
Monash University • Clayton’s School of Information Technology

Lecture 7: OpenGL — Windows, Display Lists, Pipline

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

Prim
itiv

es Tra
nsfo

rm
er

Clip
per

Projecto
r

Raste
riz

er

Pixe
ls

CSE3313: Computer Graphics Lecture 7 / Lecture Notes 20072

• Whenever the window size changes, the viewport and clipping
volume must be redefined to preserve the same aspect ratio.

• The GLUT provides the function glutReshapeFunc, which tells

the program which function to call when the window dimensions
change (This works the same way as glutDisplayFunc).

• Suppose our function is called ChangeSize. The function would

have the following prototype
 void ChangeSize(GLsizei w, GLsizei h)

where the windowing system would pass the width of the resize
window via the parameter w and the height h.

• Prior to the call on glutMainLoop() in the main routine there
would be a call of the form
 glutReshapeFunc(ChangeSize)

S c a l i n g t o t h e W i n d o w Reference Angel, Ch. 2

CSE3313: Computer Graphics Lecture 7 / Lecture Notes 20073

• void ChangeSize(GLsizei w, GLsizei h) {
 /* prevent a divide by zero */
 if (h == 0) h = 1;

 /* make the viewport as big as the window */
 glViewport(0, 0, w, h);

 /* reset the coordinate system */
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 /* Establish the clipping volume
 left, right, bottom, top, near, far */
 if (w <= h)
 gluOrtho2D(0.0f, 250.0f, 0.0f, 250.0f*h/w);
 else
 gluOrtho2D(0.0f, 250.0f*w/h, 0.0f, 250.0f);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

C h a n g e S i z e E x a m p l e

Assumes the view volume originally has a 250 x 250 square cross section

CSE3313: Computer Graphics Lecture 7 / Lecture Notes 20074

• In immediate mode as soon as a primitive is output, it is displayed
and the system retains no memory of it.

• A second mode is retained mode graphics. The object is defined
once and the definition is placed into a display list. A single
function call can be used to cause the object to be redisplayed.

• Each display list must have a unique identifier.
#define BOX 1 /* unused list number */

glNewList(BOX, GL_COMPILE);

 glBegin(GL_POLYGON);

 glColor3f(1.0, 0.0, 0.0);

 glVertex2f(-1.0, -1.0); glVertex2f(1.0,

-1.0);

 glVertex2f(1.0, 1.0); glVertex2f(-1.0, 1.0);

 glEnd();

glEndList();

D i s p l a y L i s t s

CSE3313: Computer Graphics Lecture 7 / Lecture Notes 20075

• GL_COMPILE tells the system to send the list to the server but not

to display its contents.

• To draw the box, we call the function:

 glCallList(BOX);

• The output primitives get drawn according to the current values of

attributes like current colour, current transformation matrix.

• A standard procedure is to always push attributes and matrices on

to their own stack when the display list is entered and to pop them

off the stacks when the display list is exited.

At the beginning of the display list:

 glPushAttrib(GL_ALL_ATTRIB_BITS);

 glPushMatrix();

D i s p l a y L i s t s (c o n t .)

CSE3313: Computer Graphics Lecture 7 / Lecture Notes 20076

• At the end of the display list:
 glPopAttrib();

 glPopMatrix();

• Other GL display list calls
 glGenLists(number);

returns the first integer of number consecutive integers that are
unused labels.
 glCallLists(...);
executes multiple display lists with a single function call. glCallList
can appear inside a display list. To avoid the possibility of infinite
recursion, a limit is placed on the nesting level of display lists
during display list execution. This limit is at least 64 and depends
on the implementation.

• A display list can be executed between a call to glBegin and
glEnd as long as the display list only includes commands that are
allowed between glBegin and glEnd.

D i s p l a y L i s t s (c o n t .)

CSE3313: Computer Graphics Lecture 7 / Lecture Notes 20077

• Pressing a key on the keyboard queues a keyboard event. The
callback function myKeyboard() is registered with that type of
event through
 glutKeyboardFunc(myKeyboard);

The function must have the prototype:
void myKeyboard(unsigned char key, int x, int y);

key is used to pass the ASCII value of the key pressed.
The values of x and y report the position of the mouse at the time
the event occurred. y is actually the number of pixels down from
the top of the screen.

• Implementations of myKeyboard often consist of a large switch
statement with a case for each key of interest.

• Names for special keyboard keys, such as function keys, arrow keys
can be found in glut.h
e.g: GLUT_KEY_F3, GLUT_KEY_LEFT, GLUT_KEY_PAGE_UP
 (For these keys use glutSpecialFunction())

K e y b o a r d I n t e r a c t i o n

CSE3313: Computer Graphics Lecture 7 / Lecture Notes 20078

• As an application makes OpenGL calls, the commands are placed in
a command buffer. When the buffer is flushed, the commands and
data are passed to the next stage in the pipleine.

• Vertex data is transformed and lit. This may require lots of
calculation. Lighting calculations are carried out to determine how
bright the colours should be at each vertex.

• In the Rasterization stage the colour image is created from
geometric, colour and texture data.

• The image is then placed in a frame buffer — the memory of the
graphics device.

T h e O p e n G L P i p e l i n e

OpenGL
API calls OpenGL

Command
Buffer

Transform and
Lighting Rasterization Frame

Buffer

CSE3313: Computer Graphics Lecture 7 / Lecture Notes 20079

• Early hardware only did rasterization. Now transforms, lighting and
shading are done in hardware. Some hardware supports
programable shading.

• OpenGL is an immediate mode API. Each command has an
immediate effect on the current rendering state. Each state is
either on or off or contains some numeric value.

• OpenGL can be seen as defining a state machine.

• Further Information:
OpenGL programming guide : the official guide to learning OpenGL, version 1.4 / OpenGL
Architecture Review Board, Mason Woo [et al.] Reading, MA : Addison-Wesley, 2004.

OpenGL reference manual : the official reference document for OpenGL, version 1.4 /
OpenGL Architecture Review Board. Reading, Mass. : Addison-Wesley, 2004

T h e O p e n G L P i p e l i n e

Primitives
Transformer Clipper Projector Rasterizer

Pixels

