Monash University e Clayton’s School of Information Technology

CSE3313 Computer Graphics

Lecture 8: OpenGL — Fonts, Tessellation, Transformations, Errors

GLUT provides a few raster and stroke fonts. It is also possible to
access the fonts in the windowing system.

We can access a single character from a monotype or evenly spaced
font by the function call

glutStrokeCharacter (
GLUT STROKE MONO ROMAN, int character)

Some words of caution:

The font may need to be scaled to fit in with the rest of the
program output;

Calling this function includes a translation to the bottom right
of the character box to prepare for the next character.

Transformations (scaling, rotation, translation, etc.) affect the
OpenGL state so we might need to use glPushMatrix and

glPopMatrix to return to the state before glPushMatrix was
called.

CSE3313: Computer Graphics Lecture 8/ 2 Lecture Notes 2007

As part of the OpenGL state there is a raster position which
identifies where the next raster primitive will be placed. This can be
set via glRasterPos* (), e.9.glRasterPos21i(10,10)

The raster position can be set in world coordinates. The current
raster position is updated automatically following a call to
glutBitmapCharacter ()

You can query the width of a bitmap character using

int glutBitmapWidth (GLUTbitmapFont font, 1nt char)
which returns the width of the character in the font font.

Example:

char * text = “hello world”; 1int 1;

glRasterPos21(10,10);

for (1 = 0; 1 < strlen(text),; ++1)
glutBitmapCharacter (GLUT BITMAP 9 BY 15,

text[1]);

CSE3313: Computer Graphics Lecture 8/ 3 Lecture Notes 2007

Concave Polygons

® GL POLYGON can only render simple, convex polygons. To draw

concave polygons we need to use the polygon tessellator interface
In GLU.

Before Tessellation After Tessellation

CSE3313: Computer Graphics Lecture 8/4 Lecture Notes 2007

Reference: Angel page 403

® We can declare a tessellator object using GLU

Note: one ‘I’
w=lp GLUtesselator * myTess;

myTess = gluNewTess ()
gluTessBeginPolygon (myTess, NULL) ;
gluTessBeginContour (myTess) ;
for (1 = 0; 1 < nvertices; 1i++)

gluTessVertex (myTess, vertex[1i], vertex[1l]);
gluTessEndContour (myTess) ;

gluTessEndPolygon (myTess) ;

® You also need to register tessellation callbacks:
gluTessCallback(GLUtesselator * t, GLenum which,
GLvoid (*CallBRackFunc) ()) ;

® Note that Angel contains typos and doesn’t mention callbacks!

CSE3313: Computer Graphics Lecture 8/5 Lecture Notes 2007

® To clear the colour part of the frame buffer:

glClearColor(r,qg,b,a); /* this only needs to be set
once 1f you don’t change the clear colour */

glClear (GL COLOR BUFFER BIT) ;
Other parts of the buffer (e.g. Depth buffer) can be cleared by a

logical or ("|’) with the appropriate constant.

GLUT coordinates are from the top left (0,0) increasing x moves

from left to right, increasing y goes from top to bottom.

OpenGL places the origin at the bottom left, increasing x moves

from left to right, increasing y goes from bottom to top.

CSE3313: Computer Graphics Lecture 8/6 Lecture Notes 2007

To transform 2D objects defined in world coordinates into
rasterized pixels defined in 2D screen coordinates OpenGL uses two
matrices — the model-view matrix and the projection matrix.

These matrices are part of the OpenGL state. To set either of these
matrices we preform the following steps:

ldentify the matrix we want to change
Set the matrix to the identity matrix
Change the identity matrix

For example to set the two dimensional clipping window:
glMatrixMode (GL PROJECTION) ;
glLoadIdentity ()

gluOrtho2D(-1.0, .0,

CSE3313: Computer Graphics Lecture 8/7 Lecture Notes 2007

The model view matrix transforms objects relative to the camera.

The projection matrix forms the image through projection and

helps with clipping by mapping vertices to a normalized coordinate

system.

We can also save and restore the current matrix on a stack using

glPushMatrix () and glPopMatrix ()

Vertices Vertices

—NModel view " Projection

CSE3313: Computer Graphics Lecture 8/ 8 Lecture Notes 2007

You can check for errors in the GL system via
GLenum glGetError()
This returns the error type or GL NO ERROR if no error has been

made. Once an error is made, no other errors are recorded until
glGetError has been called.

glGetError should be called in a loop, until it returns
GL NO ERROR if all error flags are to be reset.

Most errors do not effect the GL state or frame buffer contents,
with the exception of GL OUT OF MEMORY.

The GLU provides a function to return the error number as a string

GLubyte * gluErrorString(GLenum error)

GLUT provides a function that lets you obtain GLUT state
int glutGet (GLenum state)

CSE3313: Computer Graphics Lecture 8/9 Lecture Notes 2007

