
Lecture 4: OpenGL Part 1

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

Monash University • Clayton’s School of Information Technology

R

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 20072

• Hardware and OS independent standard for real-time 2D and 3D
graphics — API (Application Programmer’s Interface).

• Standard for the majority of graphics cards for workstations and
PCs.

• Other graphics APIs include:

• GKS, PHIGS (mainly obsolete)

• Java 3D

• Direct X

• RenderMan — for ‘realistic’ rendering.

• Interface between the program and the graphics input/output
systems.

W h a t i s O p e n G L ?

User Program Graphics System Input/Output
Devices

Function Calls

Data Input

Output

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 2007

H i s t o r y o f O p e n G L

• 1980s: GL (Graphics Language) on SGI Workstations;

• 1992: OpenGL 1.0 Specification June 1992, first versions in 1993;

• 1997: OpenGL 1.1 – added vertex arrays and texture objects;

• 1998: OpenGL 1.2 – 3D textures and imaging functionality; optional
features permitted in different implementations;

• 2001: OpenGL 1.3 – cube texture maps, compressed textures, multi-
texturing;

• 2002: OpenGL 1.4 – automatic mipmap generation, additional
blending functions, shadow maps, multiple vertex arrays in single
command, stencil wrapping, extra texturing commands;

• 2003: OpenGL 1.5 –vertex buffer objects, shadow comparison
functions, occlusion queries, non power-of-2 textures

3

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 2007

H i s t o r y o f O p e n G L (c o n t i n u e d)

• Up to OpenGL 1.5 the rendering pipeline is more or less fixed, the

application program doesn’t have any control on how pixels are

shaded, for example.

• 2004: OpenGL 2.0 – support for application specific rendering

algorithms using a high-level shading language.

• (http://www.opengl.org/documentation/specs/version2.0/

glspec20.pdf)

• OpenGL 2.0 is ‘upwards compatible’ with OpenGL 1.0

• OpenGL Shading Language (GLSL) is a high-level, C-like language

used to write vertex and fragment shaders.

4

http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 20075

• OpenGL function names all begin with gl and are stored in a
library called GL.

• Related libraries:

Graphics Utility Library (GLU)

• contains only calls to GL functions

• contains code for common objects, e.g. spheres

• available on all OpenGL implementations.

• GL Utility Toolkit (GLUT)

• allows program to interface with the window system and input
devices, independent of OS and window system.

 #include <GL/glut.h>

or #include <glut.h>

will read in glut.h, glu.h and gl.h

T h e O p e n G L I n t e r f a c e

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 20076

O p e n G L L i b r a r y O r g a n i z a t i o n

OpenGL
Application

Program

GLU

GL

GLUT

GLX

Xlib, Xtk

 Frame
Buffer

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 20077

• The basic OpenGL primitives are specified via points in space or

vertices.

• By default, a point covers 1 pixel. Objects are defined by sequences

of the form:

glBegin (type);

 glVertex*(...);

 .

 .

 glVertex*(...);

glEnd();

• Other code and OpenGL function calls can occur between glBegin

and glEnd.

P r i m i t i v e s a n d A t t r i b u t e s

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 20078

• The general form for a vertex is:
 glVertex

where * can be interpreted as either nt or ntv where

• n denotes the number of dimensions (2,3, or 4);

• t denotes the data type:
i – integer, f – float, d – double;

• v, if present denotes that variables are specified through a
pointer to an array and not through an argument list.

• Examples:
glVertex2i(GLint Xi, GLint Yi);

glVertex3f(GLfloat x, GLfloat y, GLfloat z);

GLfloat vertex[3];

glVertex3fv(vertex);

g l Ve r t e x

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 20079

• The underlying representation is always the same and actually uses
4 coordinates.

• All other geometric types are specified either in terms of points or
line segments.

• Line segments themselves are specified by pairs of points.

• Apart from points and line segments other basic geometric types
have interiors that can be coloured in different ways.

• Line segments — GL_LINES — successive points define the end
points of each line segment. The line segments themselves are
disconnected.

• Polylines — GL_LINE_STRIP — successive vertices (and line
segments) are connected. To force a polyline to be closed, we can
use GL_LINE_LOOP.

g l Ve r t e x (c o n t .)

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 200710

P o i n t a n d L i n e S e g m e n t t y p e s

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 200711

• Line segments and polylines can model the edges of objects. An

object that has a border that can be described by a line loop and

which has an interior is called a polygon.

• Polygons can be displayed rapidly by graphics hardware and can be

used to approximate curved surfaces.

• In two dimensions, as long as no two edges of a polygon cross each

other the polygon is simple. If an API requires that polygons be

simple, it will generally not check. It will be up to the applications

program to ensure polygons are simple.

• Some implementations require polygons to be convex. A polygon is

convex if a line segment connecting any two points in the polygon

or its boundary does not go outside the polygon.

P o l y g o n B a s i c s

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 200712

• In 3 dimensions a polygon is not necessarily planar (flat). A triangle

will be planar if its three points are not collinear.

• Hardware and software often support a triangle polygon type that

is rendered much faster than a polygon with three edges.

P o l y g o n s

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 200713

• Polygons — GL_POLYGON

The edges are the same as if a line loop were used. Edges are

assumed to have no width.

• Most graphics systems allow you to draw the edges or to fill the

interior of a polygon, but not both at once. You might need to

draw the edges and fill the interior in two operations.

P o l y g o n Ty p e s i n O p e n G L

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 200714

• Triangles and Quadrilaterals — GL_TRIANGLES and GL_QUADS —

are special cases of polygons. Their use might lead to increased

efficiency in rendering.

• Strips and Fans — GL_TRIANGLE_STRIP, GL_QUAD_STRIP and

GL_TRIANGLE_FAN are groups of triangles or quadrilaterals that

share edges.

O t h e r G e o m e t r i c Ty p e s

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 200715

• There are two types of text: stroke and raster.

• Stroke text is created using vertices and line segments. It can be
transformed (translation, rotation, scaling) and viewed (perspective
and parallel projections) like other graphical objects.

• A character need only be defined once.

• Defining every character for 128 or 256 characters in a particular
font can require a lot of detail. Manipulating stroke characters can
require considerable computing resources.

Te x t i n O p e n G L

Computer Graphics Rocks!
Stroke Text (postscript font)

K g

hg

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 200716

• Raster text is simple and fast. Each character is described as a

rectangular block of bits which are either set of clear.

R a s t e r Te x t

Hardware can move raster characters quickly into the frame buffer via

bit-block-transfer (bitblt) operations. OpenGL allows applications to

manipulate the frame buffer directly.

Raster characters can only be increased in size by replicating.

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 200717

• Because raster characters are rectangular arrays of bits they cannot
be transformed.

• Fonts might reside in hardware on the graphics display device and
may not be portable.

• OpenGL does not have text primitives. GLUT can create characters
from other primitives. It provides a few bitmap and stroke
character sets in software. These are portable. E.g.:

• glutBitmapCharacter(GLUT_BITMAP_8_13, c);

c is the number of characters.

• Characters are placed in the current raster position in the display.

• This position is measured in pixels and can be altered by functions
of the form
 glRasterPos* e.g. glRasterPos2i(GLint x, GLint y)

R a s t e r Te x t (c o n t .)

CSE3313: Computer Graphics Lecture 4 / Lecture Notes 200718

• OpenGL primitives are defined in terms of vertices or line
segments.

• To create curved objects we can approximate curves by line
segments and meshes of convex polygons — tesselation.

• We can also define curves and curve surfaces mathematically and
build our own graphics functions to render these objects on a pixel
by pixel basis.

• The GLU contains function calls to perform tesselation and to
render NURBS curves and surfaces.

C u r v e d O b j e c t s

