
Monash University • Clayton’s School of Information Technology

Lecture 8: OpenGL — Fonts, Tessellation, Transformations, Errors

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

CSE3313: Computer Graphics Lecture 8 / Lecture Notes 20072

• GLUT provides a few raster and stroke fonts. It is also possible to
access the fonts in the windowing system.

• We can access a single character from a monotype or evenly spaced
font by the function call
 glutStrokeCharacter(

 GLUT_STROKE_MONO_ROMAN, int character)

• Some words of caution:

• The font may need to be scaled to fit in with the rest of the
program output;

• Calling this function includes a translation to the bottom right
of the character box to prepare for the next character.

• Transformations (scaling, rotation, translation, etc.) affect the
OpenGL state so we might need to use glPushMatrix and
glPopMatrix to return to the state before glPushMatrix was
called.

F o n t s i n G L U T

CSE3313: Computer Graphics Lecture 8 / Lecture Notes 20073

• As part of the OpenGL state there is a raster position which
identifies where the next raster primitive will be placed. This can be
set via glRasterPos*(), e.g. glRasterPos2i(10,10)

• The raster position can be set in world coordinates. The current
raster position is updated automatically following a call to
glutBitmapCharacter()

• You can query the width of a bitmap character using
int glutBitmapWidth(GLUTbitmapFont font, int char)
which returns the width of the character in the font font.

• Example:
char * text = “hello world”; int i;
glRasterPos2i(10,10);

for (i = 0; i < strlen(text); ++i)

 glutBitmapCharacter(GLUT_BITMAP_9_BY_15,

text[i]);

D r a w i n g Te x t (c o n t .)

CSE3313: Computer Graphics Lecture 8 / Lecture Notes 20074

• GL_POLYGON can only render simple, convex polygons. To draw

concave polygons we need to use the polygon tessellator interface

in GLU.

C o n c a v e P o l y g o n s

Before Tessellation After Tessellation

CSE3313: Computer Graphics Lecture 8 / Lecture Notes 20075

• We can declare a tessellator object using GLU

GLUtesselator * myTess;

myTess = gluNewTess();

gluTessBeginPolygon(myTess, NULL);

gluTessBeginContour(myTess);

for (i = 0; i < nvertices; i++)

 gluTessVertex(myTess, vertex[i], vertex[i]);

gluTessEndContour(myTess);

gluTessEndPolygon(myTess);

• You also need to register tessellation callbacks:

gluTessCallback(GLUtesselator * t, GLenum which,

GLvoid (*CallBackFunc)());

• Note that Angel contains typos and doesn’t mention callbacks!

Te s s e l l a t i o n (c o n t .) Reference: Angel page 403

Note: one ‘l’

CSE3313: Computer Graphics Lecture 8 / Lecture Notes 20076

• To clear the colour part of the frame buffer:

glClearColor(r,g,b,a); /* this only needs to be set

once if you don’t change the clear colour */

glClear(GL_COLOR_BUFFER_BIT);

Other parts of the buffer (e.g. Depth buffer) can be cleared by a

logical or (’|’) with the appropriate constant.

• GLUT coordinates are from the top left (0,0) increasing x moves

from left to right, increasing y goes from top to bottom.

• OpenGL places the origin at the bottom left, increasing x moves

from left to right, increasing y goes from bottom to top.

O t h e r O p e n G L f u n c t i o n s

CSE3313: Computer Graphics Lecture 8 / Lecture Notes 20077

• To transform 2D objects defined in world coordinates into
rasterized pixels defined in 2D screen coordinates OpenGL uses two
matrices — the model-view matrix and the projection matrix.

• These matrices are part of the OpenGL state. To set either of these
matrices we preform the following steps:

• Identify the matrix we want to change

• Set the matrix to the identity matrix

• Change the identity matrix

• For example to set the two dimensional clipping window:

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(-1.0, 1.0, -1.0, 1.0);

M a t r i x M o d e s

CSE3313: Computer Graphics Lecture 8 / Lecture Notes 20078

• The model view matrix transforms objects relative to the camera.

• The projection matrix forms the image through projection and

helps with clipping by mapping vertices to a normalized coordinate

system.

• We can also save and restore the current matrix on a stack using

glPushMatrix() and glPopMatrix()

M a t r i x M o d e s (c o n t .)

Vertices
Model view Projection

Vertices

CSE3313: Computer Graphics Lecture 8 / Lecture Notes 20079

• You can check for errors in the GL system via
 GLenum glGetError();

This returns the error type or GL_NO_ERROR if no error has been
made. Once an error is made, no other errors are recorded until
glGetError has been called.

• glGetError should be called in a loop, until it returns
GL_NO_ERROR if all error flags are to be reset.

• Most errors do not effect the GL state or frame buffer contents,
with the exception of GL_OUT_OF_MEMORY.

• The GLU provides a function to return the error number as a string
 GLubyte * gluErrorString(GLenum error)

• GLUT provides a function that lets you obtain GLUT state
 int glutGet(GLenum state)

E r r o r s i n O p e n G L

