

Monash University • Clayton's School of Information Technology

CSE3313 Computer Graphics

Lecture 10: Homogeneous Transformations in 2D

Homogeneous Coordinates

We have the homogeneous representations for translation, rotation and scaling:

$$\mathbf{T}(\Delta x, \Delta y) = \begin{bmatrix} 1 & 0 & \Delta x & x \\ 0 & 1 & \Delta y & y \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{R}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\mathbf{S}(\alpha, \beta) = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

- If we use an affine transformation to produce a transformed point $p' = \mathbf{A} p$, then if \mathbf{A}^{-1} exists we have $p = \mathbf{A}^{-1} p'$.
- A^{-1} is the inverse transformation, that is, the transformation that undoes the effect of A.

Inverse Transforms

 For the basic transformations of translation, rotation and scaling the inverse transformations are easy to calculate:

$$\mathbf{T}^{-1}(\Delta x, \Delta y) = \mathbf{T}(-\Delta x, -\Delta y)$$

$$\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$$

$$\mathbf{S}^{-1}(\alpha, \beta) = \mathbf{S}(\frac{1}{\alpha}, \frac{1}{\beta})$$

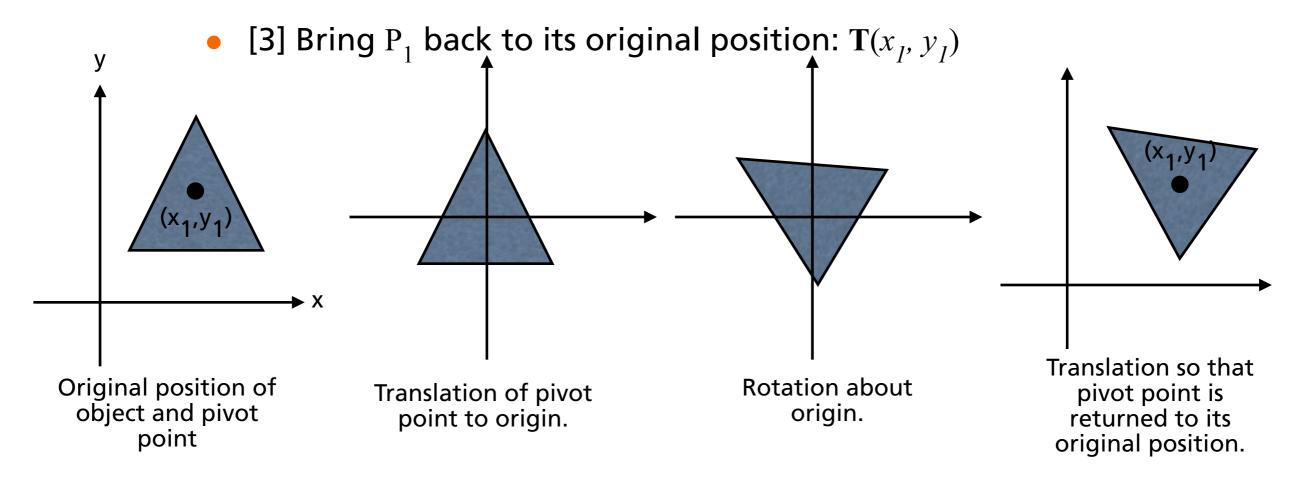
Note: if α or β are zero then everything gets squashed onto a line or a point and the inverse transformation would not exist.

Furthermore if a composite transformation is given by **A B**, transform by **B**, followed by a transform by A then:

 $(A B)^{-1} = B^{-1} A^{-1}$, undo transformation by A, then undo transformation by B.

Concatenated Transforms

- Rotation about a point $P_1 = (x_I, y_I)$
- The basic transformation is to rotate about the origin.
- To rotate about an arbitrary point:
 - [1] Bring P_1 to the origin: $T(-x_1, -y_1)$
 - [2] Rotate by θ about the origin: $\mathbf{R}(\theta)$



Rotation about a point (cont.)

• The overall transformation is:

$$\begin{vmatrix} 1 & 0 & x_1 \\ 0 & 1 & y_1 \\ 0 & 0 & 1 \end{vmatrix} \cos \theta - \sin \theta & 0 \begin{vmatrix} 1 & 0 & -x_1 \\ 0 & 1 & y_1 \\ 0 & 0 & 1 \end{vmatrix} \cos \theta - \cos \theta & 0 \begin{vmatrix} 0 & 1 & -y_1 \\ 0 & 1 & y_1 \\ 0 & 0 & 1 \end{vmatrix} \cos \theta - \sin \theta - x_1 \cos \theta + y_1 \sin \theta \\ \sin \theta & \cos \theta - x_1 \sin \theta - y_1 \cos \theta \\ 0 & 0 & 1 \end{vmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta & -x_1 \cos \theta + y_1 \sin \theta + x_1 \\ \sin \theta & \cos \theta & -x_1 \sin \theta - y_1 \cos \theta + y_1 \\ 0 & 0 & 1 \end{bmatrix}$$

Compound Transforms: Viewport Transform

• The viewport transformation:

$$wx_{\min}$$
 , wx_{\max} , wy_{\min} , wy_{\max}

defines a window in world coordinates while

$$vx_{\min}$$
 , vx_{\max} , vy_{\min} , vy_{\max}

defines a viewport in normalised device coordinates.

Let us define:

$$s_x = \frac{vx_{\text{max}} - vx_{\text{min}}}{wx_{\text{max}} - wx_{\text{min}}}, \ s_y = \frac{vy_{\text{max}} - vy_{\text{min}}}{wy_{\text{max}} - wy_{\text{min}}}$$

 s_x is the scaling in the x direction. s_y is the scaling in the y direction.

Viewport Transformation (cont.)

- The viewport transformation can be expressed as:
 - Translate (wx_{min}, wy_{min}) to the origin;
 - Scale by s_x and s_y ;
 - Translate origin to (vx_{min}, vy_{min}) .

$$\begin{bmatrix} 1 & 0 & vx_{\min} & s_x & 0 & 0 & 1 & 0 & -wx_{\min} \\ 0 & 1 & vy_{\min} & 0 & s_y & 0 & 0 & 1 & -wy_{\min} \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & vx_{\min} \\ 0 & 1 & vy_{\min} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & -s_x wx_{\min} \\ 0 & s_y & -s_y wy_{\min} \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} s_x & 0 & vx_{\min} - s_x wx_{\min} \\ 0 & s_y & vy_{\min} - s_y wy_{\min} \\ 0 & 0 & 1 \end{bmatrix}$$

Combining Transformations

- There may be more than one way of combining basic transformations to achieve a required complex transformation.
- For example the viewport transformation could be expressed as
 - [1] translate the centre of the window to the origin;
 - [2] scale so that the window and the viewport are the same size;
 - [3] translate the origin to the centre of the viewport.
- Note that all these transformations result in a 3 x 3 matrix whose last row is:

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

- Normally, multiplying a 3 x 3 matrix by a 3 x 1 vector costs 9 multiplications.
- For transformation matrices only 4 multiplications are required when the scaling factor in homogeneous coordinates is set to 1.
- These facts might be used to implement transformations efficiently, even if it is more convenient to treat them conceptually as 3 x 3 matrices.

Transformations in OpenGL

- The order in which transformations is applied matters. Changing that order may lead to a different composite transform.
- Transformations applied to objects prior to the viewport transformation are called object or modelling transformations.
- Transformations applied to objects after the viewport transformation are called image transformations.
- OpenGL has transformation matrices that are part of the state of the graphics system. The two most important are the model-view and the projection matrices. Both matrices start off as identity matrices.
- The model-view matrix converts world coordinates to viewing coordinates, i.e. coordinates relative to the viewer or synthetic camera.

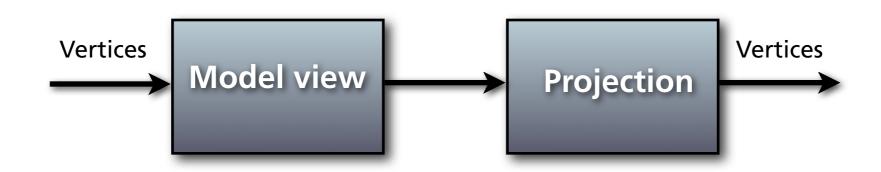
Transformations in OpenGL (cont.)

- The projection matrix is used to transform the viewing coordinates of objects to 2D device coordinates.
- Operations in OpenGL are applied to the current matrix only. The current matrix is chosen by setting the matrix mode. The default mode is GL_MODELVIEW.
- For example, in sample programs we might have the following code in an initialization routine like myInit.

```
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 500.0, 0.0, 500.0);
glMatrixMode(GL MODELVIEW);
```

This code follows the convention of always leaving the matrix mode in a default state — in this case GL MODELVIEW

Transformations in OpenGL (cont)

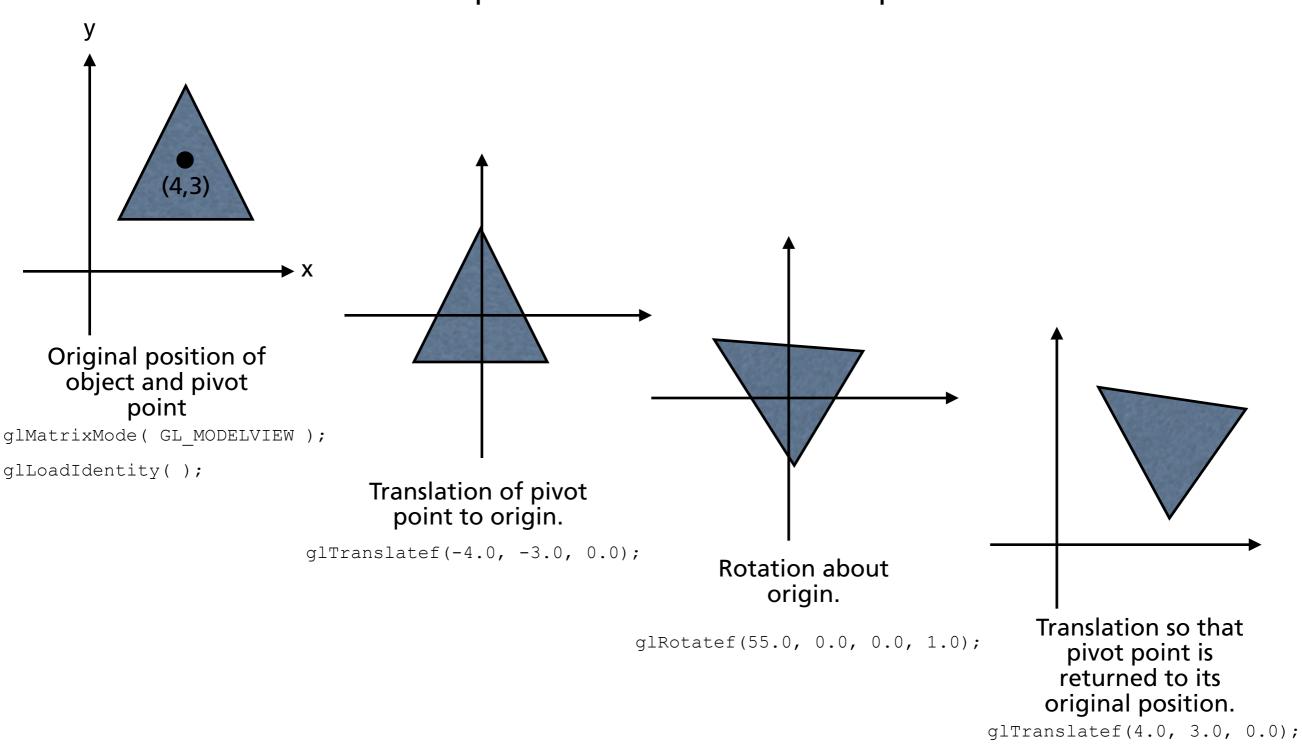


OpenGL Transformations

- glRotatef (angle, vx, vy, vz) rotate about the vector (vx,vy,vz) by angle degrees. (see also glRotated — double prec. version).
- glTranslatef(dx, dy, dz) translation T(dx,dy,dz)
- glScale(sx, sy, sz) scale S(sx, sy, sz)
- All these transformation routines alter the selected matrix by postmultiplication.

Transformations in OpenGL

• How to do this compound transformation in OpenGL?



Compound Transformation Example Reference: Angel Section 4.9

Rotation about a fixed point:

```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(4.0, 3.0, 0.0);
glRotatef(55.0, 0.0, 0.0, 1.0);
glTranslatef(-4.0, -3.0, 0.0);
```

Order of transformations:

$$C \leftarrow I$$

 $C \leftarrow C \quad T(4.0, 3.0, 0.0)$
 $C \leftarrow C \quad R(55.0, 0.0, 0.0, 1.0)$
 $C \leftarrow C \quad T(-4.0, -3.0, 0.0)$

Each vertex, p, that is sent after the model-view matrix has been set will be multiplied by C, thus forming a new vertex:

$$p' = C p$$