Original position of
object and pivot
point

Monash University e Clayton’s School of Information Technology

CSE3313 Computer Graphics

Lecture 10: Homogeneous Transformations in 2D

We have the homogeneous representations for translation, rotation

and scaling:
1 0 Ax|x

T(Ax,Ay)=|0 1 Ayly
0 0 1]1

_cose —sin @ O—
sing cos6 O
0 1

If we use an affine transformation to produce a transformed point

p’= A p, then if A1 exists we have p = A_lp .

A'1 is the inverse transformation, that is, the transformation that
undoes the effect of A.

CSE3313: Computer Graphics Lecture 10 /2 Lecture Notes 2007

For the basic transformations of translation, rotation and scaling
the inverse transformations are easy to calculate:
T'(Ax, Ay) = T(-Ax,—Ay)
R'(0)=R(-6)
S e, B) = S(l,l
o

Note: if « or B are zero then everything gets squashed onto a line or

)

a point and the inverse transformation would not exist.

Furthermore if a composite transformation is given by A B, transform

by B, followed by a transform by A then:

1 ,-1

A 7, undo transformation by A, then undo

AB =5

transformation by B.

CSE3313: Computer Graphics Lecture 10 /3 Lecture Notes 2007

o Rotation about a pointP, =(x,, y,)

® The basic transformation is to rotate about the origin.

® To rotate about an arbitrary point:

o [1] Bring P, to the origin: T(=x, —y,)

® [2] Rotate by 6 about the origin: R(0)

o [3] Bring P, back to its original position: T(x,, y,)

. - _ Translation so that
Original position of Translation of pivot Rotation about pivot point is

object and pivot point to origin. origin. returned to its
point original position.

CSE3313: Computer Graphics Lecture 10 /4 Lecture Notes 2007

The overall transformation is:

cosf —-sinf 0|1 O -x,
sin@ cosf6 O|0 1 -y,
0 0 1{0 0 1

1 0 x,{cos@ —-sin@® —x,cos+y,sinb

O 1 y,|sinf cos® —x,sinf-y,cosH
00 1] O 0 1

cosf -—-sinf —x,cos+y,sinf+x,
sinf cosO —x,sinf-y,cosf+y,
0 0 1

CSE3313: Computer Graphics Lecture 10 /5 Lecture Notes 2007

® The viewport transformation:

wxmin 3 wxmax ’ wy min ? wy max

defines a window in world coordinates while

vxmin ’ vxmax ’ Uy min ? Uy max
defines a viewport in normalised device coordinates.

Let us define:

S = vxmax _Uxmin , S

X

— Uy max Uy min

Yy
wx ax wxmin wy max wy min

m

s_is the scaling in the x direction. s_ is the scaling in the y direction.
Y

CSE3313: Computer Graphics Lecture 10 /6 Lecture Notes 2007

® The viewport transformation can be expressed as:

wy .)to the origin;

e Translate (wx_ .,
min min

o Scale by s_and S,

)-

e Translate originto (vx_. , vy .
min min

1 0 ovx . 0 1 0 —wx

O 1 Uy min
00 1

0 s, 0 1 —wy_,
0

0
0

0 10 0 1
0
S

vX -S WX,

min

_Sy wymin

1 0

1 0
O 1 Uymin
0 0

CSE3313: Computer Graphics Lecture 10 /7 Lecture Notes 2007

There may be more than one way of combining basic
transformations to achieve a required complex transformation.

For example the viewport transformation could be expressed as

1] translate the centre of the window to the origin;
2] scale so that the window and the viewport are the same size;
3] translate the origin to the centre of the viewport.

Note that all these transformations result in a 3 x 3 matrix whose
last row is:

[0 0 1]

Normally, multiplying a 3 x 3 matrix by a 3 x 1 vector costs 9
multiplications.

For transformation matrices only 4 multiplications are required
when the scaling factor in homogeneous coordinates is set to 1.

These facts might be used to implement transformations efficiently,
even if it is more convenient to treat them conceptually as 3 x 3
matrices.

CSE3313: Computer Graphics Lecture 10 /8 Lecture Notes 2007

The order in which transformations is applied matters. Changing
that order may lead to a different composite transform.

Transformations applied to objects prior to the viewport
transformation are called object or modelling transformations.

Transformations applied to objects after the viewport
transformation are called image transformations.

OpenGL has transformation matrices that are part of the state of
the graphics system. The two most important are the model-view
and the projection matrices. Both matrices start off as identity
matrices.

The model-view matrix converts world coordinates to viewing
coordinates, i.e. coordinates relative to the viewer or synthetic

camera.

CSE3313: Computer Graphics Lecture 10 /9 Lecture Notes 2007

The projection matrix is used to transform the viewing coordinates
of objects to 2D device coordinates.

Operations in OpenGL are applied to the current matrix only. The
current matrix is chosen by setting the matrix mode. The default

mode is GL MODELVIEW.

For example, in sample programs we might have the following
code in an initialization routine like myInit.
glMatrixMode (GL PROJECTION) ;
glLoadIdentity()
gluOrtho2D(0.0, 500.0, 0.0, 500.0);

glMatrixMode (GL MODELVIEW) ;
This code follows the convention of always leaving the matrix

mode in a default state — in this case GL MODELVIEW

CSE3313: Computer Graphics Lecture 10 /10 Lecture Notes 2007

Vertices Vertices

' Model view Projection

® OpenGL Transformations

® glRotatef (angle, vx, vy, vz) — rotate about the vector

(vx,vy,vz) by angle degrees. (see also glRotated — double prec.
version).

glTranslatef (dx, dy, dz)— translation T(dx,dy dz)
glScale (sx, sy, sz)— scale S(sx,sy,s2)

e All these transformation routines alter the selected matrix by post-
multiplication.

CSE3313: Computer Graphics Lecture 10 /11 Lecture Notes 2007

® How to do this compound transformation in OpenGL?

Original position of
object and pivot
point
glMatrixMode (GL MODELVIEW) ;

glLoadIdentity(); i .
Translation of pivot
point to origin.

glTranslatef(-4.0, -3.0, 0.0);

Rotation about
origin.

Translation so that
pivot point is
returned to its
original position.
glTranslatef (4.0, 3.0, 0.0);

glRotatef (55.0, 0.0, 0.0, 1.0);

CSE3313: Computer Graphics Lecture 10 /12 Lecture Notes 2007

Reference: Angel Section 4.9

Rotation about a fixed point:
glMatrixMode (GL MODELVIEW) ;

glLoadIdentity()

glTranslatef (4.0, 3.0, 0.0);
glRotatef (55.0, 0.0, 0.0, 1.0);
glTranslatef (-4.0, -3.0, 0.0);

Order of transformations:
C <1
C « C T(4.0, 3.0, 0.0)
C « C R(55.0, 0.0, 0.0, 1.0)
C « C T(-4.0,-3.0, 0.0)

Each vertex, p, that is sent after the model-view matrix has been set
will be multiplied by C, thus forming a new vertex:

p’=Cp

CSE3313: Computer Graphics Lecture 10 /13 Lecture Notes 2007

