
Monash University • Clayton’s School of Information Technology

Lecture 9: 2D Transformations

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

CSE3313: Computer Graphics Lecture 9 / Lecture Notes 20072

• A line segment is completely determined by its two end points. This
is storage efficient.

• If a transformation turns a line into something other than a line,
we could represent this either by line segments or by points.

• Transformations which preserve straight lines and parallelism are
known as affine transformations.

• General 2D affine transformations:
 x’ = a x + b y + c

 y’ = d x + e y + f
or in matrix form:

A f f i n e Tr a n s f o r m a t i o n s

�

′ x
′ y

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
a b c
d e f
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

CSE3313: Computer Graphics Lecture 9 / Lecture Notes 20075

• Since affine transformations transform line segments into line
segments, the application of any two successive affine
transformations has an equivalent affine transformation.

• We can build complex transformations from a sequence of simple
transformations.

• Basic transformations:

• translation;

• rotation about the origin;

• scaling.

• Other transformations:

• shear

• skew

A f f i n e Tr a n s f o r m a t i o n s (c o n t .)

CSE3313: Computer Graphics Lecture 9 / Lecture Notes 20076

• Translation shifts all points by an equal amount.

• Thus the point (x,y) will be translated into:

 x’ = x + ∆ x

 y’ = y + ∆ y

• In vector notation:

Tr a n s l a t i o n

�

′ p = ′ x
′ y

⎡

⎣
⎢

⎤

⎦
⎥ , p =

x
y

⎡

⎣
⎢

⎤

⎦
⎥ , t =

Δx
Δy

⎡

⎣
⎢

⎤

⎦
⎥

′ p = p + t

CSE3313: Computer Graphics Lecture 9 / Lecture Notes 20077

• As we rotate a point by an amount θ about the origin (in an anti-

clockwise direction) the point stays a constant distance from the

origin.

R o t a t i o n

(x,y)

(x’,y’)

r

r

Φ
θ

x

y

CSE3313: Computer Graphics Lecture 9 / Lecture Notes 20078

• Using polar form we have

 x = r cos Φ

 y = r sin Φ

and

 x’ = r cos(θ+Φ)

 y’ = r sin(θ+Φ)

• Using trigonometric identities for

cosine and sine of the sum of two

angles:

 x’ = r cos θ cos Φ – r sin θ sin Φ

 = x cos θ – y sin θ

 y’ = r cos θ sin Φ + r sin θ cos Φ

 = x sin θ + y cos θ

R o t a t i o n (c o n t .)

(x,y)

(x’,y’)

r

r

Φ
θ

x

y

• As matrix-vector multiplication:

�

′ p = Rp

R = cosθ − sin θ
sinθ cosθ

⎡

⎣
⎢

⎤

⎦
⎥

CSE3313: Computer Graphics Lecture 9 / Lecture Notes 20079

• We can separate scaling in the x and y axes with constant α and β

determining the amount of scaling in each direction.

 x’ = α x

 y’ = β y

S c a l i n g

CSE3313: Computer Graphics Lecture 9 / Lecture Notes 200710

• A negative scaling factor will cause reflections to occur in that axis.

• Equal scaling in both axes is known as uniform scaling.

• Scaling can be expressed as the matrix-vector operation:

S c a l i n g (c o n t .)

�

′ p = Sp

where S = α 0
0 β

⎡

⎣
⎢

⎤

⎦
⎥

CSE3313: Computer Graphics Lecture 9 / Lecture Notes 200711

• Standard mathematical notation expresses vectors in column form:

R o w a n d C o l u m n Ve c t o r s

�

′ p = ′ x
′ y

⎡

⎣
⎢

⎤

⎦
⎥ = Mp

• It is common in computer graphics to use row vectors

�

′ p = ′ x ′ y [] = pMT

When using column vectors, transformations accumulate from right to

left. With row vectors transformations accumulate from left to right:

�

column : ′ p = ′ x
′ y

⎡

⎣
⎢

⎤

⎦
⎥ = M3M2M1p

row : ′ p = ′ x ′ y [] = pM1M2M3

CSE3313: Computer Graphics Lecture 9 / Lecture Notes 200712

• Two of the basic transformations can be expressed in the form:

 vector ←matrix times vector

• However, translation is expressed by:

 vector ← vector plus constant_vector

• Combining scaling and rotation is straightforward. If R denotes a

rotation matrix and S a scaling matrix then

A = RS denotes a scaling followed by a rotation;

B = SR denotes a rotation followed by a scaling transformation.

• Matrix multiplication is not commutative, so the order in which
calculations are carried out is significant.

• It is not possible to represent a translation as a matrix times vector
transformation, if we are restricted to two dimensions.

C o m b i n i n g Tr a n s f o r m a t i o n s

CSE3313: Computer Graphics Lecture 9 / Lecture Notes 200713

• However, there is a representation in three dimensions.

• We represent the two dimensional point [x y] by the three
dimensional point [wx wy w] where w is non-zero.

• This is known as a homogeneous coordinate transformation.

• In some circumstances w is used as a scaling factor to allow integer
arithmetic to simulate rational arithmetic.

• Generally, w is set to 1.

• Suppose the translation maps (x, y) into (x + ∆ x, y + ∆ y), then:

H o m o g e n e o u s C o o r d i n a t e s

�

′ x
′ y

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
1 0 Δx
0 1 Δy
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

using column vectors. We may denote the matrix involved by
T(∆ x,∆ y).

