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Abstract

In this paper, we describe a content planning
mechanism which takes into consideration a
user’s possible inferences in order to gener-
ate the most concise discourse that achieves a
given communicative goal. The consideration
of a user’s inferences results in the addition
of information that addresses erroneous infer-
ences, and the omission of easily inferred in-
formation. Given a communicative goal, our
mechanism applies inference rules in backward
reasoning mode to plan rhetorical devices that
achieve this goal, and subsequently in forward
reasoning mode to conjecture the effect of these
rhetorical devices on the user’s beliefs. This
process results in one or more sets of rhetori-
cal devices which achieve the intended commu-
nicative goal. Each set is then minimized, and
the most concise among these sets is selected.
These ideas have been implemented in a sys-
tem called WISHFUL, which generates expla-
nations about concepts.

1 Introduction

Traditional Natural Language Generation (NLG) sys-
tems, e.g., [Hovy, 1988; Moore and Swartout, 1989;
Cawsey, 1990], operate under the assumption that a
hearer will only make direct inferences from a piece of
discourse. This assumption causes two problems:

(1) Possible erroneous indirect inferences from the dis-
course are not addressed. For example, a possible indi-
rect inference from the statement “plants photosynthe-
size” is that fungi also photosynthesize. Even though
this inference is wrong, it would not be addressed by
current systems.

(2) The resulting text is overly explicit due to the fact
that all the information to be conveyed is stated. For
instance, given the goal of conveying the propositions
[Mary went-to cinema] and [Mary saw film], existing NLG
systems would generate a sentence for each proposition,
yielding discourse such as “Mary went to the cinema
and she saw a film.” However, this discourse is overly
explicit, since, unless told otherwise, most people infer
from the first sentence that Mary saw a film.

These problems have been considered separately in
previous research. The first of these problems has been
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addressed in [Joshi et al., 1984; Zukerman, 1990] in the
context of adding explanations to expert responses, and
complementing planned discourse with Contradictions
and Revisions, respectively. [Horacek, 1991; Lascarides
and Oberlander, 1992] address the second problem by
omitting from planned explanations information that is
easily inferred from the discourse.

In this paper, we present an integrated content plan-
ning mechanism which addresses both of the above
problems. Our mechanism generates Rhetorical Devices
(RDs), where each RD is composed of a rhetorical ac-
tion, such as Assert, Negate or Instantiate, applied to
a proposition. To this effect, our mechanism models a
user’s inferences by means of inference rules which re-
late RDs to beliefs (Section 2). These rules are applied
in two different ways during the discourse planning pro-
cess: forward reasonzng and backward reasoning.

Forward reasoning reasons from RDs to their pos-
sible effects. For instance, the application of a gener-
alization inference rule to the Assertion “kangaroos are
indigenous of Australia” conjectures that the hearer will
conclude that marsupials are indigenous of Australia.

Backward reasoning reasons from a communicative
goal to the RDs that may be used to accomplish it. For
instance, the concept of a stack may be conveyed to a
student by means of a Definition, an Analogy (say to
a stack of plates in a cafeteria), an Instantiation, or a
combination of these RDs. This reasoning mechanism
has been widely used in NLG systems, e.g., [Hovy, 1988;
Moore and Swartout, 1989; Cawsey, 1990]. In particular,
[Moore and Swartout, 1989; Cawsey, 1990] have encoded
Analogies and Instantiations into discourse planning op-
erators. However, this encoding does not represent ex-
plicitly the inferences that allow a hearer to deduce a
belief from a rhetorical device. In addition, according
to these operators, the user acquires only the intended
beliefs, and no unintended ones.

Our content planning mechanism has been imple-
mented in a system called WISHFUL which generates
concise discourse while at the same time addressing a
user’s possible erroneous inferences. Our mechanism first
applies backward reasoning in order to determine which
RDs are suitable for communicating a particular piece
of information, and then applies forward reasoning in
order to conjecture the effect of these RDs on a user’s
beliefs. If a wrong inference is conjectured from an RD,
then an additional RD may be required to address this
inference. If a correct inference is conjectured, then a
previously planned RD which conveys the inferred infor-
mation may no longer be required. Owing to these inter-



actions between thne 1nierences Irom tne nps generated
to convey different information items, an optimization
process is applied in order to achieve a global minimum
of the number of generated RDs (Section 3.4).

In the next section, we discuss our model of the stu-
dent’s beliefs and inferences. In Section 3, we describe
the operation of the content planner. We then discuss
our results and present concluding remarks.

2 The Student Model

Our student model represents (1) a student’s profile, (2)
his/her beliefs, and (3) his/her inferences.

Profile: [Sleeman, 1984] observed that good students
retain more correct conclusions than incorrect ones,
while the opposite happens for mediocre students. In
addition, we have observed that good students are more
certain of their conclusions than mediocre students. In
order to model these behaviours, we maintain profiles of
different types of students. The profile attributed to a
student determines the correctness and strength of the
initial beliefs in the model of the student, and the degree
of belief in the conclusions drawn by sound and unsound
inferences. For example, the profile of a mediocre stu-
dent is characterized by weak convictions with respect to
both facts and inference rules, and lack of discrimination
between correct and incorrect beliefs, and between sound
and unsound inferences. In the current implementation
of WISHFUL we maintain five profiles which range from
EXCELLENT to BAD.

Beliefs: Since it is easier to make broad assessments
rather than pinpoint numerical assessments with respect
to a student’s beliefs, we represent a student’s conjec-
tured beliefs by means of the following gqualitative be-
lief states [Bonarini et al., 1990]: {BELIEVED, RATHER
BELIEVED, CONTRADICTORY, UNKNOWN, RATHER
DISBELIEVED, DISBELIEVEDY}.

Inferences: Our mechanism uses inference rules to
model three types of inferences made by the user: (1) Di-
rect inferences, (2) Indirect inferences, and (3) Unique-
ness implicatures.

Direct inferences reproduce directly the content of
the discourse. The abstract-understand inference rule
assesses the likelihood that a hearer will understand a
statement by means of a direct inference. This likelihood
is influenced by the complexity and abstractness of the
information in the statement and by the hearer’s ability
to understand abstract explanations, such as stand-alone
descriptions or definitions. This ability in turn is repre-
sented in the hearer’s profile.

Indirect inferences produce inferences that add in-
formation to what was said. These inferences are not
always sound. The indirect inference rules considered in
our model are based on the ones described in [Zukerman,
1990], e.g., generalization, specialization and similarity.
The likelihood that a hearer will acquire a belief through
an indirect inference depends on his/her confidence in
the corresponding inference rule and on the strength of
the beliefs which participate in the inference process.

Finally, given a proposition P(0), a uniqueness im-
plicature licenses the inference that P is true only with
respect to O. For example, upon hearing the statement
“Joe has one leg,” most people will infer that Joe has
one leg only [Hirschberg, 1985].
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Our content planner receives as input a concept to be
conveyed to the hearer, e.g., Distributive Law, a list of
aspects that must be conveyed about this concept, e.g.,
steps and domain, and an attitude, which may be ei-
ther cautious or daring. A cautious attitude demands
that the information relevant to the given aspects be
BELIEVED by the user, while a daring attitude is satis-
fied with RATHER BELIEVED. The output of the con-
tent planner is a set of RDs which conveys the intended
aspects of the given concept. Typically, a set of RDs
generated with the cautious attitude contains more RDs
and more complex RDs than a set of RDs produced with
the daring attitude. That is, the explanations generated
with the cautious attitude are typically longer and more
thorough than those generated with the daring attitude.

Our content planner performs the following steps:
First it determines the information to be presented based
on the given aspects (Step 1). Next it takes into consid-
eration a user’s possible inferences in order to propose
alternative sets of RDs which convey this information
(Step 2). However, it is possible that the user does
not understand the concepts mentioned in a particular
RD well enough to understand this RD. Therefore, the
generation process is applied recursively with a revised
attitude and new aspects with respect to the concepts
mentioned in the proposed sets of RDs (Step 3). If
necessary, this process generates alternative sets of RDs
which convey these concepts. Thus, Steps 1-3 of WISH-
FUL yield several alternative sets of RDs, where each
set contains enough information to convey the intended
concept. However, owing to the interactions between the
inferences from the RDs in each set, it is possible that
some of the proposed RDs are no longer necessary. In or-
der to remove the redundant RDs from each set of RDs,
WISHFUL applies an optimization process to each set
(Step 4). It then selects the set with the least number
of RDs from the resulting sets (Step 5).

Throughout this section, we use the following sam-
ple input to illustrate the operation of the content plan-
ner: (Bracket-Simplification, {steps,domain}, daring).
In this input, the communicative goal is for the hearer
to RATHER BELIEVE the information relevant to the
domain and steps of Bracket Simplification.

3.1 Deciding which Information to Present

In this step, WISHFUL produces a list of propositions
that must be conveyed in order to satisfy a given com-
municative goal with respect to the specified aspects of
a given concept. To this effect, WISHFUL first retrieves
from a knowledge base the propositions relevant to the
given aspects. For instance, in order to satisfy the as-
pects in our sample input, the propositions in Table 1

must be known by the hearer!.

Aspect Propositions

p1: [Bracket-Simplification use-1 +/—]

steps pa: [Bracket-Simplification use-2 x|

domain | P3: Bracket-Simplification apply-to Like-Terms]

pa: [Bracket-Simplification apply-to Numbers]

Table 1: Propositions Relevant to steps and domain

!The relationships use-1 and use-2 indicate the temporal
ordering of a mathematical operation.



1ne retrieved 11st ol propositions 1s then reined based
on consultation with our model of the hearer’s beliefs.
The propositions already known by the hearer are fil-
tered out, and propositions which address the hearer’s
misconceptions are added. Thus, in our example, if the
hearer is presumed to believe correctly that [Bracket-
Simplification use-2 x] and [Bracket-Simplification apply-
to Numbers], and incorrectly that [Bracket-Simplification
apply-to Algebraic-Terms], the final list of propositions
will be as shown in Table 2.

p1: [Bracket-Simplification use-1 +/—]
pa: [Bracket-Simplification apply-to Like-Terms]
ps: [Bracket-Simplification —(always)

apply-to Algebraic-Terms]

Table 2: Propositions to be Conveyed
3.2 Proposing Rhetorical Devices

In this step, the content planner activates the proce-
dure Propose-RDs to propose alternative sets of RDs
that convey the propositions produced in the previous
step. Our procedure takes into consideration the infer-
ences a hearer is likely to make from the RDs in each
alternative in order to conjecture the effect of this al-
ternative on the hearer’s beliefs. The operation of our
procedure is based on the tenet that people draw im-
mediate inferences while processing a piece of discourse,
but make farther reaching inferences only after the entire
discourse has been processed. In order to address these
immediate inferences, our procedure applies one round
of inference rules to each RD in an alternative. For
instance, given the RD Assert [Bracket-Simplification
apply-to Like-Terms], the generalization rule infers in-
correctly that [Bracket-Simplification apply-to Algebraic-
Terms], and the similarity rule yields the correct infer-
ence that [Bracket-Simplification apply-to Numbers].

Procedure Propose-RDs({propositions})

1. If {propositions}=0 Then return(nil).

2. Get a proposition€{propositions}, and remove it

from {propositions}.
3. Backward reasoning: propose a set {RD}, where
each RD in the set conveys this proposition.
4. Forward reasoning: VRD; € {RD} Do
(each RD; is the root of a different alternative)
4.1 Draw inferences from RD;.
4.2 Append to {propositions} any new proposition
inferred from RD;.
4.3 Create a link between RD); and each of the
propositions pj,, ..., p;, that are affected by it.
4.4 Assign to each link a weight w; ;, equal to the
effect of RD; on the belief in p;, .
4.5 RDs « cons(RD;,
Propose-RDs({propositions})).
Propose-RDs is a recursive procedure, where each cy-

cle of the recursion generates alternative RDs that con-

vey one proposition. The alternatives generated during

a cycle constitute the basis for the next cycle of the

recursion. In each cycle, Propose-RDs first performs

backward reasoning and then forward reasoning. Dur-

ing backward reasoning (Step 3), the system applies in-

ference rules to propose alternative RDs that convey a

proposition. In this process, the system also takes into

consideration the attributes of the information to be con-

veyed and the information in the system’s knowledge

base and in the model of the user’s beliefs. During for-

ward reasoning (Step 4), the inference rules are applied

O €ach proposed ny and to our model or the user s be-
liefs in order to postulate the user’s possible inferences
from this RD. Any new propositions affected by these
inferences are then added to the list of propositions to
be conveyed (Step 4.2), and are addressed in subsequent
calls to Propose-RDs if necessary (Step 4.5). In prin-
ciple, if the system keeps postulating that the user will
infer new erroneous beliefs; the algorithm will not termi-
nate. However, in conversations in general, and in tutor-
ing situations in particular, the transfer of information
typically takes place at the horizon of a body knowledge
that is mutually believed by the conversational partners.
Thus, in practice, the inferences from the presented in-
formation reach this body of knowledge quickly, thereby
leading to a bounded inference process.

The RDs relevant to our domain are (A) Assertion;
(N) Negation; (M) Mention, which acknowledges a cor-
rect belief held by the hearer, e.g., “In addition to Num-
bers, Bracket Simplification applies to Like Terms”; (I)
Instantiation; and (I'*) Ezpanded Instantiation, which is
an Instantiation annotated with brief comments, e.g.,

2(3x + bz) = 28z) = l6u.

add terms in brackets multiply

Assertions and Negations may be complemented either
with Instantiations or with Expanded Instantiations in
order to have a stronger effect on a hearer’s beliefs. How-
ever, the suitability of a combination of RDs depends on
the aspect being conveyed and on the RD being com-
plemented. For example, when conveying the steps of a
procedure, A, A+1 and A—|—I+ are possible candidates.
However, when conveying the domain of a procedure,
only A and A+1 are applicable, since what is being con-
veyed is that the procedure applies to some domain, not
how this is done. Finally, when refuting the domain of a
procedure, only NV and N+I* are applicable, since when
illustrating that a procedure does not apply to an object,
it is essential to explain where the procedure fails.

Figure 1 depicts a partial trace of the alternatives gen-
erated by Propose-RDs in order to convey the proposi-
tions {p1,ps,ps} in Table 2. The backward reasoning
process appears in boldface, and the forward reasoning
process in roman font and italics. After each backward
reasoning step, the state of the resulting alternative is
presented. A state contains (1) the RDs proposed so
far; (2) the propositions affected by these RDs; (3) the
degree of belief in these propositions as a result from
the RDs generated so far (BELIEVED (B), RATHER BE-
LIEVED (RB), CONTRADICTORY (C), UNKNOWN (U),
RATHER DISBELIEVED (RD) and DISBELIEVED (D){;
and (4) the effect of the inferences from the RDs on the
user’s beliefs in these propositions. This effect is either a
quantitative increment or reduction in belief. However,
for clarity of presentation, we represent only the trend
of this effect, i.e., + (increment), — (reduction) and +
(two or more inferences with opposite effects).

In the first cycle in Figure 1, the backward reasoning
stage proposes the following RDs to convey proposition
p1 ([Bracket-Simplification use-1 +/—]): (1) A4, (2) A+1,
and (3) A+I*. Since Bracket Simplification applies to
Numbers and to Like Terms, an Instantiation may be
generated for each of these domains. Thus, alternatives
(2) and (3) spawn two options each: one where the In-
stantiation is performed with respect to Numbers, and
another where the Instantiation is performed with re-
spect to Like Terms. However, for the sake of brevity,
we limit our discussion to the latter. In the forward
reasoning stage, p; is directly inferred from all three al-
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Figure 1: Partial Trace of the Alternatives Generated by
Propose-RDs to Convey {p1,ps,ps}

ternatives. In addition, a generalization from A+17 and
A+IT, which are instantiated with respect to Like Terms,
conveys ps ([Bracket-Simplification apply-to Like-Terms]).

In the second cycle, the backward reasoning stage pro-
poses the RDs A and A+17 to convey proposition pz (re-
call that A+ T* is not an option in this case). In the
forward reasoning stage, the following inferences ensue
from both options: (1) a direct inference which yields
p3, (2) a generalization which supports the user’s incor-
rect belief that [Bracket-Simplification apply-to Algebraic-
Terms] (—ps), (3) a similarity-based inference which sup-
ports the user’s correct belief that [Bracket-Simplification
apply-to Numbers] (p4), and (4) a uniqueness implicature
which infers that Bracket Simplification applies only to
Like Terms, thereby contradicting inferences (2) and (3).
Note that prop081t10n pa, which was previously removed
from the list of propositions to be conveyed (Section 3.1),
is added to this list, since it is affected by a forward infer-
ence. In addition, although p3 is now BELIEVED in both
alternatives, in the alternative on the right hand side,
this belief is a relatively small increment from RATHER
BELIEVED, which was obtained in the first cycle.

In the third cycle, the backward reasoning stage pro-
poses the RD M to convey ps ([Bracket-Simplification
apply-to Numbers]). As stated above, a Mention acknowl-
edges a correct belief held by the hearer, rather than
presenting new information. Since inferences from this
belief were drawn at the time the belief was acquired,
indirect inferences from the Mention should not be con-
sidered. Hence, in the forward inference stage, only pa
is inferred from this RD.

Finally, in the fourth cycle, the backward reason-
ing stage proposes the RDs N and N + It to convey
proposition ps ([Bracket-Simplification —(always) apply-to
Algebraic-Terms]) (as stated above, N+1 is not an op-
tion in this case). In the forward reasoning stage, the
following inferences ensue from both options: (1) a di-
rect inference which yields ps, (2) a specialization which

contradicts ps, and (o) a simllarity-based 1nlerence wiich
contradicts ps. Note that N4+ It reverses the belief in
ps from RATHER DISBELIEVED to BELIEVED, while N
takes it only to CONTRADICTORY.

An alternative can be discarded based on insufficient
belief in one or more of the propositions to be conveyed
only after RDs for all the propositions have been gener-
ated. This is because an inference from an RD proposed
late in the process may support a marginal belief result-
ing from an earlier RD. For instance, upon completion of
Propose-RDs, the belief in p5 has not reached an accept-
able level in the leftmost alternative in Figure 1. Hence,
this alternative is discarded.

As seen in this process, RDs may be generated at a
later stage to convey propositions that have already been
conveyed by indirect inferences from earlier RDs. For in-
stance, in cycle 2, right hand column, RDs are generated
to convey ps even though it has been inferred from the
A+ 1 which was generated to convey p;. The rationale
for this policy is twofold. Firstly, it is possible that an
inference from a later RD will lower the belief in p3, thus
requiring that we generate RDs that convey ps after all.
But more importantly, an RD that conveys ps may be
necessary to achieve optimality. For example, this hap-
pens when an RD that conveys p3 directly is also capable
of conveying every other proposition in our list. In this
case, if the RDs that convey ps are not generated, the
optimal solution will be missed.

The alternatives produced by Propose-RDs may con-
tain redundant RDs. However, at this stage of the con-
tent planning process it is premature to minimize the
number of RDs in each alternative, since alternatives
that appear promising at this stage may be expanded
by RDs that explain the concepts mentioned in these
alternatives (Step 3 of WISHFUL). Therefore, the min-
imization process must be performed only after all the
RDs have been generated for each alternative.

3.3 Conveying the Concepts in an Alternative

This step receives as input the sets of RDs produced in
the previous step. For each of these alternatives, WISH-
FUL ascertains that the hearer understands the concepts
mentioned in its RDs well enough to understand these
RDs. To this effect, it performs the following actions
for each concept in an alternative: (1) it determines the
aspects of the concept which are relevant to the under-
standing of the RDs which contain this concept, (2) it
determines an attitude for conveying this concept, and
(3) it re-activates Steps 1-3 of WISHFUL to generate
RDs that convey this concept.

The aspects a hearer must know about a concept in
order to understand an RD which contains this concept
depend on (1) the main predicate of the propositional
part of the RD, and (2) the role of the concept with
respect to this predlcate For example, in order to un-
derstand the RD Assert [Bracket-Simplification apply-to
Like-Terms], the hearer must know what Like-Terms are
and what they look like. Hence, the system returns the
aspects membership-class and structure. Since a con-
cept may appear in more than one RD, this process is
repeated with respect to all the RDs which mention a
particular concept.

The determination of an attitude for conveying the
newly determined aspects of a concept is based on the
relevance of this concept to the original concept given
to the system. That is, the more relevant the concept
is to the original concept, the better it should be known
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Figure 2: A Set of RDs which Conveys {p1,...,pn}

by the hearer, and vice versa. This consideration is im-
plemented by changing an initially cautious attitude to
daring as the recursive calls to Steps 1-3 of WISHFUL
become deeper. A daring attitude is not changed, since
it already requires a low level of expertise.

3.4 Minimizing the Number of RDs

This step receives as input several complete sets of RDs,
such as the one in Figure 2, which fully convey the in-
tended concept. However, as seen in Section 3.2, these
sets of RDs may contain redundant RDs. The problem of
selecting the minimum number of RDs which convey the
intended information is an optimization problem, which
is formally expressed as follows with respect the graph
in Figure 2:

m m+p
Minimize ZRDZ' + Z {RD;}
i=1 j=m+1
subject to: Vi RD; =1 or 0

Yk BEL(p)+ Y wipRD; [ {RD;}>T
i=1 {jlv;,i=1}

The second constraint stipulates that the final belief
in each proposition must be greater than a threshold T,
which is determined by the attitude of the system. The
final belief in a proposition pj is composed of the pre-
vious belief in pg plus the effect of the RDs on it. The
effect of an RD RD; on the belief in pg is represented
by the weight w; r, which is obtained from Step 4.4 of
Propose-RDs (Section 3.2). This effect is in turn influ-
enced by the sets of RDs which are used to convey the
concepts in this RD. Each of these sets of RDs has an
“all or nothing” effect. That is, if {RD;} is required
to understand RD;, and {RD;} is removed, then RD;
will have no effect on the propositions it addresses. This
is represented in the [] component of the second con-
straint, where v; ; = 1 if {RD;} is required to explain a
concept in RD;, and 0, otherwise. The values of v are
obtained from Step 3 of WISHFUL (Section 3.3).

Even the easier problem of minimizing the num-
ber of RDs in the middle column of the graph, i.e.,
Minimize{} -, RD;}, is NP-hard (shown by reduction
to the Minimum Cover problem [Garey and Johnson,
1979]). Hence, we need a weak optimization method to
minimize each alternative. To this effect, we have chosen
Algorithm A* [Nilsson, 1980].

When activating A*, a node in the search graph repre-
sents the conjectured state of the hearer’s beliefs, and the
operators are the RDs that are applicable to a particular
node. A* uses the evaluation function f(n) = g(n)+h(n)
for each node n in the search graph, and terminates the
search at the node with the lowest value of f. The con-
ditions for the admissibility of A* are: (1) g*(n) < g(n),

A—F—p (B) AT1 pP1\D)
A+T p3 (B) A p3 (B)
M pa (B) M pa (B)

N+4It ps (B) N+I* ps (B)

Figure 3: Two Alternatives Generated by Propose-RDs
to Convey {p1,ps,ps}

and (2) 0 < h(n) < h*(n). The first condition is easily
satisfied by setting g(n) to the number of RDs generated
up to node n. The second condition is satisfied by
h = number of cut-sets of the propositions still to be
conveyed at node n,
where a cut-set is a group of propositions which might
be conveyed by means of a single RD. That is, if the
propositions to be conveyed are divided into n cut-sets,
we will need at least n RDs to convey these propositions.
The number of cut-sets for a set of RDs is obtained by
iterating over all the RDs in the set, and for each RD,
putting in the same cut-set all the propositions which
are affected positively by direct or indirect inferences
from this RD. Uniqueness implicatures are not consid-
ered, since by themselves they do not convey proposi-
tions, rather they perturb existing beliefs.

To illustrate the calculation of a cut-set, let us consider
two of the sets of RDs which were generated by Propose-
RDs to convey propositions {p1, ps, ps} (Figure 3). The
main difference between these sets stems from the RDs
that convey proposition p;. In the set on the left, A
affects only p;, while in the set on the right, A4+17 affects
both p; and ps. In order to calculate the number of cut-
sets in the set on the left, we first inspect A, which results
in one cut-set containing p;. Next, we inspect A+ 1,
which yields a second cut-set for p3 and p4, meaning that
these two propositions could conceivably be conveyed by
means of the same RD. Note that ps is not in this cut-set,
since it is affected negatively by A+I. Upon inspection of
M | no new cut-sets are created, since p4 already belongs
to the second cut-set. Finally, when N+IT is inspected,
a third cut-set consisting only of ps is generated. Like
before, ps is not added to the second cut-set, since N+IT
has a negative effect on ps and ps. Thus, the minimum
number of RDs we can possibly have in the set on the
left is 3. By the same method, we reach a result of 2 for
the set on the right.

After activating A*, the alternative on the left remains
unchanged with 4 RDs, while the alternative on the right
is reduced to 2 RDs, viz A+1 — p; and N+IT — ps.
Note that the RD which conveys p; also yields a belief
of RATHER BELIEVED with respect to ps (top right al-
ternative in Figure 1). This belief is acceptable when the
system is run with a daring attitude.

3.5 Selecting the Most Concise Set of RDs

When selecting the most concise among the minimized
alternatives produced in the previous step, WISHFUL
initially retains all the alternatives with the minimal
number of RDs. For instance, since the alternative on
the left in Figure 3 has 4 RDs after optimization, while
that on the right has 2 RDs, the former is discarded. In
order to discriminate among the remaining alternatives,
those with simple RDs, e.g., A or N, are preferred to
those with complex RDs, e.g., A+I or N+IT.

Table 3 contains the final alternative selected by
WISHFUL for the example (Bracket-Simplification,
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2(32 + 52) add or subtract the terms inside the

brackets, e.g., 2(3z + 5x) = 2(8x).

[Bracket-Simplification always ]

apply-to Algebraic Terms
:l[\rIles%:flii:te“' Bracket Simplification does not
232 + 5y) always apply to Algebraic Terms.
’ ’ For example, you cannot add the
terms in brackets in 2(3z + 5y).”

Table 3: The Set of RDs Selected by WISHFUL

{steps,domain}, daring) which was discussed through-
out this section. The possible realization of these RDs
is included as an illustration.

4 Results

WISHFUL was implemented in Sun Common Lisp on
a SPARCstation 2. It was run with the cautious and
the daring attitude on a variety of examples and student
profiles on a small animal classification and on a subset
of high-school Algebra. However, owing to space limita-
tions, we report on 8 representative trials in the Algebra
domain. These trials where run with two student pro-
files, namely VERY GOOD and MEDIOCRE, and with a
cautious and a daring attitude on the example discussed
throughout this paper, and on an example where the
following propositions had to be conveyed: [Distributive-
Law apply-to Algebraic-Terms], [Distributive-Law apply-to
Like-Terms] and [Distributive-Law apply-to Unlike-Terms].
The former example took 4 seconds of CPU time, while
the latter took 1.25 seconds, with negligible variations
for the different system attitudes and student profiles.
The difference in the timings can be attributed to the
larger number of alternatives in the longer example, and
to the absence of adverse interactions between the infer-
ences from the RDs in the shorter example.

As expected, WISHFUL produced more RDs and ex-
amples for the MEDIOCRE student than for the VERY
GOOD student. In addition, WISHFUL’s output showed
a clear trend whereby a change from a daring attitude
to a cautious attitude led to the addition of examples to
the already explicit output generated for the MEDIOCRE
student. This change was more dramatic for the VERY
GOOD student. In this case, the daring attitude pro-
duced output such as the one in Table 3, where some
of the information is implicitly conveyed, while the cau-
tious attitude stated explicitly all the information to be
conveyed, albeit with significantly less examples than for
the MEDIOCRE student. This output was informally
evaluated by presenting it to several lecturers and tu-
tors in the Department of Computer Science at Monash
University. There was general agreement among the in-
terviewed staff regarding the suitability of WISHFUL’s
output for both types of students.

5 Conclusion

In this paper, we have offered a mechanism that achieves
the seemingly incompatible objectives of generating
concise discourse and addressing a hearer’s inferences.
These inferences have been modeled by means of in-
ference rules, which are applied in backward reasoning
mode to propose RDs that are suitable for conveying the
intended information, and in forward reasoning mode to
conjecture the effect of these RDs on a hearer’s beliefs.

1nese conjectures constitute an essential immput to the
process which optimizes the number of RDs that convey
the intended information.

The discourse generated by WISHFUL is an initial ex-
planation presented to a user. In a complete assistance
system or an ITS, such an explanation is typically fol-
lowed by some interaction with the user. Hence, in such
a system the beliefs conjectured by WISHFUL must be
verified and possibly revised after the user asks follow-up
questions, or upon inspection of his/her performance.
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