere conducted under the
following settings.

— BASELINE — a beam search was executed, where only the best ASR reslt wa
parsed, and only the best parse tree yielded a UCG. We thecteglthe top ICG
among those in the buffer for the UCG (Section 4). Note thatsblection of the
top-ranked item for each of these stages is still done ondkesof its probability.
Hence, our baseline enables us to isolate only the impacta@itaining multiple
interpretations.

— Threshold — No Threshold, and thresholds of 10%, 20%, 50%% 8dd 90%.

For instance, given a0% threshold,Scusi?stops expanding a text such that
Pr(current parse tree faf) < 0.1 x Pr(highest-probability parse tree f@).

Table 2 summarizes our results, which were obtained with @R #hat had a 20%
error rate (the correct text was top ranked by the ASR in 80%h@tases). Column 1
displays the test condition (baseline and threshold val@&)mns 2-3 show how many
utterances had Gold ICGs whose probability was among the topop 3, e.g., the 20%
threshold yielded 70 Gold ICGs with the highest probablibp 1), and 83 within the
top 3 probabilities. The averagaljusted rankand rank of the Gold ICG appear in
Column 4. The rank of an IC@ is its position in a list sorted in descending order
of probability (starting from position 0), such that all éopobable ICGs are deemed
to have the same position (recall that the baseline retusisgde ICG, whose rank is
therefore0). The adjusted rank of an ICG is the mean of the positions of all ICGs
that have the same probability AsFor example, if we have 3 top-ranked equiprobable
ICGs, each has a rank of 0, but an adjusted ranR—géf. Column 5 shows how many
utterances didn't yield a Gold ICG, and Column 6 indicates ghrerage number of



Table 2. Scusi’ interpretation performance

# Gold ICGs with prob in Average Not  Avg# of ICGs to Gold
top 1 top 3 adj rank (rank) found ICG (avg # of iters)

BASELINE 53 53 0(0) a7 0(4)

No Thrsh 69 82 3.85 (1.15) 7 9 (38)

10% 67 81 2.63 (0.91) 8 8 (37)

20% 70 83 2.47 (0.87) 7 8 (39)

50% 70 84 2.37 (0.81) 7 8 (37)

80% 70 85 2.31 (0.80) 7 8 (37)

90% 70 85 2.31(0.78) 7 8 (37)

Total 100 100

ICGs created and iterations done until the Gold ICG was foffirin a total of 300
iterations).

As seen in Table 2, the baseline yielded significantly fewprranked Gold ICGs
than our anytime algorithmp(< 0.05).? The 20% ASR error was substantially exacer-
bated by the baseline approach, which failed to return Goel(k) in 27 of the 80 cases
where it was presented with the correct text. In cont@stisi?performed significantly
better, failing to produce top-ranked Gold ICG(s) in onlydf@hose cases. Further, for
the top-3 rankingScusi?vercame the ASR error (i.e., its error rate is less than 20%)
These results confirm the need to maintain multiple intégpiens in combination with
a probabilistic hypothesis assessment.

Interestingly, the threshold did not affect the number @ftanked Gold ICGs and
not found ICGs, and the number of iterations to Gold. Howgheraverage rank of the
Gold ICGs decreases (improves) as the threshold increasésh is consistent with
the slight improvement in the number of top-3 ICGs. We alsdqumed additional
experiments that examined the effect of using a differergsthold for each level of
interpretation. However, the new scheme did not yield argromement over a single
system-wide threshold.

6 Related Research

This research builds on the work described in [5, 6]. The moutions of this paper
pertain to (1) the anytime algorithm and processing thriest®ection 2); (2) the prob-
abilistic calculation of the factors of PF{U, C), instead of using heuristics (Section 3);
and (3) the modifications of the UCG representation to cateintrinsic features of
a node (Section 2), and ensuing changes in the algorithmdoemting ICGs (Sec-
tion 4). These modifications led to an improved performarickesystem, which was
evaluated on a larger corpus than that used in [6].

2 Sample paired t-tests were used for all statistical tests.

3 Clearly, it is not fair to compar&cusi% top-3 rank with the baseline’s top-1 rank. However,
the top-3 rank supports the generation of clarification tioes for ICGs with similar proba-
bilities — an option that is not available if only the top-kaal interpretation is returned.



Many researchers have investigated numerical approaoftég tinterpretation of
spoken utterances in dialogue systems, e.g., [10-13].d?f¢@l.[10] and Hiwel and
Wrede [11] employ modality fusion to combine hypothesesnfdifferent analyzers
(linguistic, visual and gesture), and apply a scoring maidm to rank the resultant
hypotheses. In contrast, He and Young [12] and Gorniak and[R®] apply a proba-
bilistic approach to spoken language interpretation,gislidden Markov Models for
the ASR stage. Additionally, as mentioned abdselsi? probabilistic formalism re-
sembles in style that employed by Millet al. for discourse interpretation in a text-
based system [1]. However, all these systems employ serrggatnmars, whil&cusi?
employs a three-stage interpretation process, which usesrig, syntactic tools, and
incorporates semantic- and domain-related informatidy iorthe final stage of the in-
terpretation process. Kniglet al. [14] compare the performance of a dialogue system
based on a semantic grammar to that of a system based orsticgihtanguage model
and a robust phrase-spotting grammar. The latter perfoetisrifor relatively uncon-
strained utterances by users unfamiliar with the systera.prbbabilistic approach and
intended users of our system are in line with this finding.

From the view point of application domain, robot-mountealadjue systems were
also studied in [15, 16, 11]. Matset al.[15], like Gorniak and Roy [13], use contextual
information to constrain the alternatives returned by tis&RAearly in the interpretation
process. This allows their system to process expecteduties efficiently, but makes it
difficult to interpret unexpected utterances. In contr@sysi?incorporates contextual
information in the final stage of the interpretation procébiike Scusi? probabilistic
reasoning formalism, Bost al. [16] use a logic-based language interpretation frame-
work to understand instructions and descriptions, and eyrfpkmal proofs for conflict
resolution. Consequently, alternatives are not consitieresn an utterance is ambigu-
ous or the preferred option proves undesirable. This is #isccase for Hiwel and
Wrede's [11] system, which considers only a single altéveats a result of each stage
of the interpretation process.

7 Conclusion and Future Work

We have describe8cusi? a spoken language interpretation system that maintaihs mu
tiple options at each stage of the interpretation processranks interpretations based
on estimates of their posterior probability. In particulae presented the algorithm
used byScusi?to postulate hypotheses regarding the meaning of a spokeranite,
and detailed the estimation of the probabilities of thegeoltlyeses.

Our empirical evaluation shows th8tusi?performs well for declarative and im-
perative utterances of varying length, with the Gold ICG&eiving one of the top
three probabilities for most test utterances. Our resigtsghow that using a threshold
has a small impact o8cusi’ performance (by slightly improving the number of ICGs
ranked top-3, and hence the average rank of the Gold ICG#)elnear future, we will
further investigate the impact of thresholds on perforneaspeed and accuracy. An ad-
ditional avenue of investigation pertains to the consitienaof different weightings for
combining the scores obtained from the three interpretatiages.
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