
Monash University • Clayton’s School of Information Technology

Lecture 6: OpenGL Part 3: Control of Windows and Viewports

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

CSE3313: Computer Graphics Lecture 6 / Lecture Notes 20072

• As well as the screen coordinates, window coordinates contain
depth information of the object that maps to that pixel on the
screen. This depth information is used in hidden surface
elimination.

• References to the window that contains the output of the graphics
program are relative to one corner of the window. Usually the
lower left corner is the origin and has window coordinates (0,0).

• The window need not take up all the display space. For example,
the screen may be 1280 x 1024 but the window might be 640 x 480.

• In GLUT information to the windowing system is first passed via

 glutInit(int *argcp, char ** argv)

The two arguments are for command line arguments like those in

main.

C o n t r o l F u n c t i o n s

CSE3313: Computer Graphics Lecture 6 / Lecture Notes 20073

• An OpenGL window can then be opened via
 glutCreateWindow(char * title)

Here title might be a string that appears at the top of the window.

• GLUT functions can be used to specify the window size, position on
the screen and the way it used RGB colour.
 glutInitDisplayMode (

 GLUT_RGB | GLUT_DEPTH | GLUT_DOUBLE);

 glutInitWindowSize(480, 640);

 glutInitWindowPosition(0, 0);

This specifies a 480 x 640 window in the top left corner of the
display. In this example we specify RGB colour rather than CLUT
colour, a depth buffer for hidden surface removal and double
buffering for smoother animation.

• The aspect ratio is the ratio of the rectangle’s height to width.

W i n d o w s

CSE3313: Computer Graphics Lecture 6 / Lecture Notes 20074

• If the aspect ratio of the viewing rectangle and display window are

different, then objects may appear distorted on the screen.

A s p e c t R a t i o M i s m a t c h

CSE3313: Computer Graphics Lecture 6 / Lecture Notes 20075

• A viewport is a rectangular area of the display window.

• By default it is the entire window.

• A viewport which does not take up the entire display window can

be specified via the function:

 void glViewport(GLint x, GLint y, GLsizei w,

GLsizei h)

where (x, y) is the lower left corner of the viewport (measured

relative to the lower left corner of the display window, in pixels).

w and h give the width and height of the viewport.

V i e w p o r t s

CSE3313: Computer Graphics Lecture 6 / Lecture Notes 20076

V i e w p o r t s (c o n t .)

CSE3313: Computer Graphics Lecture 6 / Lecture Notes 20077

• In immediate mode graphics output is written as soon as possible.

If the program just produces a picture as output, the program

terminates and the display is then cleared. We might not even see

the picture!

• In order to force the program to pause we could make the

program go into a waiting loop.

• The program could have a window that is connected to stdin,

stdout and stderr.

• We can force a pause by displaying a prompt in this window and

waiting for the user to enter something from the keyboard before

the program recommences.

T h e m a i n , d i s p l a y a n d m y I n i t f u n c t i o n s

CSE3313: Computer Graphics Lecture 6 / Lecture Notes 20078

• With interactive graphics we can do a similar thing by putting the
program into an event loop. If we specify no events the program
will hang until the user closes the window manually. This can be
done via
 void glutMainLoop (void)

• Graphics are sent to the screen via a function called the display
callback.
 void glutDisplayFunc(void (* func)(void))

• func is a pointer to a function. It does not have any arguments and

does not return any results. It gets called every time the OpenGL
window needs to be redisplayed.

• This may be because the window is first opened, or because some
window in front of the OpenGL window has been moved.

D i s p l a y c a l l b a c k s

CSE3313: Computer Graphics Lecture 6 / Lecture Notes 20079

• Because the display callback function has no parameters, all

information to this function has to be via global variables.

• myInit() is used to set the OpenGL state variables dealing with

viewing and parameters. Here is an example:

void myInit(void) {

 /* set clear colour to black */

 glClearColor(0.0, 0.0, 0.0, 1.0);

 /* set drawing/fill colour to white */

 glColour3f(1.0, 1.0, 1.0);

 /*set up standard orthogonal view with clipping*/

 /* this is the default so it could be removed */

 gluOrtho2D(-1.0, 1.0, -1.0, 1.0);

}

D i s p l a y c a l l b a c k s (c o n t .)

CSE3313: Computer Graphics Lecture 6 / Lecture Notes 200710

• The following is a main program that works with most non-
interactive graphics applications.
#include <glut.h>

main(int argc, char * * argv) {

/* initialize mode and open a window in the upper */

/* left corner of the screen. Window title is */

/* the program name */

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

 glutInitWindowSize(500, 500);

 glutInitWindowPosition(0, 0);

 glutCreateWindow(argv[0]);

 glutDisplayFunc(display);

 myInit();

 glutMainLoop();

}

S i m p l e m a i n p r o g r a m

CSE3313: Computer Graphics Lecture 6 / Lecture Notes 200711

• A sample display callback function could be:

void display (void) {

 /* clear the window */

 glClear(GL_COLOR_BUFFER_BIT);

 /* define a unit square */

 glBegin(GL_POLYGON);

 glVertex2f(-0.5, -0.5);

 glVertex2f(-0.5, 0.5);

 glVertex2f(0.5, 0.5);

 glVertex2f(0.5, -0.5);

 glEnd();

 /* flush GL buffers */

 glFlush();

}

• The call to glFlush() will cause the output to be displayed as
soon as possible.

D i s p l a y c a l l b a c k f u n c t i o n

