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• A line segment is completely determined by its two end points. This 
is storage efficient.

• If a transformation turns a line into something other than a line, 
we could represent this either by line segments or by points.

• Transformations which preserve straight lines and parallelism are 
known as affine transformations.

• General 2D affine transformations:
 x’ = a x + b y + c

 y’ = d x + e y + f
or in matrix form:
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• Since affine transformations transform line segments into line 
segments, the application of any two successive affine 
transformations has an equivalent affine transformation.

• We can build complex transformations from a sequence of simple 
transformations.

• Basic transformations:

• translation;

• rotation about the origin;

• scaling.

• Other transformations:

• shear

• skew

A f f i n e  Tr a n s f o r m a t i o n s  ( c o n t . )
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• Translation shifts all points by an equal amount.

• Thus the point (x,y) will be translated into:

 x’ = x + ∆ x

 y’ = y + ∆ y

• In vector notation:

Tr a n s l a t i o n
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• As we rotate a point by an amount θ about the origin (in an anti-

clockwise direction) the point stays a constant distance from the 

origin.
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• Using polar form we have

 x = r cos Φ


 y = r sin Φ

and

 x’ = r cos(θ+Φ )

 y’ = r sin(θ+Φ )

• Using trigonometric identities for 

cosine and sine of the sum of two 

angles:

 x’ = r cos θ  cos Φ – r sin θ  sin Φ 

     = x cos θ  –  y sin θ  

 y’ = r cos θ  sin Φ + r sin θ  cos Φ


     = x sin θ  +  y cos θ  

R o t a t i o n  ( c o n t . )

(x,y)

(x’,y’)

r

r

Φ
θ

x

y

• As matrix-vector multiplication:
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• We can separate scaling in the x and y axes with constant α and β 

determining the amount of scaling in each direction.


 x’ = α x

 y’ = β y

S c a l i n g
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• A negative scaling factor will cause reflections to occur in that axis.

• Equal scaling in both axes is known as uniform scaling.

• Scaling can be expressed as the matrix-vector operation:

S c a l i n g  ( c o n t . )
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• Standard mathematical notation expresses vectors in column form:

R o w  a n d  C o l u m n  Ve c t o r s
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•  It is common in computer graphics to use row vectors
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When using column vectors, transformations accumulate from right to 
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• Two of the basic transformations can be expressed in the form:

 vector ←matrix times vector

• However, translation is expressed by:

 vector ← vector plus constant_vector

• Combining scaling and rotation is straightforward. If R denotes a 

rotation matrix and S a scaling matrix then

A = RS    denotes a scaling followed by a rotation;

B = SR    denotes a rotation followed by a scaling transformation.

• Matrix multiplication is not commutative, so the order in which 
calculations are carried out is significant.

• It is not possible to represent a translation as a matrix times vector 
transformation, if we are restricted to two dimensions.

C o m b i n i n g  Tr a n s f o r m a t i o n s
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• However, there is a representation in three dimensions.

• We represent the two dimensional point [x y] by the three 
dimensional point [wx  wy  w] where w is non-zero.

• This is known as a homogeneous coordinate transformation.

• In some circumstances w is used as a scaling factor to allow integer 
arithmetic to simulate rational arithmetic.

• Generally, w is set to 1.

• Suppose the translation maps (x, y) into (x + ∆ x, y + ∆ y), then:

H o m o g e n e o u s  C o o r d i n a t e s
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using column vectors. We may denote the matrix involved by
T(∆ x,∆ y).


