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Abstract. We describe a probabilistic approach for the interpretation of user arguments,
and investigate the incorporation of different models of a user’s beliefs and inferences into
this mechanism. Our approach is based on the tenet that the interpretation intended by
the user is that with the highest posterior probability. This approach is implemented in a
computer-based detective game, where the user explores a virtual scenario, and constructs
an argument for a suspect’s guilt or innocence. Our system receives as input an argument
entered through a web interface, and produces an interpretation in terms of its underly-
ing knowledge representation – a Bayesian network. This interpretation may differ from
the user’s argument in its structure and in its beliefs in the argument propositions. We
conducted a synthetic evaluation of the basic interpretation mechanism, and a user-based
evaluation which assesses the impact of the different user models. The results of both eval-
uations were encouraging, with the system generally producing argument interpretations
our users found acceptable.
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1. Introduction

Discourse interpretation is a cornerstone of human–computer communication, and
is an essential component of any dialogue system. In order to interpret a user’s
Natural Language (NL) utterances, the concepts referenced by the user’s words
must be identified, the propositions built using these concepts must be understood,
and the relations between these propositions must be determined. Each of these
tasks is fraught with uncertainty.

Dialogue systems developed to date typically deal with this uncertainty by
restricting the dialogue contributions users are allowed to make. This works well
for systems with a specific and restricted functionality, e.g., look-up systems. How-
ever, systems with a more open-ended functionality, e.g., tutoring systems, should
be able to handle more complex responses presented by users.

The argument interpretation mechanism presented in this paper constitutes a
significant step towards achieving this objective. Our mechanism interprets struc-
tured arguments presented by users in the context of a web-based argumentation
system called BIAS (Bayesian Interactive Argumentation System). BIAS is designed
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to be a comprehensive argumentation system that will eventually engage in an
unrestricted interaction with users. However, currently we are focusing on the argu-
ment interpretation process, which is the subject of this paper.

Our system uses Bayesian networks (BNs) (Pearl, 1988) as its knowledge rep-
resentation and reasoning formalism. The system “translates” user arguments into
interpretations, which take the form of Bayesian subnets. These subnets are then
used for reasoning about the arguments. Our probabilistic interpretation-selection
mechanism evaluates these interpretations in terms of two parameters which are
independent of the underlying representation: (1) the similarity between the inter-
pretations and the user’s argument, and (2) the simplicity of the interpretations.
The main idea behind our mechanism is that the best interpretation of a user’s
argument is that with the highest posterior probability. That is, given a user’s argu-
ment UArg and a set of n candidate interpretations {SysInt1, . . . ,SysIntn}, we will
choose the interpretation with the highest posterior probability.

SysIntBest = argmaxi=1,... ,nPr(SysInti |UArg)

According to Bayes Rule, we can equivalently perform the following
maximization.

SysIntBest = argmaxi=1,... ,n{Pr(SysInti )× Pr(UArg|SysInti )}

where the posterior probability of an interpretation given an argument depends on

– Pr(SysInt) – the prior probability of the interpretation,
– Pr(UArg|SysInt) – the probability of the argument given the interpretation (this

is the probability that a person who intended SysInt would have uttered UArg).

This general approach is referred to as the source-channel approach, which is
widely used for low-level NL tasks, such as machine translation and speech rec-
ognition (Epstein, 1996). In this paper, we apply this approach to a high-level NL
task, viz discourse interpretation, and offer a framework for the derivation of the
above probabilities. This framework constitutes a significant departure from the
normal usage of the source-channel approach. We also investigate the incorpora-
tion of two types of user models into this formalism: (1) a simple user model
that only records the evidence the user has encountered and (2) a more complex
user model that takes into account other features of the evidence, specifically the
manner in which the evidence was accessed, how frequently and recently it was
accessed, and whether this evidence could remind the user of other things.

We conducted two types of evaluations of our probabilistic formalism. First,
we performed a synthetic evaluation of the formalism with the simple user model.
This was done by first automatically generating arguments from our domain BN,
and automatically generating distortions of these arguments. The system then
attempted to re-create the original arguments from the distorted arguments. Our
second evaluation was user based. In it we asked users to rate the interpretations
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obtained by our system when using the simple user model and when using two ver-
sions of the complex model.

In the following section we describe our experimental set up. Next, we outline
our knowledge representation formalism, and discuss the process for generating
candidate interpretations for an argument. In Section 5 we describe our proba-
bilistic formulation of the discourse interpretation process using the simple user
model, followed by the results of the synthetic evaluation of our formalism. In Sec-
tion 7 we consider the incorporation of the complex user model into this formal-
ism, followed by the results of our evaluation with people. We then discuss related
research, and present concluding remarks. The Appendix contains the details of
the probabilistic formulation.

2. Experimental Set Up

Our experimental set up follows the set up first described in (Zukerman, 2001),
which takes the form of a game where the user and the system are partners in
solving a murder mystery. However, there is an important difference between the
current system and the previous one. The previous BIAS (BIAS-I) was system-
driven, while the current BIAS (BIAS-II) is user-driven. That is, in BIAS-I the
system was mainly the ‘speaker’ with the user operating in a ‘listener/critiquer”
capacity, while the opposite is true for BIAS-II. Specifically, BIAS-I generated
arguments, to which the user was allowed to present only single-sentence rejoin-
ders, which in turn were interpreted by BIAS, and rebutted if necessary. In con-
trast, BIAS-II interprets complete arguments presented by a user.

This difference between BIAS-I and BIAS-II also leads to a difference in the
set up of the game. In BIAS-I both the system and the user could conduct their
own investigations, so that the system could generate its own arguments, and the
user could present rejoinders. In contrast, in BIAS-II the user is a junior detec-
tive who interacts with a desk-bound boss. Thus, in BIAS-II there are three enti-
ties: the system, which represents the domain and what happened in it; the boss,
who knows only what the user tells him; and the user, who finds out information
through investigations of the domain. This is done by navigating through a virtual
crime scene, making observations and interviewing witnesses. The user then reports
periodically to the boss by presenting successively evolving arguments for the main
suspect’s guilt or innocence. Further, the user has limited resources, i.e., time and
money, which are depleted as the investigation progresses. To win the game, the
user must build a cogent argument regarding the guilt or innocence of the main
suspect prior to exhausting his/her resources.

The current implementation focuses on the interpretation capabilities of the sys-
tem, rather than on its dialogue model. We therefore restrict users’ interaction with
the system to a single round. That is, a user reads an initial ‘police report’ gen-
erated by the system, optionally explores the virtual scenario, and then presents
an argument to his/her boss. The system interprets the argument, and presents its
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Figure 1. Sample screen of the WWW interface.

interpretation back to the user for validation (this process has been simulated in
the pencil-and-paper user-based evaluation described in Section 8). In the future,
the boss will present counter-arguments, point out flaws in the user’s argument or
make suggestions regarding further investigations.

2.1. playing the game – initial interaction

The game starts with the presentation of a police report that describes the prelimi-
naries of the case for a particular scenario. The following police report is presented
for the scenario used in this paper.

Yesterday, Mr Body was found dead in his bedroom, which is in the second story of
his house. Fatal bullet wounds were found in Mr Body’s body. A gun was found in the
garden, and fingerprints were found on the gun. Forensics established that the time of
death was 11 pm.

After reading the police report, the user may navigate through a virtual scenario
to gather additional information (Figure 1 shows a screen shot of the victim’s
bedroom). The user may record information s/he considers interesting in his/her
Notebook (Figure 2), which is consulted by the user during the argument con-
struction process. Upon completion of his/her investigation, the user builds an
argument composed of a sequence of implications leading from evidence to the
argument goal. Each implication is composed of one or more antecedents and a
consequent. In the current implementation, the antecedents and consequents are
obtained by copying propositions from a menu into slots in the argument-con-
struction interface (Figure 3).1 Figure 4 shows a screen-shot of an argument built

1An alternative version of our system accepts free-form NL input for antecedents and consequents.
However, in our current version this capability has been replaced with a menu-based capability.
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Figure 2. Detective’s notebook.

Figure 3. Menu for argument construction.
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Figure 4. Argument-construction screen and user’s argument.

by a particular user after she has read the police report, seen the newspaper and
spoken to the forensic experts. This argument may be glossed as follows.

Fingerprints being found on the gun, and forensics matching the fingerprints with Mr
Green implies that it is likely that Mr Green had the means to murder Mr Body.
The Bayesian Times reporting that Mr Body seduced Mr Green’s girlfriend implies that
it is a little likely that Mr Green had a motive to murder Mr Body.
Since it is likely that Mr Green had the means to murder Mr Body, and it is a little
likely that Mr Green had a motive to murder Mr Body, then it is a little likely that
Mr Green murdered Mr Body.

To illustrate the argument construction process, let us consider the first implication
in Figure 4, which is built as follows. The user clicks the “Forensics” sub-menu
and finds the statement about fingerprints being found on the gun, which she cop-
ies to the implication, assigning it a belief of VeryLikely (Figure 3).2 The user also
finds in the “Forensics” sub-menu the statement regarding the match between the
fingerprints on the gun and Mr Green’s, to which she also assigns a belief of Very-

Likely. The consequent about Mr Green having the means to murder Mr Body can
be found in the “Mr Green” sub-menu, and it receives a belief of Likely.3

Figure 5 shows the interpretation generated by BIAS for the argument in Fig-
ure 4 (we have boxed the propositions in the original argument, and drawn arrows
to indicate the implications mentioned in the original argument). In it the system
points out its beliefs and the user’s, and fills in propositions and relations where

2The user can select a belief from the following categories: VeryLikely, Likely, ALittleLikely, Even-
Chance, ALittleUnlikely, Unlikely and VeryUnlikely.
3In the current interface, users are restricted to presenting simple implications, such as those shown
in Figure 4. This interface supports the construction of arguments, in the sense that it allows users
to express how the antecedents of an implication influence their consequent. However, at present
our interface does not support the expression of more sophisticated relations, such as exceptions
and contradictions.
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Figure 5. BIAS’ interpretation of the user’s argument.

the user has made inferential leaps. These propositions and relations correspond
to nodes and arcs which are required to connect the user’s propositions in BIAS’
domain BN. These nodes and arcs are inferred as described in Sections 4 and 5.

3. Domain Representation

The domain propositions and the relationships between them are represented by
means of a BN (Pearl, 1988). Each BN in the system can support a variety of sce-
narios, depending on the instantiation of the evidence nodes. The murder mystery
used for this paper is represented by means of a 32-node BN, which is a less detailed
version of the 85-node BN used in (Zukerman, 2001; Zukerman et al., 2003a).4

Figure 6 shows our 32-node BN: the observable evidence nodes are boxed,
and the goal node [GreenMurderedBody] is circled. The four evidence nodes men-
tioned in the police report are boldfaced and shaded ([GunFoundInGarden], [Finger-

printsFoundOnGun], [BulletsFoundInBody’sBody] and [TimeOfDeath11]), and the three evi-
dence nodes obtained by the user in her investigation are white boldfaced and
dark shaded ([ForensicMatchGreen’sFingerprints], [BayesTimesReportBodySeduceGreen’sGirl-

friend] and [NbourHeardGreenBodyArgLastNight]).

4Both the 32-node BN and the 85-node BN were hand-built. Their plausibility was assessed by per-
forming Bayesian propagation under a variety of evidence conditions, and also during trials with
users. The additional detail in the larger BN adds interest to the game. However, it obscures the
issues being investigated here, which are better highlighted by the smaller BN.
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Figure 6. Domain BN and interpretation of the user’s argument.

In general, when building an argument, the user does not necessarily employ
all the evidence nodes s/he has encountered. For instance, the argument in Fig-
ure 4 uses one evidence node from the police report ([FingerprintsFoundOnGun]), and
two evidence nodes from the three encountered by the user in her investiga-
tion ([BayesTimesReportBodySeduceGreen’sGirlfriend] and [ForensicMatchGreen’sFingerprints]).
These nodes have a thick frame in Figure 6. The nodes corresponding to the
consequents in the user’s argument are boldfaced and shaded ([GreenHasMeans],

[GreenHasMotive] and [GreenMurderedBody]), and the gray bubble indicates the interpre-
tation preferred by BIAS.

4. Proposing Interpretations

Our system generates candidate interpretations for a user’s argument by finding
different ways to connect the propositions in the argument – each variant being
a candidate interpretation. The posterior probability of each interpretation is then
calculated using the formalism described in Section 5, and the interpretation with
the highest probability is selected.

In order to interact with users in real time, we use an anytime algorithm (Dean
and Boddy, 1988) that generates increasingly complex interpretations as time pro-
gresses. This algorithm, called GenerateInterpretations, produces a stream of inter-
pretations until it is interrupted, i.e., when time runs out (for our current trials, the
time limit is set to 5 seconds).
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Figure 7. Generating interpretations for an argument.

Algorithm GenerateInterpretations

1. EvalQueue ← domain BN; interpretation counter i ← 1.
2. While there is time

(a) Remove the first BN from EvalQueue, call it curBN.
(b) Find Interpretationi , the minimum spanning tree in curBN that connects the

nodes in the user’s argument.5

(c) Make copies of curBN such that a different arc from Interpretationi is
removed from each copy (if Interpretationi has N arcs, N copies are gen-
erated – one for each removed arc).

(d) Append the copies of curBN to EvalQueue.
(e) Increment i.

Figure 7 illustrates the application of this algorithm to generate interpretations for
a simple argument comprising two nodes A⇒ G in the context of a domain BN
comprising 5 nodes (the nodes mentioned in the argument are shaded). First BIAS
generates the most concise interpretation I1, which consists of A→ B → G, from
the complete domain BN (BN1 in Figure 7). The removal of the arc between A
and B yields the copy of this BN labelled BN2, and the removal of the arc between
B and G yields BN3. After producing interpretation I2 from BN2, three additional
copies are generated: one without the arc between A and C, one without the arc
between C and B, and one without the arc between B and G. The first two copies
are not viable, as the argument propositions are not fully connected. Thus, only

5A minimum spanning tree in this context is a tree that connects the nodes in curBN and has the
smallest number of arcs. In the future BIAS will also generate graphs.
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the last copy (BN4) is retained and appended to EvalQueue. When BN3 moves up
in the queue, another interpretation (I3) is generated. However, no new BN copies
are produced (as for BN2, the first two copies are not viable; the third copy has
been generated from BN2).

The interpretations generated by this process are structurally subnets of the
domain BN, but not probabilistically. That is, the Conditional Probability Tables
(CPTs) of the nodes in these subnets may include influences from parent nodes
that do not appear in the subnets. For instance, nodes B and G in interpretation
I1 in Figure 7 have only one parent node, while in the original BN (BN1) they
have two parent nodes. In order to turn interpretation I1 into a legal Bayesian sub-
net, the CPT for node B must be adjusted to include only node A as a parent, and
the CPT for node G must be adjusted to include only node B. This adjustment is
performed by a process called marginalization, which retains the influence of the
removed nodes (Pearl, 1988).

In general, to generate a subnet from a BN, we must (1) propagate belief
through the BN, (2) marginalize the parent nodes that are not in the subnet,
(3) remove the child nodes that are not in the subnet, and (4) re-propagate belief in
the subnet. Marginalization is a process that calculates a weighted average of the
influence of all the parent nodes of a node, where the weights are the propagated
probabilities of the parent nodes to be removed, thereby retaining their influence.
In contrast, according to BN theory, child nodes to be removed are simply ignored
(without considering their influence after the initial belief propagation).6 Finally,
belief is re-propagated through the resulting Bayesian subnet, so that the influence
of its nodes can be determined.

5. Selecting an Interpretation

In this section we present our formulation for calculating the posterior proba-
bility of argument interpretations, and apply this formulation to select the best
(intended) interpretation for an argument from the interpretations obtained as
described in Section 4.

5.1. probabilistic formulation of the interpretation process

The probability that a user who presented an argument UArg intended an interpre-
tation SysInt is Pr(SysInt|UArg), the posterior probability of SysInt given UArg.
As stated in Section 1, SysIntBest, the interpretation with the highest posterior
probability, is that which satisfies the following equation:

SysIntBest = argmaxi=1,... ,nPr(SysInti |UArg) (1)

where n is the number of interpretations.

6The removal of child nodes followed by belief re-propagation sometimes yields nodes with unintu-
itive beliefs (Figure 13).
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The application of Bayes Theorem to Equation 1 yields

SysIntBest = argmaxi=1,... ,n

Pr(SysInti )× Pr(UArg|SysInti )
Pr(UArg)

Since the denominator is constant (as all the candidate interpretations are gen-
erated for the same argument UArg) we obtain7

SysIntBest = argmaxi=1,... ,n{Pr(SysInti )× Pr(UArg|SysInti )} (2)

According to this formulation, the posterior probability of an interpretation given
an argument depends on Pr(SysInt) – the prior probability of the interpretation,
and Pr(UArg|SysInt) – the probability of the argument given the interpretation
(this is the probability that a person who intended SysInt would have uttered
UArg).

Now, it is reasonable to say that the probability of an argument given an inter-
pretation depends on how easily the argument can be derived from the interpreta-
tion (easier derivations being more probable).8 However, the factors that affect the
prior probability of an interpretation may be more open to debate. For our basic
formalism, we propose to use simplicity as the factor that determines the prior
probability of an interpretation (simpler interpretations being more probable).9 In
Section 7, we consider the impact of different user models on this probability.

In light of these considerations, Equation 2 gives a probabilistic formulation of
Occam’s Razor, which may be stated as follows: “If you have two theories both
of which explain the observed facts, then you should use the simplest until more
evidence comes along”. If we view a user’s argument as a set of “observations”
(these observations are the statements in the user’s argument, which may include
data, warrants and inferences), and the candidate interpretations of this argument
as competing theories that explain these observations, then according to Occam’s
Razor, the preferred interpretation (i.e., the most probable) is the simplest that
matches the argument well. Hopefully, this is also the intended interpretation. It
is important to note that according to Occam’s Razor (and our probabilistic for-
mulation), the simplest interpretation of an argument is not necessarily the best, as
it may have a poor fit with the user’s argument; the best and hopefully intended
interpretation is one that balances simplicity with argument (data) fit.

Now, the questions in front of us are: (1) how to calculate the probability of
an interpretation based on its simplicity, and (2) how to calculate the conditional
probability of an argument given an interpretation based on the similarity between
the argument and the interpretation. These calculations appear in Appendices A

7This technique compares interpretations in order to select the most probable one. Hence, in prin-
ciple, it does not need to calculate the precise probabilities of the interpretations. Our software cal-
culates these probabilities, since sometimes the best interpretation is still not plausible. However, in
the paper we have omitted these detailed calculations for clarity of presentation.
8Note that the calculation of Pr(UArg|SysInt) is not symmetric to the direct calculation of
Pr(SysInt|UArg), because the propositions in UArg are a subset of those in SysInt.
9The consideration of other factors does not affect the basic tenets of our approach.
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and B respectively. The sections below summarize the results of these calculations
and illustrate them with examples.

5.2. estimating the probability of an interpretation

The technique for calculating the probability of an interpretation SysInt is based
on the idea that we need to select the nodes and arcs in the interpretation from
those in the domain BN.

We identify an interpretation by specifying the number of nodes in it, the num-
ber of arcs, and the actual nodes and arcs in it. Thus, the probability of an inter-
pretation SysInt, Pr(SysInt), in the context of the domain BN is defined as

Pr(SysInt) = Pr(ArcsSI, NodesSI, aSI, nSI|dBN) (3)

where dBN is the domain BN (composed of A arcs and N nodes), ArcsSI is the
set of arcs in the interpretation SysInt, NodesSI the set of nodes in SysInt, aSI the
number of arcs in SysInt, i.e., |ArcsSI|, and nSI the number of nodes in SysInt, i.e.,
|NodesSI|.

Applying the chain rule of probability theory yields

Pr(SysInt)= Pr(ArcsSI|NodesSI, aSI, nSI, dBN)× Pr(aSI|NodesSI, nSI, dBN)

×Pr(NodesSI|nSI, dBN)× Pr(nSI|dBN) (4)

Here we summarize the calculation of these probabilities. Their precise calculation
appears in Appendix A.

– Pr(nSI|dBN) is the probability of having nSI nodes in an interpretation. We
model this probability by means of a truncated Poisson distribution, Poisson(β),
where β is the average number of nodes in an interpretation (Equation A.3).

– Pr(NodesSI|nSI, dBN) is the probability of selecting the particular nSI nodes in
NodesSI from the N nodes in dBN. Assuming that all nodes have an equal
probability of being selected, there are

(
N
nSI

)
ways to select these nodes (Equa-

tion A.4).
– Pr(aSI|NodesSI, nSI, dBN) is the probability of having aSI arcs in an interpreta-

tion. The number of arcs in an interpretation is between the minimum number
of arcs needed to connect nSI nodes (nSI − 1), and the actual number of arcs
in dBN that connect the nodes in NodesSI, denoted vaSI. Hence, we model the
probability of aSI by means of a uniform distribution between nSI−1 and vaSI

(Equation A.5).
– Pr(ArcsSI|NodesSI, aSI, nSI, dBN) is the probability of selecting the particular aSI

arcs in ArcsSI from the vaSI arcs in dBN that connect the nodes in SysInt.
There are

(vaSI
aSI

)
ways to select these arcs (Equation A.6).
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Neighbour heard Mr Green and
Mr Body argue last night [VeryUnLikely]

Mr Green murdered Mr Body
[UnLikely]

NbourHeardGreenBodyArgLastNight NbourHeardGreenBodyArgLastNight

GreenBodyArgueLastNight

GreenBodyEnemies GreenInGardenAtTimeOfDeath

GreenMurderedBody

[UnLikely]

[UnLikely]

[UnLikely]

[VeryUnLikely]

[UnLikely] GreenHasOpportunity

GreenMurderedBody

Not NbourHeardGreenBodyArgLastNight is

[UnLikely]

[VeryUnLikely]

[ALittleUnLikely]

[VeryUnLikely]

GreenHasMotive[UnLikely]

GreenInGardenAt11

Not NbourHeardGreenBodyArgLastNight is
evidence for Not GreenBodyArgueLastNight,
which is evidence for Unlikely
GreenBodyEnemies, which implies that
Unlikely GreenHasMotive, which implies
that ALittleUnlikely GreenMurderedBody

which implies that Unlikely
evidence for Unlikely GreenInGardenAt11,

GreenMurderedBody
which implies that Unlikely

GreenInGardenAtTimeOfDeath, which
implies that Unlikely GreenHasOpportunity,

SysIntA SysIntB

Figure 8. Simple argument and interpretations.

Example
To illustrate the results obtained from Equation 4 consider our domain BN of 32 nodes
(Figure 6), and the simple argument and interpretations in Figure 8 (these interpreta-
tions may be traced starting from node [NbourHeardGreenBodyArgLastNight] on the right-
hand-side of Figure 6). The nodes mentioned by the user appear in bold and are dark
shaded, and the beliefs in the user’s argument and those obtained by BIAS in the inter-
pretations appear in brackets. The arcs indicate the flow of evidence in the domain BN.
The gloss for each interpretation appears under it.

Both interpretations have the same prior probability due to the following
reasons:

– Both interpretations have 5 nodes (nA = nB = 5). Hence, Pr(nA|BN)=Pr(nB |BN).
Further, since the nodes in the BN are equiprobable, Pr(NodesA|nA, BN) =
Pr(NodesB |nB, BN).

– The number of arcs in the BN in Figure 6 that connect between the nodes in each
interpretation (vaA and vaB ) is the minimum number of arcs (vaA = aA = nA−1 =
4 and vaB = aB = nB − 1 = 4). Hence, there is only one possible number of arcs for
each interpretation (4), and there is only one way to chooseaA arcs fromvaA arcs, and
aB arcs from vaB arcs. That is, Pr(aA|NodesA, nA, BN) = Pr(aB |NodesB, nB, BN) =
1, and Pr(ArcsA|NodesA, aA, nA, BN) = Pr(ArcsB |NodesB, aB, nB, BN) = 1.
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Hence, at this stage we have no grounds for preferring one interpretation over
the other (this example is continued in Section 5.3, where data fit considerations
are applied).

5.3. estimating the probability of the argument given an interpretation

A user’s argument is a sequence of implications of the form:

Antecedent1 Antecedent2 . . . Antecedentn⇒Consequent

where ⇒ indicates that the antecedents imply the consequent, without distinguish-
ing between causal and evidential implications.

A user’s argument, denoted UArg, may be represented as a graph where the
antecedents and consequents correspond to nodes in our BN. Pr(UArg|SysInt) is
the probability that a user uttered UArg when s/he intended SysInt. This probabil-
ity depends on the similarity between UArg and SysInt, i.e., the more similar UArg
is to an interpretation, the more probable it is that the user presented this argu-
ment when s/he intended this interpretation. This similarity depends on the struc-
tural similarity between SysInt and UArg (where structure is represented in terms
of nodes and arcs), and on the closeness between the beliefs in the nodes in UArg
and the beliefs in the corresponding nodes in SysInt (these beliefs are obtained
by performing Bayesian propagation through SysInt; hence, different SysInts may
yield different beliefs in the consequents of an argument). Thus,

Pr(UArg|SysInt)=Pr(Struct(UArg),Bel(UArg)|Struct(SysInt),Bel(SysInt)) (5)

where, Struct(UArg) denotes the structure of the user’s argument UArg,
Struct(SysInt) denotes the structure of interpretation SysInt, Bel(UArg) denotes the
beliefs expressed in UArg, and Bel(SysInt) denotes the beliefs obtained in SysInt.

By applying the chain rule of probability theory, and making some simplifying
assumptions (Appendix B), we obtain the following formula, which considers sep-
arately structure and belief.

Pr(UArg|SysInt) = Pr(Struct(UArg)|Struct(SysInt))

×Pr(Bel(UArg)|Bel(SysInt)) (6)

Calculating Pr(Bel(UArg)|Bel(SysInt))
The calculation of Pr(Bel(UArg)|Bel(SysInt)) is based on the similarity between

the beliefs stated by the user in UArg and those obtained in SysInt as a result of
Bayesian propagation. This propagation relies on the evidence in the simple user
model, which contains the information encountered by the user in the police report
and in his/her exploration of the virtual scenario.

Bel(UArg) comprises the beliefs stated by the user with respect to the nodes in
UArg. That is, Bel(UArg) = {Bel(Nd1,UArg), . . . , Bel(NdnUA

,UArg)}, where nUA

is the number of nodes in UArg (nUA ≤ nSI, which is the number of nodes in
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SysInt). Similarly, Bel(SysInt) comprises the beliefs in nodes Nd1, . . . , NdnUA in
SysInt, which are obtained by means of Bayesian propagation (nodes that appear
only in SysInt are handled by the component which describes structural differ-
ences, presented below). Thus,

Pr(Bel(UArg)|Bel(SysInt))

= Pr(Bel(Nd1, UArg),. . . ,Bel(NdnUA
, UArg)|Bel(Nd1, SysInt),. . . ,

Bel(NdnUA
, SysInt))

By applying the chain rule of probability theory, and making some simplify-
ing assumptions (Appendix B.1), we obtain the following formula, which considers
each node in the user’s argument separately:

Pr(Bel(UArg)|Bel(SysInt)) =
nUA∏

i=1

Pr(Bel(Ndi , UArg)|Bel(Ndi , SysInt)) (7)

In order to calculate Pr(Bel(Ndi , UArg)|Bel(Ndi , SysInt)), we need to perform
the following tasks:

– Consider belief categories (from VeryUnlikely to VeryLikely as per our interface, Sec-
tion 2.1), rather than point probabilities (Equation B.4).

– Devise a probabilistic measure that rewards similarities between the beliefs in a
user’s argument and the corresponding beliefs in an interpretation, and penal-
izes discrepancies between these beliefs. We have selected the Zipf distribution
for this task (Equation B.5).

Calculating Pr(Struct(UArg)|Struct(SysInt))
The calculation of Pr(Struct(UArg)|Struct(SysInt)) is based on the idea that we

need to select the nodes and arcs in UArg from those in SysInt. This idea is similar
to that used to calculate Pr(SysInt) (where we selected the nodes and arcs in SysInt
from those in dBN). However, in this case there is a complicating factor, since the
user could mention implications (arcs) which do not exist in SysInt. Hence, the cal-
culation of Pr(Struct(UArg)|Struct(SysInt)) resembles the calculation of Pr(SysInt)
in Equation 3, but distinguishes between arcs in UArg that are selected from Sy-
sInt and arcs that are newly inserted. These arcs are designated as follows: Arcssel

is the set of arcs in UArg selected from SysInt, Arcsins is the set of newly inserted
arcs in UArg (i.e., arcs that cannot be obtained from SysInt), asel is the number of
selected arcs, i.e., |Arcssel|, and ains is the number of inserted arcs, i.e., |Arcsins|.

This results in the following definition for Pr(Struct(UArg)|Struct(SysInt)):

Pr(Struct(UArg)|Struct(SysInt))

= Pr(Arcssel, Arcsins, asel, ains, NodesUA, nUA|Struct(SysInt))

where NodesUA designates the nodes in UArg, and nUA is the number of nodes in UArg.
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By applying the chain rule of probability theory, and making some simplifying
assumptions (Appendix B.2), we obtain the following formula:

Pr(Struct(UArg)|Struct(SysInt))

= Pr(Arcssel|asel, NodesUA, nUA, SysInt)× Pr(asel|NodesUA, nUA, SysInt)

×Pr(Arcsins|ains, NodesUA, nUA, SysInt)× Pr(ains|NodesUA, nUA, SysInt)

×Pr(NodesUA|nUA, SysInt)× Pr(nUA|SysInt) (8)

Here we summarize the calculation of these probabilities. Their precise calcula-
tion appears in Appendix B.2.

– Pr(nUA|SysInt) is the probability of having nUA nodes in an argument. We
model this probability by means of a truncated Poisson distribution, Poisson(ρ),
where ρ is the average number of nodes in a user’s argument (Equation B.9).

– Pr(NodesUA|nUA, SysInt) is the probability of selecting the particular nUA nodes
in NodesUA from the nSI nodes in SysInt. We model this probability as we did
for SysInt (Section 5.2). However, we take into account the fact that owing to
the way in which interpretations are derived by procedure GenerateInterpreta-
tions (Section 4), all the leaf nodes in SysInt must appear in UArg, and only
non-leaf nodes in SysInt are uncertain of appearing in UArg. This observation
reduces the number of ways in which the nUA nodes in UArg may be selected
from the nSI nodes in SysInt, and thereby yields more accurate (and higher)
probabilities for the node configurations in UArg (Equation B.10).

– Pr(asel|NodesUA, nUA, SysInt) is the probability of selecting from SysInt asel arcs
that connect the nodes in NodesUA. As for SysInt, we model this probability
using a uniform distribution. However, we take into account the fact that UArg
may contain inferences that skip some non-leaf nodes in SysInt. For instance,
a user may have said A→ C, while the corresponding structure in the domain
BN is A → B → C. Such cases are considered algorithmically prior to calcu-
lating the probability of asel (Equation B.11). This is done by redirecting arcs
in SysInt so that they connect between the children and the parents of SysInt
nodes that were omitted from the user’s argument (e.g., in our example, the arcs
around B are redirected, so that A is connected directly to C). As above, this
observation increases the accuracy of the calculated probabilities.

– Pr(ains|NodesUA, nUA, SysInt) is the probability of inserting ains arcs in SysInt.
We model this probability using a truncated Poisson distribution, Poisson(µ),
where µ is the mean number of inserted arcs (Equation B.12).

– Pr(Arcssel|asel, NodesUA, nUA, SysInt) is the probability of selecting the particular
asel arcs in Arcssel from the arcs in SysInt that connect the nodes in NodesUA.
This probability is calculated as for SysInt (Section 5.2), but Arcssel is chosen
from the arcs redirected as explained above, rather than from the original arcs
in SysInt (Equation B.13).
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Table I. Observations made before the simple argument in Figure 8.

Value and
Proposition source

Bullet wounds were found in Mr Body’s body T (police rep.)
A gun was found in the garden T (police rep.)
Fingerprints were found on the gun T (police rep.)
Forensics established that the time of death was 11 pm T (police rep.)
Neighbour heard Mr Green and Mr Body argue last night F (exploration)
A witness saw Mr Green at the football at 10:30 F (exploration)
Bayesian Times reported that Mr Body seduced Mr Green’s girlfriend F (exploration)
Broken glass was found inside Mr Body’s window T (exploration)

– Pr(Arcsins|ains, NodesUA, nUA, SysInt) is the probability of selecting ains arcs
from the maximum possible number of arc insertions in SysInt (Equation B.14).

Example
In this example we illustrate the influence of beliefs on the results obtained from
Equation 6 (in Section 7 we consider a more complex example that balances the
probabilities obtained from structure and belief).

Let us reconsider the simple argument and interpretations in Figure 8. Table I
shows the evidence in the simple user model (the evidence in the antecedent of
the user’s argument is boldfaced). Note that even though most of the evidence in
Table I is omitted from the interpretations, it may still affect the beliefs in the
propositions in the interpretations due to the marginalization process (Section 4).

SysIntA and SysIntB are structurally equivalent due to the following reasons:

– The user’s argument has two nodes (nUA = 2), and both interpretations
have five nodes (nSI = 5), yielding Pr(nUA|SysIntA) = Pr(nUA|SysIntB), and
Pr(NodesUA|nUA, SysIntA) = Pr(NodesUA|nUA, SysIntB).

– The argument has only one arc, which is selected from the redirected arcs in SysIntA
and SysIntB (asel = 1). Since the arc-redirection process yields one arc (that in UArg)
for both interpretations, we obtain Pr(asel|NodesUA, nUA, SysInt) = 1, and
Pr(Arcssel|asel, NodesUA, nUA, SysInt) = 1 for both SysIntA and SysIntB .

– No extraneous arc insertions are required (ains = 0) for both interpretations.10

Hence, Pr(ains|NodesUA, nUA, SysIntA) = Pr(ains|NodesUA, nUA, SysIntB), and
Pr(Arcsins|ains, NodesUA, nUA, SysIntA) = Pr(Arcsins|ains, NodesUA, nUA, SysIntB).

10For clarity of exposition, the examples presented in this paper have a linear argumentation struc-
ture. As a result, the arc redirection and arc insertion components are simplified out of the formulas.
While this occurs often, it cannot be assumed to be generally the case. For instance, the user may
have said A → B → C, when in the actual BN A and B are children of C, and there is no arc
between A and B. Such cases are accounted for by the arc insertions in our formulation.
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Let us now consider the beliefs in the user’s argument. For both interpretations, the
probability of the beliefs is calculated as follows:

Pr(Bel(UArg)|Bel(SysInt))

= Pr(Bel(NbourHeardGreenBodyArgLastNight, UArg)|
Bel(NbourHeardGreenBodyArgLastNight, SysInt))

×Pr(Bel(GreenMurderedBody, UArg)|Bel(GreenMurderedBody, SysInt))

Since SysIntB matches both beliefs in UArg, Pr(Bel(UArg)|Bel(SysIntB))=1. In
contrast, SysIntA differs from UArg in the belief in node [GreenMurderedBody] (the
user postulates a belief of Unlikely, while the system infers ALittleUnlikely). This
discrepancy is penalized by assigning a lower probability (=0.25) to the factor
corresponding to this belief for SysIntA (this probability is obtained using Equa-
tion B.5).

Thus, Pr(UArg|SysIntB) is 4 times more probable than Pr(UArg|SysIntA). Now,
recall that in Section 5.2 we obtained the same prior probabilities for SysIntA and
SysIntB . In order to combine these two results, we return to Equations 1 and 2,
and express the posterior probability for SysIntA in terms of the probabilities for
SysIntB . This yields

Pr(SysIntA|UArg)= Pr(SysIntA)× Pr(UArg|SysIntA)

= Pr(SysIntB)× 0.25 Pr(UArg|SysIntB),

Pr(SysIntA|UArg)= 0.25 Pr(SysIntB |UArg) (9)

That is, given UArg, SysIntB is 4 times more probable than SysIntA.
Now, one may argue that such a small discrepancy in belief should not tip the

balance in favour of a particular interpretation to such a large extent. However, we
impose such a heavy penalty for discrepancies in belief as a result of our prelimi-
nary trials with users, where our trial subjects objected strongly to small differences
in belief between their arguments and BIAS’ interpretations (Appendix B.1). More
importantly, our formalism represents explicitly the effect of the components of an
interpretation on the overall probability of the interpretation, where the effect of
each component is determined by the parameters of the distribution used to calcu-
late its probability. Some of these parameters may be adjusted based on the impor-
tance ascribed to the influence of a component, as was done for belief.

6. Synthetic Evaluation

Our synthetic evaluation consisted of an automated experiment where the system inter-
prets noisy (distorted) versions of its own arguments. These arguments were generated
from different subnets of its domain BN, and they were distorted by changing the beliefs
in the nodes, and inserting and deleting arcs and nodes. The distortions were performed
as follows. Beliefs were distorted by assigning to each node a belief that is within 10%,
20%, 30% or 40% of the belief in this node in the original argument. Node deletions
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Figure 9. Frequency of edit-distances for all noise conditions (4280 trials).

were performed by randomly selecting from each argument 10–40% of the nodes to be
deleted. Similarly, node insertions were performed by creating additional nodes to be
inserted in the original argument (these nodes comprise 10–40% of the nodes in the
argument).11 Thus, the distorted (noisy) versions are “user arguments” whose inter-
pretations should match the original arguments. These distortions were performed for
Bayesian subnets (original arguments) of different sizes (3, 5, 7 and 9 arcs) yielding 4280
trials (1070 trials for each subnet size). Our measure of performance is the edit-distance
between the original argument subnet and the interpretation subnet preferred by BIAS.
That is, we counted the number of operations that need to be performed to match the
source Bayesian subnet and the interpretation subnet. For instance, two subnets that
match perfectly have an edit-distance of 0, and if the subnets differ by the position of
one arc then the edit-distance is 2 (one addition and one deletion).

Overall, our results were as follows. Our system produced an interpretation in
91% of the 4280 trials. In 82% of the 4280 trials (91% of the trials where an inter-
pretation was produced), the generated interpretations had an edit-distance of 3
or less from the original Bayesian subnet, and in 56% of the trials, the interpre-
tations matched perfectly the original subnet. Figure 9 depicts the frequency of
edit-distances for the different subnet sizes under all noise conditions. We plotted
edit-distances of 0, . . . , 9 and > 9, plus the category NI, which stands for ‘No
Interpretation’. As seen in Figure 9, the 0 edit-distance has the highest frequency
for subnets of 7 arcs or less, and performance deteriorates as the size of the sub-
net increases. Further, for subnets of 7 arcs or less, interpretations were generated
in 97% of the 3210 trials, and in 91% of the trials the interpretations had an edit-

11In our current implementation, the propositions in an argument are selected by the user from a menu.
Hence, the user cannot present propositions that are unknown to BIAS, i.e., it is not possible to insert new
nodes in an argument. However, node insertion was performed in our synthetic trials, as the NL version of
our system allows users to mention propositions which the system cannot reconcile with nodes in the BN.
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Figure 10. Frequency of edit-distances as percent of maximum edits for all noise conditions (4280
trials).

distance of 3 or less from the original argument subnet. Only for Bayesian subnets
of 9 arcs the number of NIs exceeded the number of perfect matches.

The edit-distance measure alone may not inform us about the quality of the
interpretations obtained by our system. For example, an interpretation of a small
argument which differs from the original by 3 arcs or nodes may be inadequate.
Hence, we offer a different view of our results. Figure 10 displays edit-distance as a
percentage of the possible changes for an argument subnet of a particular size (the
x-axis is divided into buckets of 10%). For example, if a selected interpretation dif-
fers from its source Bayesian subnet by the insertion of one arc, the percent-edit-
distance will be 100× 1

(2N+1)
, where N is the number of arcs in the source Bayesian

subnet.12 The results shown in Figure 10 are consistent with the previous results,
with the vast majority of the edits being in the [0,10)% bucket. That is, most of
the interpretations are within 10% of their source Bayesian subnets.

We also tested each kind of noise (distortion) separately, maintaining the other
kinds of noise at 0%. All the distortions were between 0 and 40%. We performed
1560 trials for arc noise and node insertions, and 2040 trials for belief noise, which
warranted additional observations. Figures 11 and 12 show the recognition accuracy
of our system (in terms of average edit-distance) as a function of arc and belief noise
percentages respectively (our system’s performance for node insertions is similar to
that obtained for belief noise). The performance for the different Bayesian subnet
sizes (in arcs) is also shown. Our results indicate that the main factor that affects
recognition performance is the size of the Bayesian subnet, while the average edit-
distance remains stable for the different percentages of belief and arc noise, as well

12A graph of N arcs has a maximum of N+1 nodes, yielding a maximum of 2N +1 edits to create
the graph.
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Figure 11. Effect of arc noise on performance (1560 trials).

Figure 12. Effect of belief noise on performance (2040 trials).

as for node insertions. The only exception occurs for 40% arc noise and subnets of
size 9, but even in this case the average edit-distance is only 3.

7. Incorporating the Complex User Model

Our basic probabilistic formalism assumes that every proposition is equally likely
to be included in an interpretation. However, this may not be the case in real-
ity. We postulate that interpretations including propositions familiar to the user
(e.g., recently made observations, or propositions from his/her Notebook) are more
probable than interpretations that include other domain propositions (although the
user may still intend to include unseen propositions of which s/he has thought
independently). More specifically, we posit that the probability of including a
domain proposition in an interpretation depends on the salience (or level of acti-
vation) of the proposition in question in the user’s focus of attention.
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We model salience by means of three directly observable factors: (1) the type of
access to a proposition, (2) the frequency and recency with which the proposition
was accessed, and (3) its similarity to other accessed propositions. To derive from
these factors the probability of including a node in an interpretation, we need to
provide numerical values for these factors.

Type of access to a proposition. Users are more likely to recall propositions they
have considered deliberately than propositions they have seen only in passing. We
model this phenomenon by distinguishing between four types of access: observa-
tions may be seen or accepted, and statements may be mentioned or con-
firmed (these access types are similar to those introduced in Zukerman, 2001).

– seen observations are those that the user has encountered but has not acknowl-
edged.

– accepted observations have been entered by the user in his/her Notebook.
– mentioned propositions have been explicitly included in the user’s previous

arguments.
– confirmed propositions were not mentioned by the user, but are incorporated

by BIAS into an interpretation in order to connect the mentioned nodes.
These propositions are confirmed when the user agrees with the interpretation
presented by BIAS (Section 2).

We assign the following numerical strengths to our access categories. These
strengths reflect the influence of the type of access on the salience of a proposition:

Str =






A if accepted

A if mentioned

max
{

A
FS

, A
# of props seen+1

}
if seen

A
FC

if confirmed

(10)

where A, FS and FC are constants determined during system development (FS >

1 and FC > 1). According to this formula, the strength of seen propositions is
always less than the strength of accepted propositions, and is inversely propor-
tional to the number of propositions viewed concurrently (e.g., read in the same
web page) up to a certain number of propositions (we assume that this effect is
monotonic only up to a point). The strength of confirmed propositions is slightly
lower than that of mentioned propositions, since the user has confirmed these
propositions in an interpretation, but has not presented them him/herself.13

Frequency and recency of access. Propositions that have been accessed frequently and
recently are more likely to stand out in a user’s memory than propositions accessed a

13Note that only accepted and seen propositions are relevant to the current operation of our
system, as the user enters only one argument, which is interpreted and then validated.
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while back. We model this influence by means of the following function.
n∑

i=1

[CurTime− TimeStmpi + 1]−b (11)

where n is the number of times a proposition was accessed, b (=1) is an expo-
nent whose value was determined during system development, CurTime is the cur-
rent time, and TimeStmpi is the time of the ith access. According to this formula,
the level of activation of a node decays as a function of the time elapsed since
its access. In addition, when a node is accessed, activation is added to the current
accumulated (and decayed) activation. That is, there is a spike in the level of acti-
vation of the node, which starts decaying from that point again.

We use the following formula to express the salience of a node in terms of its
access type and its frequency and recency (Zukerman et al., 2003a). This formula
yields the access score of a node, assigning a high score to nodes that were recently
accepted or mentioned by a user.

AccessScore(Nd) =
n∑

i=1

Stri (Nd)× [CurTime− TimeStmpi + 1]−b (12)

where Str i (Nd) is the strength of the ith access to node Nd.

Node similarity. Propositions encountered by users are likely to remind them of
similar propositions. For instance, [The neighbour saw Mr Green around the garden at 11]

is similar to [Mr Green was in the garden at 11] and somewhat less similar to [Mr Green

was in the garden]. Thus, encountering the first proposition during the domain inves-
tigation may prompt the user to think of the second proposition, and to a lesser
extent of the third proposition.

We employ the procedure described in (Zukerman et al., 2003b) to calculate in
advance the similarity between each pair of nodes in our domain BN. This proce-
dure uses WordNet (Miller et al., 1990) and word-similarity information obtained
from an automatically generated thesaurus to calculate a similarity score denoted
SimScore(Ndi ,Ndj ), where Ndi and Ndj are nodes in the domain BN (SimScore
ranges between [0,1], with SimScore(Ndi ,Ndi)=1).

The combined effect of access type, frequency and recency, and similarity on the
activation of node Ndk is modeled by passing to Ndk the activation of accessed
nodes (obtained from Equation 12) moderated by the degree of similarity between
Ndk and the accessed nodes. This is done by the following formula (we raise the
factors to a power of 2 to polarize the effect of access and similarity).14

Score(Ndk) =
N∑

j=1

[SimScore(Ndk, Ndj )× AccessScore(Ndj )]2 (13)

14This formula constitutes a cruder (and computationally more tractable) approximation of the
salience of a node than that used in the NAG system (McConachy et al., 1998), where the salience
of a node was dynamically calculated as nodes were mentioned.
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where N is the number of nodes in the domain BN.
Equation 13 yields a score that reflects the salience of a node in the user’s atten-

tional focus. This score is used to derive Pr(mk), the probability of including node
Ndk in an interpretation.

Pr(mk) = Score(Ndk)+GC
∑N

i=1[Score(Ndi )+GC]
(14)

where GC = 1
2N

(GC is a small number that corresponds to Good’s flattening con-
stant (Good, 1965), Appendix C).

This probability in turn is used to calculate Pr(NodesSI|nSI, dBN), instead of
using the equiprobable distribution assumed in Section 5.2. The calculation of
Pr(NodesSI|nSI, dBN) is detailed in Appendix C. This calculation is based on a
multinomial distribution of the random variables m1, . . . , mN , adjusted to take
into account the fact that these variables are dependent (a multinomial distribu-
tion assumes independent variables). It yields the following formula.

Pr(NodesSI|nSI, dBN) = Pr′(m1, . . . , mN) = nSI!
N∏

k = 1
∀mk=1

Pr(mk)

{1−
k−1∑

j = 1
∀mj=1

Pr(mj )}
(15)

where mk = 1 if node Ndk ∈ dBN appears in NodesSI.
This equation is used instead of Equation A.4 from Appendix A to incorporate

information from the complex user model into Equation 2 for the calculation of
SysIntBest.

The complex user model is used only to calculate Pr(SysInt). We do not use it
to calculate Pr(UArg|SysInt) because the effect of node probabilities on whether
they are mentioned or implied is unclear: do users mention more probable nodes
and leave less probable ones implicit, or do they mention the less probable nodes
and assume that the more probable nodes will be understood? Therefore, when cal-
culating Pr(UArg|SysInt) we use our basic formalism, which assumes a uniform
distribution of configurations of non-leaf nodes from SysInt (Appendix B.2).

7.1. example

In this section we illustrate the contribution of the complex user model to the
estimation of the probability of candidate interpretations of a simple argument.
We also compare the effect of the user model that considers only access type, fre-
quency and recency of a node, with the effect of the user model that also con-
siders similarity. The former model uses SimScore(Ndk, Ndj ) = 0 for j �= k and
SimScore(Ndk, Ndk) = 1 when computing Score(Ndk) in Equation 13, while the
latter uses the pre-calculated value of SimScore in Equation 13.
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NbourHeardGreenBodyArgLastNight

GreenVisitBodyLastNightGreenInGardenAtTimeOfDeath

GreenHasOpportunity GreenHasOpportunity

GreenInGardenAt11

GreenInGardenAt11

NbourSawGreenAroundGardenAt11

NbourSawGreenAroundGardenAt11

GreenBodyArgueLastNight

Mr Green had the opportunity
to kill Mr Body
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[VeryLikely]
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GreenInGardenAt11,

implies that GreenHasOpportunity

[VeryLikely]

[VeryLikely]

[Likely]

[Likely]

[VeryLikely]

[ALittleLikely]

NbourSawGreenAroundGardenAt11 is

[ALittleLikely]

around the garden at 11 [VeryLikely]

NbourSawGreenAroundGardenAt11 is
evidence for ALittleLikely

GreenInGardenAtTimeOfDeath, which
which implies that ALittleLikely

GreenHasOpportunity

which is evidence for VeryLikely
implies that Likely GreenBodyArgueLastNight,
NbourHeardGreenBodyArgLastNight

[VeryLikely]

GreenVisitBodyLastNight which implies that

evidence for Likely GreenInGardenAt11,
which together with

SysIntA SysIntB

Figure 13. Simple argument and interpretations.

Let us reconsider our domain BN of 32 nodes (Figure 6), and consider the
simple argument and interpretations in Figure 13 (these interpretations may be
traced starting from node [NbourSawGreenAroundGardenAt11] at the bottom right of
Figure 6). SysIntA has 4 nodes and 3 arcs, while SysIntB has 6 nodes and 5
arcs. The nodes mentioned by the user appear in bold and are dark shaded, while
node [NbourHeardGreenBodyArgLastNight], which was encountered by the user during
his domain exploration, is light shaded. Note that the relation between this node
and its neighbours in SysIntB is a special head-to-head relation, which is differ-
ent from simple causal or evidential relations (Jensen, 1996). Also, recall that the
beliefs in argument interpretations are obtained by propagating the evidence nodes
in the domain BN, cutting out the subnet corresponding to an interpretation, and
then re-propagating beliefs (Section 4). This sometimes leads to unintuitive beliefs
in the cut-out subnet, as illustrated in SysIntA, where after propagation there is
a substantial increase in belief from [GreenInGardenAtTimeOfDeath] ALittleLikely to [Gree-

nHasOpportunity] VeryLikely. This point is further discussed in Section 8.
In order to consider the influence of access type, frequency and recency, and

similarity without altering the belief in propositions, we introduce the notion
of gossip. Gossip contains propositions the user may have heard of, but whose
value s/he does not know. For instance, “you overheard the neighbours discussing
whether Mr Green visited Mr Body last night”. Table II shows the information in
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Table II. Observations made before the simple argument in Figure 13.

Proposition Value and source

Bullet wounds were found in Mr Body’s body T (police rep., accepted)
A gun was found in the garden T (police rep., accepted)
Fingerprints were found on the gun T (police rep., accepted)
Forensics established that the time of death was 11 pm T (police rep., accepted)
Neighbour heard Mr Green and Mr Body argue last night T (accepted)
Neighbour saw Mr Green around the garden at 11 T (accepted)
Mr Green and Mr Body argued last night (gossip, seen)
Mr Green visited Mr Body last night (gossip, seen)

the complex user model (the evidence in the antecedent of the user’s argument is
boldfaced, and gossip is italicized).

In this example, we first estimate the posterior probability of our candidate
interpretations by calculating Pr(SysInt) using the simple user model, and then cal-
culating Pr(UArg|SysInt). We then re-estimate Pr(SysInt) using both complex user
models, and re-calculate the posterior probability of the interpretations.

Estimating Pr(SysInt)
SysIntA has 4 nodes (nA = 4) and SysIntB has 6 nodes (nB = 6). We now consider
separately the effect of arcs and nodes on the prior probabilities of these interpre-
tations.

– Arcs – Since both interpretations have a linear structure, the number of valid arcs
in them is the minimum number of arcs: vaSI = aSI = nSI−1 (vaA = 4−1 = 3 and
vaB = 6−1 = 5). Hence, there is only one possible number of arcs for each inter-
pretation, and there is only one way to choose aA arcs from vaA arcs, and aB arcs
from vaB arcs. That is, Pr(aA|NodesA, nA, BN) = Pr(aB |NodesB, nB, BN) = 1,
and Pr(ArcsA|NodesA, aA, nA, BN) = Pr(ArcsB |NodesB, aB, nB, BN) = 1.

– Nodes –

• Pr(nA|BN) and Pr(nB |BN) are modeled by means of a truncated Poisson
distribution with mean β. Using Equation A.3 from Appendix A, we obtain

Pr(nA|BN)= δ
e−ββ4

4!

Pr(nB |BN)= δ
e−ββ6

6!
where δ is a normalizing constant.

• Pr(NodesA|nA, BN) and Pr(NodesB |nB, BN) are modeled using the combina-
torial formula for choosing nSI nodes from the 32 nodes in the domain BN
(Equation A.4), as follows:

Pr(NodesA|nA, BN)= 1
(32

4

)

Pr(NodesB |nB, BN)= 1
(32

6

)
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Substituting these values in Equation 4, we obtain

Pr(SysIntA)= 1× 1× 1
(32

4

) × δ
e−ββ4

4!

Pr(SysIntB)= 1× 1× 1
(32

6

) × δ
e−ββ6

6!

For β̂ = 11 (where β̂ is an estimate of β obtained experimentally, Appendix A),
SysIntA is 6.25 times more probable than SysIntB .

Estimating Pr(UArg|SysInt)
First, we consider the belief component of Pr(UArg|SysInt). Since both SysIntA
and SysIntB match the beliefs stated by the user, Pr(Bel(UArg)|Bel(SysInt))=1 for
both interpretations.

We now consider the structure of Pr(UArg|SysInt), and as for SysInt, we
examine separately the effect of arcs and nodes on the conditional probabilities
Pr(Struct(UArg)|Struct(SysIntA)) and Pr(Struct(UArg)|Struct(SysIntB)).

– Arcs

• The user’s argument has one arc only selected from the redirected arcs in
SysIntA and SysIntB (asel = 1). Since the arc-redirection process yields one
arc (that in UArg) for both interpretations, we obtain for both SysIntA and
SysIntB Pr(asel|NodesUA, nUA, SysInt) = 1, and
Pr(Arcssel|asel, NodesUA, nUA, SysInt) = 1.

• No extraneous arc insertions are required (ains = 0) for both interpreta-
tions. Hence, Pr(ains|NodesUA, nUA, SysIntA)=Pr(ains|NodesUA, nUA, SysIntB),
and Pr(Arcsins|ains, NodesUA, nUA, SysIntA) = Pr(Arcsins|ains, NodesUA, nUA,

SysIntB).

– Nodes

• The argument has two nodes (nUA = 2). Thus, the truncated Poisson distri-
bution from Equation B.9 yields

Pr(nUA|SysInt) = φ
e−ρρ2

2!

for both interpretations, where φ is a normalizing constant, and ρ is the
average number of nodes in an argument. However, as indicated in Appen-
dix B, our previous experimental results show that users’ arguments typically
contain half the nodes in their interpretations, i.e., ρ = nSI/2. Hence, the
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probabilities obtained for nUA given SysIntA (which has four nodes) and nUA

given SysIntB (which has six nodes) differ as follows:

Pr(nUA|SysIntA)= φ
e−nA/2( nA

2 )2

2!
= φ

e−4/2( 4
2 )2

2!
= φ

e−222

2!

Pr(nUA|SysIntB)= φ
e−nB/2( nB

2 )2

2!
= φ

e−6/2( 6
2 )2

2!
= φ

e−332

2!

• Pr(NodesUA|nUA, SysIntA) and Pr(NodesUA|nUA, SysIntB) are modeled using
the combinatorial formula for choosing the non-leaf nodes in UArg from the
non-leaf nodes in SysInt (Equation B.10). However, both nodes in UArg are
leaf nodes. Hence, for both interpretations, there is only one way to choose
the 0 non-leaf nodes in UArg from those in SysInt.

Substituting these values in Equation 8, we obtain

Pr(Struct(UArg)|Struct(SysIntA))

= 1× 1× Pr(Arcsins|ains, NodesUA, nUA, SysIntA)

×Pr(ains|NodesUA, nUA, SysIntA)× 1× φ
e−222

2!

Pr(Struct(UArg)|Struct(SysIntB))

= 1× 1× Pr(Arcsins|ains, NodesUA, nUA, SysIntB)

×Pr(ains|NodesUA, nUA, SysIntB)× 1× φ
e−332

2!

Thus, Pr(UArg|SysIntA) ∼= 1.21 Pr(UArg|SysIntB).

Recall that the prior probability of SysIntA is 6.25 times that of SysIntB . In
order to put together these results, we return to Equations 1 and 2, and express
the posterior probability for SysIntA in terms of the probabilities for SysIntB . This
yields

Pr(SysIntA|UArg)= Pr(SysIntA)× Pr(UArg|SysIntA)

Pr(UArg)

= 6.25 Pr(SysIntB)× 1.21 Pr(UArg|SysIntB)

Pr(UArg)

= 7.89 Pr(SysIntB)× Pr(UArg|SysIntB)

Pr(UArg)

Pr(SysIntA|UArg)= 7.89 Pr(SysIntB |UArg) (16)
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Table III. Probability of including a node in an interpretation.

Node AccessScore AccessScore&SimScore

[GreenBodyArgueLastNight] 0.0525 0.0442
[GreenInGardenAt11] 0.0076 0.0374
[GreenInGardenAtTimeOfDeath] 0.0076 0.0163
[GreenHasOpportunity] 0.1857 0.1151
[GreenVisitBodyLastNight] 0.0525 0.0429
[NbourHeardGreenBodyArgLastNight] 0.0531 0.0870
[NbourSawGreenAroundGardenAt11] 0.3296 0.2287

That is, given UArg, SysIntA is 7.89 times more probable than SysIntB . This is
because SysIntA is significantly shorter than SysIntB , and SysIntB has nothing to
offer to overcome its length disadvantage.

Consulting the complex user model to reestimate Pr(SysInt)
We now consider the effect of the two complex user models on the probability
of our two interpretations. These models are AccessScore, which considers access
type, frequency and recency; and AccessScore&SimScore, which also considers the
similarity between propositions.

In both models, the gossip together with the accepted evidence influence the
probabilities of including the nodes in the domain BN in SysInt. Table III shows
the probabilities obtained from Equation 14 for the nodes in SysIntA and SysIntB
for the AccessScore model and the AccessScore&SimScore model (these probabili-
ties add up to less than 1, as all the nodes in the BN have some probability to be
included in SysInt). For comparison, if we assume an equiprobable node distribu-
tion, the probability of including a node in SysInt is 1

32 = 0.0313.
Substituting the probabilities in Table III in Equation 15 gives the following

results for the AccessScore model (as mentioned in Appendix C, the probabilities
are retrieved in alphanumeric order of the node names stored in the system, which
is the order in Table III).

Pr(NodesA|nA, BN)

= 4!× 0.0076
1
× 0.0076

1− 0.0076
× 0.1857

1− 0.0076− 0.0076
× 0.3296

1− 0.0076× 2− 0.1857
= 4!× 0.0076× 0.0077× 0.1886× 0.4125 = 0.00011

and

Pr(NodesB |nB, BN)

= 6!× 0.0525
1
× 0.0076

0.9475
× 0.1857

0.9399
× 0.0525

0.7542
× 0.0531

0.7017
× 0.3296

0.6486
= 6!× 0.0525× 0.0080× 0.1976× 0.0696× 0.0757× 0.5082 = 0.00016

Substituting these results into Equation 4, together with the other components cal-
culated for the simple user model at the beginning of this section, we obtain the
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following results (the new component appears in boldface).

Pr(SysIntA)= 1× 1× 1.1× 10−4 × δ
e−ββ4

4!

Pr(SysIntB)= 1× 1× 1.6× 10−4 × δ
e−ββ6

6!

For β̂ = 11, this yields Pr(SysIntA) = 0.17 Pr(SysIntB), in contrast to the result
obtained for the simple user model, where SysIntA was 6.25 times more proba-
ble than SysIntB . Substituting these results in Equations 1 and 2, and expressing
the posterior probability for SysIntA in terms of the probabilities for SysIntB we
obtain

Pr(SysIntA|UArg)= Pr(SysIntA)× Pr(UArg|SysIntA)

Pr(UArg)

= 0.17 Pr(SysIntB)× 1.21 Pr(UArg|SysIntB)

Pr(UArg)

= 0.21 Pr(SysIntB)× Pr(UArg|SysIntB)

Pr(UArg)

Pr(SysIntA|UArg)= 0.21 Pr(SysIntB |UArg) (17)

Thus, when consulting the AccessScore user model, SysIntB given UArg is nearly
5 times more probable than SysIntA given UArg.

Repeating the same calculation for the AccessScore&SimScore model yields the
following results:

Pr(SysIntA) = 1× 1× 2.1× 10−5 × δ
e−ββ4

4!

and

Pr(SysIntB) = 1× 1× 4.5× 10−7 × δ
e−ββ6

6!

For β̂ = 11, this yields Pr(SysIntA) = 11.57 Pr(SysIntB). Thus, in this example,
the similarity scores reverse the effect of access, frequency and recency. When we
substitute these results in Equations 1 and 2, SysIntA becomes the winning inter-
pretation by a higher margin than for the simple user model.

Pr(SysIntA|UArg)= 11.57 Pr(SysIntB)× 1.21 Pr(UArg|SysIntB)

Pr(UArg)

Pr(SysIntA|UArg)= 14 Pr(SysIntB |UArg) (18)

In general, the behaviour of a user model with similarity scores is more unpre-
dictable than the behaviour of a user model without these scores, as sometimes
these scores increase the probability of a particular interpretation, while other
times they blur the differences between the probabilities of interpretations. Two of
the trial sets in our user-based evaluation were designed to find out which user
model yields interpretations preferred by users (Section 8).
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8. Evaluation with Users

Our evaluation with users was designed to address the following objectives:

EvalObj 1. Determine whether our probabilistic approach to argument interpreta-
tion yields interpretations that are acceptable to users.

EvalObj 2. Gain insights into which user model yields the best interpretations
(Simple, AccessScore or AccessScore&SimScore).

Note that these evaluation objectives address the main tenet of our approach
only indirectly. Instead of determining whether users intend the interpretation
with the highest posterior probability, the first objective determines whether peo-
ple reading someone else’s argument find the highest-probability interpretation(s)
acceptable (and better than other options). The second objective determines which
user model yields the highest-probability interpretation that best matches people’s
preferences.

We prepared four pencil-and-paper evaluation sets, which were designated with
names of colours (purple, blue, red and white). Our subjects were staff and stu-
dents at Monash University and friends and family of the authors (the subjects
exhibited different levels of computer literacy). All four sets were shown to our
subjects, but not all the subjects completed all the sets. Each set consisted of the
following items.

– Police report – same as that shown in Section 2.
– Additional facts – instantiated propositions which simulate the information

gained by the user when exploring the virtual scenario (Section 2).
– Gossip – uninstantiated propositions “overheard” by the user, which were

added to highlight the reminding effect of propositions (Section 7).
– Argument and interpretation(s) – our subjects were told that the argument was

given by a hypothetical user and that the interpretations were generated by
a computer system. They were then asked to give each interpretation a score
between 1 (Very UNreasonable) and 5 (Very Reasonable) in light of the police
report, additional facts and gossip, and to comment on aspects of the interpre-
tations that they liked or disliked.

We used a pencil-and-paper evaluation rather than a full system evaluation,
since we wanted users to have a uniform experience with the interpretation capa-
bilities of the system, and we wanted to focus on small arguments that distinguish
between the interpretations produced by the different user models.15 Our previous
experience shows that when users interact freely with the system, their arguments
may not test behaviours of interest, and their assessment of the interpretations may
be influenced by their experience with the web interface (Zukerman et al., 2003a).

15Note that, as illustrated in Figure 4, our system can handle complex arguments. Further, as illus-
trated in our examples, small arguments do not necessarily entail small interpretations. Hence, the
argument interpretation task is challenging even for small arguments.
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Table IV. Results of the user-based evaluation.

Eval set # People Mean (standard deviation)

purple 24 4.00 (1.02)

blue 17
SysIntA
2.88 (0.99)

SysIntB
3.38 (1.45)

SysIntC
2.94 (1.25)

red 25
SysIntA (Simple and AccSim)
3.68 (1.11)

SysIntB (Acc)
3.36 (1.29)

white 20
SysIntA (Simple and Acc)
2.80 (1.06)

SysIntB (AccSim)
3.35 (1.39)

Table V. Significance of interpretation preferences.

EvalSet Interpretation pair Significance

blue SysIntB–SysIntA 90% (p = 0.1)
SysIntB–SysIntC 94% (p = 0.06)

red SysIntA–SysIntB 85% (p = 0.15)
white SysIntB–SysIntA 93% (p = 0.07)

The evaluation sets were designed to address our evaluation objectives as
follows.

EvalObj 1. The purple and blue sets were designed for this objective. The purple
set contains a reasonably complex argument (Figure 4) and only one inter-
pretation – that preferred by BIAS (Figure 5). The blue set contains a sim-
ple argument (Figure 8), and the top three interpretations generated by BIAS
(SysIntB from Figure 8 is ranked equal first with another interpretation
(denoted SysIntC), and SysIntA is ranked second).

EvalObj 2. The red and white sets were designed for this objective. The red
set contains the argument and interpretations in Figure 13. In this set,
SysIntA is preferred by the Simple user model and the AccessScore&SimScore
model, while SysIntB is preferred by the AccessScore model. In the white set,
SysIntA is preferred by the Simple user model and the AccessScore model,
while SysIntB is preferred by the AccessScore&SimScore model.

Table IV summarizes the results of our user-based evaluation. The first column
contains the evaluation set, the second column shows the number of people who
participated in each set, and subsequent columns contain the mean and standard
deviation of the scores given by the users to the candidate interpretations. The
scores for the preferred interpretations have been boldfaced.

We used a paired Z-test to assess the significance of our results. This was
done by calculating for each pair of interpretations the difference in the scores
assigned to them by each trial subject. Table V shows the results of these calcu-
lations, which indicate how much users preferred one interpretation over another.
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Although the statistical significance of our results is lower than we had hoped, we
can still make the following observations regarding our evaluation objectives.

EvalObj 1. People generally found our interpretations acceptable, with an average
score that is better than neutral for most interpretations, and a high average
score (=4) for the interpretation in the purple evaluation set. Also, the ranked
order derived from the average scores of the three interpretations in the blue
evaluation set (SysIntB > SysIntC >SysIntA) is consistent with the ranked
order obtained by BIAS.

EvalObj 2. People seemed to prefer the interpretations generated using the Ac-
cessScore&SimScore user model. However, these preferences should be treated
with caution because they were obtained from two experiments only (each
with several users).

Thus, we feel that the question posed by EvalObj 1 has been positively
answered, and the question posed by EvalObj 2 yielded interesting insights but
requires further investigation. Even more encouraging is the fact that most of the
problems our subjects pointed out regarding BIAS’ interpretations are extrane-
ous to the interpretation-selection process. These problems concern domain-related
inferences that our subjects disagreed with, unexpected jumps in belief, or levels of
belief in the consequents of implications.

– Domain-related inferences – We selected a ‘commonsense’ domain both for ease
of design and to be able to conduct trials with non-experts. The nodes and arcs
in the domain BN and the values in the CPTs were designed by the authors. A
consequence of working in a commonsense domain is that the system’s domain
knowledge is limited and sometimes idiosyncratic. Thus, users may consider
different factors than those considered by the system, and disagree with the
system’s inferences. For instance, according to BIAS, Mr Green and Mr Body
being enemies implies that Mr Green very likely has a motive to kill Mr Body.
However, several users disagreed with this inference. When an interpretation
contained such inferences, users tended to dismiss the entire interpretation.

– Unexpected jumps in belief – Jumps in belief take place when the belief value
for a consequent is not what the user had anticipated from the antecedent. For
instance, one interpretation in the white evaluation set says that ‘It is likely
that Mr Green had the means to murder Mr Body implies that it is a little
unlikely that he murdered Mr Body’. This unexpected jump in belief is caused
by the unmentioned fact that Mr Green is unlikely to have the opportunity to
murder Mr Body, thereby lowering the overall probability of Mr Green’s guilt.
Such jumps in belief caused the majority of the negative comments from our
users.

– Levels of belief – Levels of belief in the consequents of an argument are espe-
cially important to users. Users reacted far more strongly than we had expected
to slight discrepancies between beliefs stated in an argument and beliefs inferred
in its interpretation by means of Bayesian propagation.
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In order to address these problems, we propose to do the following.

– Consider domains that are more circumscribed than our current domain, e.g.,
technical domains, where it should be possible to model most factors (in con-
trast to the murder mystery domain, where users thought of several factors
not modeled by the system). Also, the influence of these factors should be less
debatable than the influence of the factors in the murder mystery.

– Address jumps in belief during the presentation of interpretations. This may
be done by including in a presented interpretation factors that explain jumps
in belief, e.g., propositions that have a significant effect on the consequent of
an implication (Jitnah et al., 2000; Zukerman et al., 2004). Adaptive hypertext
links could be used to provide this extra information (Bontcheva and Wilks,
this issue).

– Address discrepancies between the beliefs in a user’s argument and the beliefs
in its interpretation. Discrepancies in belief may be reduced or completely
removed during the generation of interpretations by postulating assumptions
that explain the user’s beliefs. These assumptions would then be presented to
the user for validation.16 Remaining discrepancies in belief should be acknowl-
edged during the presentation of interpretations, rather than leaving them for
the user to notice.

– Consider different functions for estimating Pr(Bel(UArg)|Bel(SysInt)) from dis-
crepancies in belief in order to increase the impact of such discrepancies.

It is worth noting that both the jumps in belief and the levels of belief in an
interpretation are in part a result of the process used for generating interpreta-
tion subnets, which is carried out according to BN theory (Section 4). This process
involves marginalizing parent nodes and deleting child nodes. The marginalization
causes problems when presenting an interpretation, as the belief in a consequent
node may take into account influences from parent nodes that have been mar-
ginalized, and hence it may not exactly follow from the antecedents of this node.
Conversely, ignoring child nodes may lead to interpretations that do not take into
account relevant evidence. In the future, we propose to address these problems by
investigating a different approach to the generation of interpretations, where we
will not cut out Bayesian subnets from the domain BN.

9. Related Research

This research builds on an earlier version of BIAS. This version used a domain
and user model represented as a BN to generate arguments and rebuttals, and
combined this representation with linguistic and attentional information to inter-
pret single-proposition rejoinders entered by users after reading the system’s argu-
ments (Zukerman, 2001). The combination of these knowledge sources was based

16For research on user model inspection and validation see (Bull and Pain, 1995; Kay, 1999).
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on heuristics. In later work, we investigated a principled approach for the selection
of an interpretation of users’ arguments based on the Minimum Message Length
(MML) Principle (Wallace and Boulton, 1968; Wallace, 2005). We applied this
principle to evaluate candidate interpretations of arguments of arbitrary complex-
ity (Zukerman and George, 2002). In (Zukerman et al., 2003a) we incorporated a
user model into this formalism.

In this paper, we integrate the last two contributions and provide a probabilistic
representation for the interpretation-selection problem. We posit that the interpre-
tation intended by a speaker is that to which the system ascribes the highest pos-
terior probability. Thus, discourse interpretation is cast as the problem of finding
the maximum-probability representation of the user’s discourse according to the
system’s model of the world.

Graphical techniques for analyzing arguments include the well-known Toulmin
warrant structure (Toulmin, 1958), Cohen’s tree structures (Cohen, 1987), and Wal-
ton’s argument schemes (Walton, 1996). The Toulmin warrant structure contains
the following elements: claim – the argument goal; data – the evidence for the
claim; warrant and backing – the reasoning used to link the data to the claim;
qualifier – a phrase modifying the claim to indicate its strength; and reservations –
circumstances or conditions that undermine the argument. Walton’s structure for
argument analysis is based on the identification of schemes, such as ‘Appeal to
Expert Opinion’ and ‘Argument from Position to Know’. These schemes, which are
at a coarser level of granularity than Toulmin’s warrant structure, have been imple-
mented in the Araucaria system – a markup tool for argumentation (Reed and
Walton, 2003). Cohen’s method of argument analysis uses linguistic clues and the
order of the statements in an argument to build a tree structure that represents the
argument (Cohen, 1987). Each statement in the argument is represented by a node
in the tree. The tree is built so that each node or statement offers support for its
parent in the tree.

There are two important distinctions between the interpretation technique
implemented in BIAS and these techniques. First, these techniques are analysis
tools rather than interpretation systems. Second, BIAS integrates a user’s argu-
ment into its world model, i.e., it uses its domain knowledge to infer information
left implicit by the user and to distinguish between alternative interpretations. In
contrast, the above techniques focus on analyzing the structure of a stand-alone
argument, outside the context provided by domain knowledge. A minor difference
between BIAS and these systems is that these systems distinguish between anteced-
ents that support and antecedents that detract from their consequents, while the
current version of BIAS does not offer this distinction in its argument construc-
tion interface.

Several researchers have viewed discourse interpretation as the process of
integrating the contribution of a conversational partner (the speaker) into the
addressee’s mental model, e.g., (Kintsch, 1994; Kashihara et al., 1995). Kintsch
demonstrated this view experimentally, while Kashihara et al. implemented it in a
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discourse planning system. This system generated discourse which would present
an ‘optimal’ cognitive load to the addressee when trying to integrate this discourse
into his/her mental model.

Plan recognition systems also have this view of discourse interpretation. These
systems generate one or more interpretations of a user’s utterances, employing
different resources to fill in the information omitted by the user, e.g., (Allen and
Perrault, 1980; Litman and Allen, 1987; Raskutti and Zukerman, 1991; Quilici,
1992; Carberry and Lambert, 1999; Restificar et al., 1999). Allen and Perrault’s
seminal work on plan recognition describes a mechanism that employs domain-
independent heuristics to select an interpretation for a statement presented by a
user. Litman and Allen extended this mechanism by means of discourse plans.
They used linguistic clues and coherence heuristics to infer discourse plans, which
enabled them to handle multiple-sentence user inputs. Raskutti and Zukerman
developed a probabilistic approach to the interpretation-selection problem. They
used heuristics similar to those devised by Allen and Perrault and by Litman
and Allen to estimate the probability of an interpretation, and applied informa-
tion content considerations to determine which interpretations to retain for fur-
ther processing. Quilici studied the generation and recognition of the justification
for a proposal in a plan-based context. Both tasks were performed by applying a
set of justification rules in backward chaining mode from the proposal to known
premises. Carberry and Lambert’s system recognized a user’s intentions during
expert-consultation dialogues, considering several knowledge sources, such as lin-
guistic characteristics of the user’s contribution, dialogue context, and stereotypi-
cal beliefs presumed shared by the user and the system. Finally, Restificar et al.
applied argument schemata to recognize a user’s intentions from his/her rejoinders
to the system’s arguments, and to generate short rebuttals to these rejoinders.

All of these systems dealt with dialogues where users’ contributions were quite
short, while BIAS interprets arguments of arbitrary length. More importantly,
these systems relied on heuristics to select an interpretation, while BIAS offers a
principled approach based on maximum posterior probability. Another difference
between BIAS and these systems pertains to the knowledge representation formal-
ism: these systems used plan libraries, while BIAS relies on BNs. This difference
affects mainly the mechanism used for the generation of interpretations (Sec-
tion 4). Our probabilistic approach for the evaluation and selection of an inter-
pretation (Sections 5 and 7) is representation independent, but as seen in the
Appendix, a network representation is assumed for the implementation of this
approach. Finally, the systems described in (Litman and Allen, 1987; Carberry and
Lambert, 1999) used linguistic features of the user’s discourse during the interpre-
tation-selection process. In the future, we expect to consider these features in the
version of BIAS that accepts NL input.

BNs have been used in several plan recognition tasks, e.g., (Charniak and
Goldman, 1993; Gertner et al., 1998; Horvitz and Paek, 1999). Charniak and
Goldman’s system handled complex narratives. It automatically built and incre-
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mentally extended a BN from propositions read in a story, so that the BN
represented hypotheses that became plausible as the story unfolded. During this
process, Charniak and Goldman used marker passing to restrict the nodes included
in the BN. In contrast, we use a domain BN to constrain our understanding
of the propositions in a user’s argument. In addition, our AccessScore&SimScore
model uses a process similar to marker passing to moderate the probabilities of
including nodes in an interpretation (rather than outright including or exclud-
ing nodes). Gertner et al. used BNs to represent solutions of physics problems.
After observing an action performed by a student, their system (Andes) postulated
candidate interpretations, each hypothesizing subsequent actions, and selected the
interpretation with the highest probability (subject to tie-breaking heuristics). Since
BIAS is presented with a complete argument, it not only takes into account the
probability of an interpretation in the context of existing information, but also
considers the fit between the argument and the interpretation. Horvitz and Paek
used BNs at different levels of an abstraction hierarchy to infer a user’s goal in
information-seeking interactions with a Bayesian Receptionist. Their system con-
sidered linguistic distinctions obtained from an NL parser, and like the above
systems, it handled short dialogue contributions. However, Horvitz and Paek used
decision-theoretic strategies to guide the progress of the dialogue. We expect to
employ such dialogue strategies when our system engages in a full dialogue with
the user. We also envisage that these strategies could take into account predictions
regarding the effectiveness of an interaction (Goodman et al., this issue).

10. Conclusion

We have offered a probabilistic mechanism that generates interpretations of extended
arguments in the context of a BN. Our mechanism, which estimates the poster-
ior probability of candidate interpretations of a user’s argument, provides a theo-
retically sound framework for selecting a plausible interpretation among available
options. This framework (1) enables us to take into account different information
sources, such as domain knowledge, user model and attentional model, during the
interpretation process; and (2) allows us to represent belief and structural discrep-
ancies between the system’s domain representation and the arguments produced by
people (which typically contain inferential leaps).

As seen in the Appendix, our mechanism relies on careful and efficient model-
ing of the dependencies between variables. Otherwise, inaccurate probabilities may
be assigned to different components of an interpretation, which in turn may cause
the model to make inappropriate choices. For instance, a simple combinatorial
model where the nodes in UArg are selected from the nodes in SysInt unnecessarily
halves the probability of longer interpretations, thereby reducing their chances of
winning.

Our synthetic evaluation yielded promising results, with interpretations that
match perfectly or almost-perfectly the source Bayesian subnet being generated in
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82% of the cases under all distortion conditions. Our user-based evaluation was
designed to determine the general appropriateness of the interpretations generated
by BIAS, and to gain insights regarding BIAS’ performance when using our three
user models: simple, complex with access information only, and complex with both
access and similarity information. This evaluation pointed to problems concern-
ing (1) the implementation domain, (2) our use of BNs to model human inference,
and (3) the amount and kind of detail in the presentation of interpretations. These
difficulties detracted from the scores assigned by our trial subjects to the interpre-
tations. Despite this, our results are encouraging with respect to the general suit-
ability of BIAS’ interpretations, and indicated a slight preference for the complex
user model with access and similarity information. In the future, we propose to
modify our usage of BNs, and also improve the presentation of interpretations, so
that our evaluation can focus on the interpretation process.
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Appendix

A. Calculating the Probability of an Interpretation

Let us consider a domain BN and an interpretation SysInt obtained from this BN.
We adopt the following notation:

dBN – the domain BN (composed of arcs and nodes),
N – number of nodes in dBN,
A – number of arcs in dBN,
NodesSI – the set of nodes in the interpretation SysInt,
ArcsSI – the set of arcs in SysInt,
nSI – the number of nodes in SysInt, i.e., |NodesSI|,
aSI – the number of arcs in SysInt, i.e., |ArcsSI|,
NodesUA – the set of nodes in the user’s argument UArg,
ArcsUA – the set of arcs in UArg,
nUA – the number of nodes in UArg, i.e., |NodesUA|,
aUA – the number of arcs in UArg, i.e., |ArcsUA|.

We identify an interpretation by specifying the number of nodes in it, the num-
ber of arcs, and the actual nodes and arcs in it. Thus, the probability of an inter-
pretation SysInt, Pr(SysInt), in the context of the domain BN is defined as

Pr(SysInt) = Pr(ArcsSI, NodesSI, aSI, nSI|dBN) (A.1)
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Applying the chain rule of probability theory yields

Pr(SysInt)= Pr(ArcsSI|NodesSI, aSI, nSI, dBN)× Pr(aSI|NodesSI, nSI, dBN)

×Pr(NodesSI|nSI, dBN)× Pr(nSI|dBN) (A.2)

These probabilities are calculated as follows.

– Pr(nSI|dBN) – Our preliminary experiments, where 10 users entered arguments
into the system (Zukerman et al., 2003a), show that the number of nodes in
an interpretation may be modeled using a truncated Poisson distribution with
mean β. In these experiments, β̂, the estimate of β from our sample data, was
11, with few interpretations being much shorter or much longer. Thus,

Pr(nSI|dBN) =




δ
e−ββnSI

nSI!
if nSI ≤ N

0 otherwise
(A.3)

where β̂ = 11 and δ is a normalizing constant.
– Pr(NodesSI|nSI, dBN) – We want to select the nSI nodes in NodesSI from the

N nodes in dBN. Assuming that all nodes have an equal probability of being
selected, there are

(
N
nSI

)
ways to select these nodes. Thus, the probability of any

particular configuration of nSI nodes is

Pr(NodesSI|nSI, dBN) = 1
(

N
nSI

) (A.4)

– Pr(aSI|NodesSI, nSI, dBN) – Only arcs joined at both ends to nodes in SysInt
can be in SysInt. Hence, by knowing which nodes are in SysInt we can auto-
matically define the valid arcs that connect the nodes in SysInt. Let us denote
these arcs ValidArcsSI, and let the number of valid arcs be vaSI. It is reason-
able to assume that the number of arcs in an interpretation is uniformly dis-
tributed between nSI−1 (the minimum number of arcs that connect nSI nodes)
and vaSI.17 This yields

Pr(aSI|NodesSI, nSI, dBN) = 1
vaSI − (nSI − 1)+ 1

(A.5)

– Pr(ArcsSI|NodesSI, aSI, nSI, dBN). We want to select the aSI arcs in ArcsSI from
the vaSI valid arcs in SysInt. There are

(vaSI
aSI

)
ways to select these arcs.17 Thus,

the probability of any particular configuration of aSI arcs in SysInt is

Pr(ArcsSI|aSI, NodesSI) = 1
(vaSI

aSI

) (A.6)

17At present, our procedure for generating interpretations produces only trees. Hence, vaSI = nSI−1,
and aSI = vaSI. However, we retain this component, as in the future this procedure will generate
graphs.
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B. Calculating the Probability of the Argument given an Interpretation

Let us consider a user’s argument UArg and an interpretation SysInt. The proba-
bility that a user presented argument UArg when s/he intended interpretation Sy-
sInt is Pr(UArg|SysInt). In order to define this probability, we distinguish between
the structure of an argument and the beliefs stated about the nodes in the argu-
ment. The structure of the user’s argument is represented by Struct(UArg), and
that of the system’s interpretation by Struct(SysInt). Similarly, the beliefs stated in
the user’s argument are represented by Bel(UArg) and those in the interpretation
by Bel(SysInt). Hence,

Pr(UArg|SysInt) = Pr(Struct(UArg), Bel(UArg)|Struct(SysInt), Bel(SysInt))

(B.1)

Applying the chain rule of probability theory yields

Pr(UArg|SysInt) = Pr(Struct(UArg)|Bel(UArg), Struct(SysInt), Bel(SysInt))

×Pr(Bel(UArg)|Struct(SysInt), Bel(SysInt))

We now make the following simplifying assumptions.

– Given Struct(SysInt), Struct(UArg) is conditionally independent of Bel(UArg)
and Bel(SysInt) i.e., structure is not derived from beliefs.

– Given Bel(SysInt), Bel(UArg) is conditionally independent of Struct(SysInt)
i.e., the beliefs in UArg are independent of the structure of SysInt.

This yields

Pr(UArg|SysInt) = Pr(Struct(UArg)|Struct(SysInt))

×Pr(Bel(UArg)|Bel(SysInt)) (B.2)

where

– Pr(Struct(UArg)|Struct(SysInt)) is the probability that the user presented an
argument of structure Struct(UArg) when s/he intended Struct(SysInt), and

– Pr(Bel(UArg)|Bel(SysInt)) is the probability that the user stated the beliefs in
UArg when s/he intended the beliefs in SysInt.

These probabilities are calculated as follows.

B.1. calculating Pr(Bel(UArg)|Bel(SysInt))

Bel(UArg) comprises the beliefs stated by the user with respect to the nodes in
UArg. That is, Bel(UArg) = {Bel(Nd1,UArg), . . . , Bel(NdnUA,UArg)}, where nUA

is the number of nodes in UArg (nUA ≤ nSI, which is the number of nodes in
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SysInt). Similarly, Bel(SysInt) comprises the beliefs in nodes Nd1, . . . , NdnUA in
SysInt, which are obtained by means of Bayesian propagation (nodes that appear
only in SysInt are handled by the component which describes structural differ-
ences, Appendix B.2). Thus,

Pr(Bel(UArg)|Bel(SysInt))=
Pr(Bel(Nd1,UArg),... ,Bel(NdnUA,UArg)|Bel(Nd1,SysInt),... ,Bel(NdnUA,SysInt))

We now make the simplifying assumption that given Bel(Ndi ,SysInt), for i, j =
1, . . . , nUA and j �= i, Bel(Ndi ,UArg) is conditionally independent of Bel(Ndj ,UArg)
and Bel(Ndj , SysInt). This assumption is not generally correct, as the belief in a node
in an argument depends on the beliefs in other nodes in the argument. However, what
we are assessing here is how likely the user is to state a particular belief in a node in
his/her argument, when s/he intended the belief in the interpretation. The application
of Bayes rule yields the following equation.

Pr(Bel(UArg)|Bel(SysInt)) =
nUA∏

i=1

Pr(Bel(Ndi ,UArg)|Bel(Ndi ,SysInt)) (B.3)

This equation represents the basic formalism for calculating the probability of the
beliefs in an argument given the beliefs in an interpretation. However, since our
system interacts with people, we discretize beliefs to fit seven linguistic catego-
ries of probability that people find acceptable (similar to those used in (Elsaesser,
1987)). As stated in Section 2.1, our categories are: {VeryUnlikely, Unlikely, ALittleUnlike-

ly, EvenChance, ALittleLikely, Likely, VeryLikely}, numbered {1, 2, 3, 4, 5, 6, 7} respectively.
This yields the following approximation of Equation B.3.

Pr(Bel(UArg)|Bel(SysInt)) ∼=
nUA∏

i=1

Pr(BelCat(Ndi ,UArg)|BelCat(Ndi ,SysInt))

(B.4)

where BelCat(Ndi ,UArg) and BelCat(Ndi ,SysInt) are the categories for the belief
in node Ndi according to UArg and according to SysInt respectively.

We use the Zipf probability distribution to model the discrepancies between a
user’s beliefs and the system’s beliefs, where the parameter of the distribution is
the absolute value of the difference between the belief category of the user’s belief
in node Ndi and that of the system’s belief in this node.

difCat(Ndi ) = 1+ |BelCat(Ndi , UArg)− BelCat(Ndi , SysInt)|

This yields

Pr(BelCat(Ndi , UArg)|BelCat(Ndi , SysInt)) = θ

difCat(Ndi )γ
(B.5)
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where γ is normally a low value (we have selected γ = 2), θ is a normalizing con-
stant, and 1 ≤ difCat ≤ 7 (the number of categories).

This distribution penalizes (assigns a small probability to) large differences
between the beliefs in a user’s argument and those inferred by BIAS. If a user’s
belief in a node matches the system’s belief, this distribution yields the maximum
probability θ . In contrast, if the user’s belief is at one end of the spectrum and the
system’s belief is at the other end, the distribution yields θ

72 = θ
49 . We decided to

impose such heavy penalties for discrepancies in belief as a result of our prelimi-
nary trials with users, who strongly objected to interpretations that contain beliefs
which differ from the users’ stated beliefs.

Substituting Equation B.5 in Equation B.4 we obtain

Pr(Bel(UArg)|Bel(SysInt)) ∼=
nUA∏

i=1

θ

difCat(Ndi )γ
(B.6)

B.2. calculating Pr(Struct(UArg)|Struct(SysInt))

Struct(UArg) represents the structure of a user’s argument, i.e., its nodes and arcs,
and Struct(SysInt) represents the structure of an interpretation. Since interpre-
tations are generated to include all the nodes in a user’s argument, the nodes
in UArg are a subset of the nodes in SysInt, but the arcs in UArg may differ
from those in SysInt.18 That is, the user’s argument may contain some arcs that
are derivable from SysInt as well as arcs that are extraneous to SysInt. Hence,
the calculation of Pr(Struct(UArg)|Struct(SysInt)) resembles the calculation of
Pr(SysInt) in Equation A.1, but distinguishes between arcs that are selected from
SysInt and arcs that are newly inserted. These arcs are designated as follows.

– Arcssel – the set of arcs in UArg selected from SysInt,
– Arcsins – the set of newly inserted arcs in UArg (i.e., arcs that cannot be

obtained from SysInt),
– asel – the number of selected arcs, i.e., |Arcssel |,
– ains – the number of inserted arcs, i.e., |Arcsins |.

This results in the following definition for Pr(Struct(UArg)|Struct(SysInt)):

Pr(Struct(UArg)|Struct(SysInt))

= Pr(Arcssel, Arcsins, asel, ains, NodesUA, nUA|Struct(SysInt))

where NodesUA designates the nodes in UArg, and nUA is the number of nodes in
UArg.

18As indicated before, the NL version of our system allows users to state propositions unknown to
the system. Clearly, nodes corresponding to these propositions cannot be extracted from SysInt and
are taken into account by a different mechanism.
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Applying the chain rule of probability theory yields

Pr(Struct(UArg)|Struct(SysInt))

= Pr(Arcssel|Arcsins, asel, ains, NodesUA, nUA, SysInt)

×Pr(Arcsins|asel, ains, NodesUA, nUA, SysInt)

×Pr(asel|ains, NodesUA, nUA, SysInt)× Pr(ains|NodesUA, nUA, SysInt)

×Pr(NodesUA|nUA, SysInt)× Pr(nUA|SysInt) (B.7)

We now make the following simplifying assumptions based on the conditional
independence between selected and inserted arcs.

– Given NodesUA, nUA and SysInt, asel is conditionally independent of ains.
– Given NodesUA, nUA, SysInt and ains, Arcsins is conditionally independent of

asel.
– Given NodesUA, nUA, SysInt and asel, Arcssel is conditionally independent of

Arcsins and ains.

These assumptions yield the following formula.

Pr(Struct(UArg)|Struct(SysInt)) (B.8)

= Pr(Arcssel|asel, NodesUA, nUA, SysInt)× Pr(asel|NodesUA, nUA, SysInt)

×Pr(Arcsins|ains, NodesUA, nUA, SysInt)× Pr(ains|NodesUA, nUA, SysInt)

×Pr(NodesUA|nUA, SysInt)× Pr(nUA|SysInt)

These probabilities are calculated as follows.

– Pr(nUA|SysInt) – Our preliminary experiments (Zukerman et al., 2003a) show
that users’ arguments typically contain about half the nodes in their interpreta-
tion (

nSI
2 ), while BIAS fills in the other half. Hence, as done in Equation A.3,

we model the nodes in an argument using a truncated Poisson distribution as
follows.

Pr(nUA|SysInt) =




φ

e−nSI/2(
nSI
2 )nUA

nUA!
if nUA ≤ nSI

0 otherwise
(B.9)

where φ is a normalizing constant.

– Pr(NodesUA|nUA, SysInt) – We want to select the nUA nodes in NodesUA from
the nSI nodes in SysInt. Now, a feature of the interpretations generated by pro-
cedure GenerateInterpretations (Section 4) is that all their leaf nodes (i.e., nodes
with one arc only, which may also include the goal node) are in UArg. Hence,
in order to express NodesUA in terms of SysInt, we need to consider only the
nodes in UArg that are not leaf nodes in SysInt (the leaf nodes can be obtained
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algorithmically from SysInt). Assuming a uniform distribution of node configu-
rations among the non-leaf nodes in SysInt, there are

( nSI−nleafSI
nUA−nleafSI

)
ways to select

the non-leaf nodes in UArg from those in SysInt, where nleafSI is the number
of leaf nodes in SysInt. Thus, the probability of any particular configuration of
nUA nodes is equivalent to the probability of the nUA − nleafSI non-leaf nodes
in this configuration. This probability is calculated as follows:

Pr(NodesUA|nUA, SysInt) = 1
( nSI−nleafSI

nUA−nleafSI

) (B.10)

– Pr(asel|NodesUA, nUA, SysInt) – UArg cannot contain arcs that are incident upon
nodes that are not in NodesUA. In order not to leave dangling arcs between
nodes in UArg and nodes that are in SysInt but not in UArg, we iteratively redi-
rect each arc in SysInt that connects between a UArg node and a non-UArg
node, so that it connects between the UArg node and the parent of the non-
UArg node. This process is repeated until a UArg node is reached. Figure 14
illustrates this process with respect to the argument A, B, E ⇒ F . Figure 14(a)
contains an interpretation SysInt (the shaded nodes are those mentioned by
the user), and Figure 14(b) contains SysInt with redirected arcs (the unselected
nodes and dangling arcs are dashed). Upon completion of this process, we have
an intermediate graph whose nodes are those in UArg (NodesUA) and whose
updated arcs include the redirected arcs in SysInt (plus arcs previously in SysInt
that were not redirected). In fact, it is often the case that the resulting structure
has exactly the arcs in UArg. Let us denote these updated arcs UpdatedArcsSI,
and let the number of updated arcs be uaSI. Now, as for Equation A.5, we use
a uniform distribution between nUA−1 (the minimum number of arcs that con-
nect nUA nodes) and uaSI to model the probability of selecting asel arcs. This
yields

Pr(asel|NodesUA, nUA, SysInt) = 1
uaSI − (nUA − 1)+ 1

(B.11)

– Pr(ains|NodesUA, nUA, SysInt) – The maximum number of arcs in a graph of
nUA nodes is 1

2nUA(nUA − 1). Since only arcs that don’t exist in SysInt can be
inserted, the maximum possible number of arc insertions is 1

2nUA(nUA − 1) −
uaSI. We therefore use the following truncated Poisson distribution to model arc
insertions:

Pr(ains|NodesUA, nUA, SysInt) =
{
λ

e−µµains

ains! if ains≤ 1
2nUA(nUA − 1)−uaSI

0 otherwise
(B.12)

where µ is the mean of the distribution, and λ is a normalizing constant. Our pre-
liminary investigations show that good interpretations have only a few arc insertions
(Zukerman et al., 2003a). Hence, we use µ = 1 to penalize interpretations with many
arc insertions.
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Figure 14. Selecting UArg from SysInt.

– Pr(Arcssel|asel, NodesUA, aUA, nUA, SysInt) – As for Equation A.6, we select asel

arcs from uaSI updated arcs. This yields

Pr(Arcssel|asel, NodesUA, aUA, nUA, SysInt) = 1
(uaSI

asel

) (B.13)

– Pr(Arcsins|ains, NodesUA, aUA, nUA, SysInt) – Here we select ains arcs from the
maximum possible number of arc insertions, which is
1
2nUA(nUA − 1)− uaSI. This yields

Pr(Arcsins|ains, NodesUA, aUA, nUA, SysInt) = 1
( 1

2 nUA(nUA−1)−uaSI
ains

) (B.14)

C. Calculating the Probability of an Interpretation in the Context of a User
Model

Let mk be a random variable whose value is 1 if node Ndk is included in SysInt,
and 0 otherwise. We posit that the probability of including a node in an interpre-
tation depends on its salience in the user’s focus of attention. That is, the user is
more likely to intend salient nodes than nodes that are not salient. Thus, Pr(mk),
the probability that mk = 1, is derived from Score(Ndk) as follows.

Pr(mk) = Score(Ndk)+GC
∑N

i=1[Score(Ndi )+GC]
(C.1)

where Score(Ndk) is obtained from Equation 13, and GC is a small number that
corresponds to Good’s flattening constant (Good, 1965).19 This flattening constant
was added to the scores so that nodes with a score of 0 still have some probability
of being included in SysInt.

19We have chosen a constant of 1
2N

, which is half the prior probability of selecting a node in dBN,
as this number is consistent with the constants obtained by the Minimum Message Length theory
(Wallace and Boulton, 1968; Wallace, 2005). Also note that the denominator in Equation C.1 can
be replaced by a normalizing constant.
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Thus, interpretations that include nodes that were never accessed by the user (and
are dissimilar to other nodes) will have a low probability, while interpretations that
include nodes that have been repeatedly accessed (and are similar to other nodes) will
have a higher probability. This is in contrast to the equiprobable node distribution
assumed in our simple model when calculating Pr(SysInt) (Equation A.4).

In order to incorporate Equation (C.1) into our calculation of Pr(SysInt), we
define a multinomial random variable (m1, . . . , mN), where each dimension corre-
sponds to the inclusion of a node from dBN in SysInt, and

∑N
k=1mk=nSI. That

is, nSI nodes of the N nodes in dBN are in SysInt. The probability distribution of
this variable is defined as follows.

Pr(NodesSI|nSI, dBN) = Pr(m1, . . . , mN) = nSI!
N∏

k=1

Pr(mk)
mk

mk!

Since mk ∈ {0, 1} for k = 1, . . . , N , we can cancel the denominator. In addition,
for mk = 0, Pr(mk)

mk = 1. Hence, we multiply only the probabilities for mk = 1.

Pr(NodesSI|nSI, dBN) = Pr(m1, . . . , mN) = nSI!
N∏

k = 1
∀mk=1

Pr(mk) (C.2)

Notice, however, that multinomial distributions demand that the components of the
random variable be independent, and this is not the case for the selection of the nodes in
an interpretation (as the selection is done without replacement). In order to model this
discrepancy, we reduce the state space after a node has been selected (to ensure consis-
tent results, node selection is performed in a pre-determined order – the alphanumeric
order of the node names in the system). For instance, consider a small interpretation
containing two nodes Ndi and Ndj , with probabilities Pri and Prj respectively. After
Ndi has been selected (with probability Pri), the probability mass left to be allocated is

1− Pri , thus the probability of selecting Ndj is Prj

1−Pri
. In general, Pr′(mk), the adjusted

probability of including Ndk in SysInt, is given by

Pr′(mk) = Pr(mk)

{1−
k−1∑

j = 1
∀mj=1

Pr(mj )}
which when incorporated into Equation (C.2) yields

Pr(NodesSI|nSI, dBN) = Pr′(m1, . . . , mN) = nSI!
N∏

k = 1
∀mk=1

Pr(mk)

{1−
k−1∑

j = 1
∀mj=1

Pr(mj )}
(C.3)
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Note that this formula yields Equation (A.4) for an equiprobable distribution of
including a node in SysInt.
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