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Lecture 9: 2D Transformations




A line segment is completely determined by its two end points. This
iIs storage efficient.

If a transformation turns a line into something other than a line,
we could represent this either by line segments or by points.

Transformations which preserve straight lines and parallelism are
known as affine transformations.

General 2D affine transformations:

x’=ax+by+c

vi=dx+ey+f
or in matrix form:

R
f
1_
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Since affine transformations transform line segments into line
segments, the application of any two successive affine
transformations has an equivalent affine transformation.

We can build complex transformations from a sequence of simple
transformations.

Basic transformations:
translation;
rotation about the origin;
scaling.

Other transformations:
shear

skew
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Translation shifts all points by an equal amount.

Thus the point (x,y) will be translated into:
X =X+ AX

y=y+Ay
In vector notation:

rx’—l rx rAx—l

p,:Ll/'J’ p:LyJ’ tZLAyJ

p'=p+t

Translation
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® As we rotate a point by an amount 6 about the origin (in an anti-

clockwise direction) the point stays a constant distance from the

origin.

Rotation
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® Using polar form we have

x=rcos P
y=rsin®

and
x =rcos(0+d)
y' =rsin(0+d)

® Using trigonometric identities for

cosine and sine of the sum of two

angles:

Y '=7cosO cos P —rsin® sin d * As matrix-vector multiplication:

=xcosO® — ysin 0 p'=Rp

y'=rcos0 sin® +rsin0 cos ® R= cos6 -—sin6
'sinf® cosO

=xsmnBO + ycosO
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® We can separate scaling in the x and y axes with constant « and

determining the amount of scaling in each direction.

X' =0x

y' =By

Scaling
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® A negative scaling factor will cause reflections to occur in that axis.

e Equal scaling in both axes is known as uniform scaling.

e Scaling can be expressed as the matrix-vector operation:

y p’'=5p y
A A
where S =

Scaling
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Standard mathematical notation expresses vectors in column form:

’

| x
p: ,:Mp
Y

It is common in computer graphics to use row vectors

p'={x" y|=pM’

When using column vectors, transformations accumulate from right to

left. With row vectors transformations accumulate from left to right:

column: p’=|  [=M.M,M.p

row: p’=[x" y|=pMM,M,
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Two of the basic transformations can be expressed in the form:

vector «<matrix times vector

However, translation is expressed by:

vector « vector plus constant_vector

Combining scaling and rotation is straightforward. If R denotes a

rotation matrix and S a scaling matrix then
A=RS denotes a scaling followed by a rotation;
B=SR denotes a rotation followed by a scaling transformation.

Matrix multiplication is not commutative, so the order in which
calculations are carried out is significant.

It is not possible to represent a translation as a matrix times vector
transformation, if we are restricted to two dimensions.
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However, there is a representation in three dimensions.

We represent the two dimensional point [x y] by the three
dimensional point [wx wy w] where w is non-zero.

This is known as a homogeneous coordinate transformation.

In some circumstances w is used as a scaling factor to allow integer
arithmetic to simulate rational arithmetic.

Generally, wis set to 1.

Suppose the translation maps (x, y) into (x + A x, y + A y), then:

1 0 Ax|x
O 1 Ayly
0 0 1]1

using column vectors. We may denote the matrix involved by
T(A x,A ).
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