

Monash University • Clayton's School of Information Technology

CSE3313 Computer Graphics

Lecture 11: Scan Conversion of Lines

Scan Conversion

- A line is defined by its two endpoints.
- To draw a line all pixels between the two endpoint pixels must be illuminated. On vector devices we can vary the deflection inputs linearly to draw a line.
- On raster devices we need to calculate exactly which pixels in the frame buffer are to be set. This conversion is usually done in

hardware.

Scan Conversion (cont.)

- Criteria for well generated lines:
 - lines must appear straight or gently curving. Points must be set so that they are ≤ 1 pixel away from the true position of the line;
 - the line must start and end accurately, so lines can be joined;
 - the line should have a constant brightness (thickness) along its length (number of pixels per unit distance constant);
 - all lines should have the same density (brightness, thickness)
 irrespective of their length or orientation;
 - all lines should be drawn rapidly.

Incremental Line Drawing Methods

The equation for a line is

$$y = m x + c$$

where m and c are constants. m gives the *gradient* or slope of the line.

• For two points (x_1, y_1) and (x_2, y_2) we have

$$y_1 = m x_1 + c \text{ and } y_2 = m x_2 + c$$
 (1)

Thus

$$y_2 - y_1 = m(x_2 - x_1)$$
 and $y_2 = m(x_2 - x_1) + y_1$ (2)

- To compute y_2 from (1) requires 1 multiplication and 1 addition.
- To compute y_2 from (2) requires 1 addition if $m(x_2 x_1)$ is held constant.
- Incremental methods save on computational effort in computing a new point by computing a difference from the previous point.

The DDA algorithm (Digital Differential Analyser)

Using a parametric representation for a line

$$x = x_1 + \alpha (x_2 - x_1)$$
$$y = y_1 + \alpha (y_2 - y_1)$$

where $0 \le \alpha \le 1$.

 With an incremental method we have a choice of incrementing either x or y to produce a pixel in the next column or row.

$$x = x_1 + \alpha \Delta x, \Delta x = (x_2 - x_1)$$

 $y = y_1 + \alpha \Delta y, \Delta y = (y_2 - y_1)$

- We could increment α so that either x or y in increased by exactly one each time (e.g. $\alpha \Delta x = 1$ or $\alpha \Delta y = 1$).
- if $(|\Delta x| > |\Delta y|)$ then increment x, since x is changing quicker else increment y since y is changing quicker.

DDA Algorithm

```
• dx ← x2 - x1
  dy ← y2 - y1
  if (abs(dx) > abs(dy)) {
      increment ← dy / dx
      for i \leftarrow x1 to x2 {
           setPixel( i, round(y) )
           y ← y + increment
  } else {
      increment \leftarrow dx / dy
      for i \leftarrow y1 to y2 {
           setPixel( round(x), i )
           x \leftarrow x + increment
```

Bresenham's Algorithm

- The main work is done in the body of the for loops where there is a floating point addition and at each stage we need to convert a floating point number to an integer device coordinate.
- Bresenham's Algorithm is more efficient than the DDA since it avoids the use of any floating point arithmetic. It still sets the same pixels that the DDA would set.
- It first checks the slope to see whether x or y should be incremented. Without loss of generality we consider the case where Δx is positive and $0 \le m \le 1$.
- Suppose we have just set a pixel at (I, J). (I,J) might not be on the actual line but it is within 1 pixel of the line

$$J - 0.5 \le y \le J + 0.5$$

where (I, y) is on the actual line.

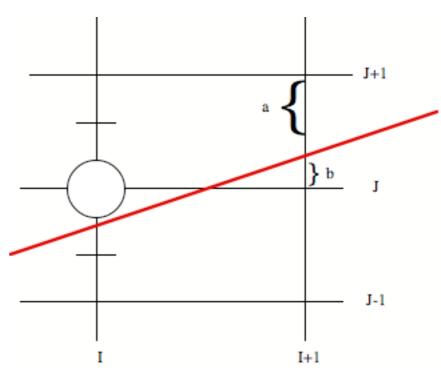
• The constraints on m imply the next point must be either (I + 1, J)

or
$$(I + 1, J + 1)$$

$$y = mx + c$$

$$y = mx + c$$

- (1) if a > b, i.e. a b > 0 then the y coordinate is J.
- (2) if a < b, i.e. a b < 0 then the y coordinate is J + 1.



If J was not incremented at the last point:

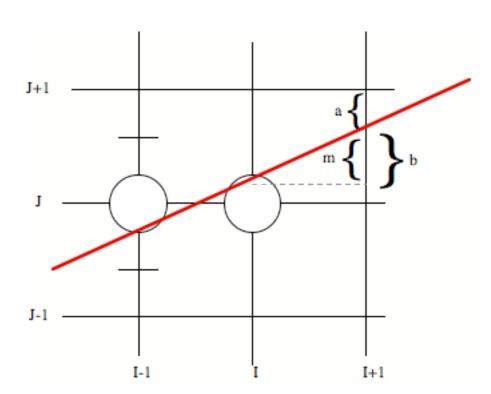
$$a' \leftarrow a - m$$

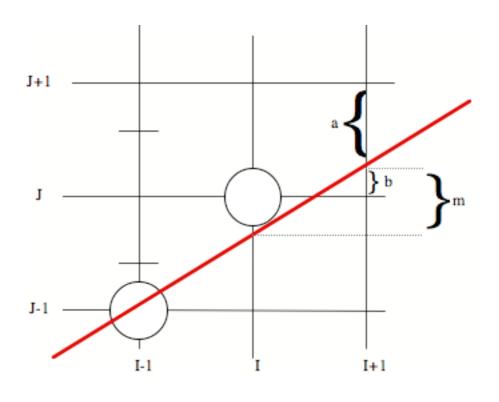
 $b' \leftarrow b + m$
 $a' - b' \leftarrow (a - b) - 2m$

$$a' \leftarrow 1 + a - m$$

 $b' \leftarrow b + m - 1$
 $a' - b' \leftarrow (a - b) - 2m + 2$

• (a-b) is the important quantity. It is a floating point number, but we are only interested in its sign.





Bresenham's algorithm takes advantage of the fact that x_1, y_1, x_2, y_2 are all integers, so that the slope m is a rational number.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$

- In Bresenham's algorithm we scale (a b) so that we can deal with quantities that are purely integer.
- Thus $e = \Delta x(a b)$ has the same sign as (a b) and will tell us when it is time to increment the y coordinate.
- When we decrement (a b) by either 2m or 2m 2 we need to decrement $\Delta x(a b) (= e)$ by either:

$$2m \Delta x (= 2 \Delta y)$$

or $2m \Delta x - 2 \Delta x (= 2 \Delta y - 2 \Delta x)$

Bresenham's Line-drawing Algorithm for |m| < 1

- 1. Input the two line endpoints and store left endpoint in (x_0, y_0)
- 2. Plot the first point at (x_0, y_0)
- 3. Calculate the constants Δx , Δy , $2\Delta y$ and $2\Delta y 2\Delta x$ and starting value for the decision parameter as:

$$e_0 = \Delta x - 2\Delta y$$

- 4. At each x_k along the line, starting at k=0 perform the following test: if $e_k > 0$ the next point is (x_k+1, y_k) and $e_{k+1} = e_k 2\Delta y$ Otherwise, the next point is (x_{k+1}, y_{k+1}) and $e_{k+1} = e_k - 2\Delta y + 2\Delta x$
- 5. Repeat step $4 \Delta x 1$ times.

```
\Delta x = |x2 - x1|, \Delta y = |y2 - y1|
twoDy = 2 * \Delta y
twoDyMinusDx = 2 * (\Delta y - \Delta x)
e = \Delta x - 2 * \Delta y
```

Determine endpoint to start:

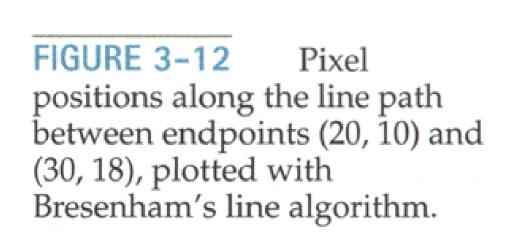
```
if (x1 > x2) { x = x2, y = y2, x2 = x1; } else { x = x1, y = y1; } setPixel(x,y);
```

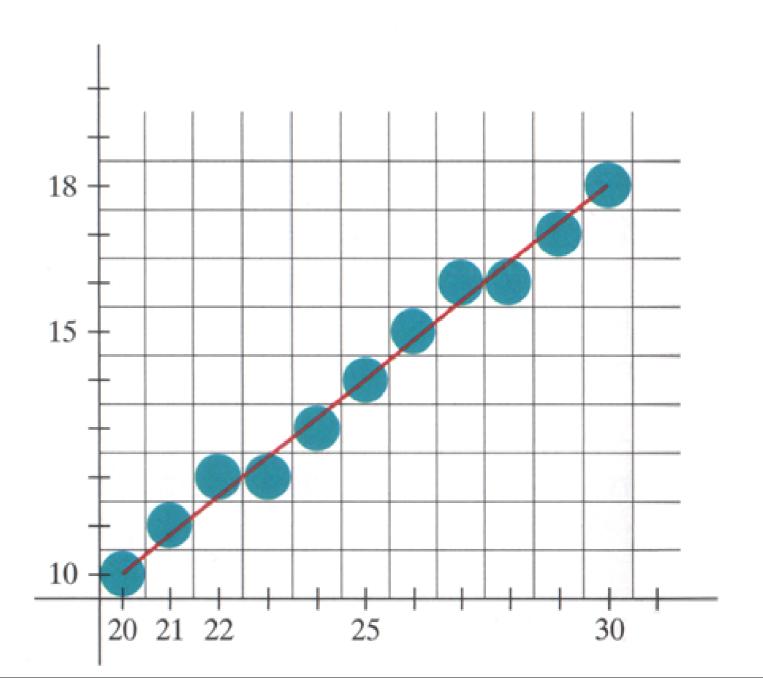
Body of main loop:

```
while (x < x2) {
    x = x + 1
    if (e > 0) {
    /* a - b > 0, a > b, don't increment J */
        e = e - twoDy;
    } else {
        y = y + 1
        e = e - twoDyMinusDx;
    }
    setPixel(x, y)
}
```

k	p_k	(x_{k+1}, y_{k+1})
0	6	(21, 11)
1	2	(22, 12)
2	-2	(23, 12)
3	14	(24, 13)
4	10	(25, 14)

k	p_k	(x_{k+1}, y_{k+1})
5	6	(26, 15)
6	2	(27, 16)
7	-2	(28, 16)
8	14	(29, 17)
9	10	(30, 18)





- All those operations can proceed using only integer arithmetic.
- For each output pixel we have one integer comparison, and an integer addition and possibly an increment by 1.
- Looking at the conditions for the initial point, (x_1, y_1) , the initial value for $\Delta x(a-b)$ is $\Delta x 2\Delta y$.
- The initial value assumes the first point of the line coincides exactly with the pixel location for the start of the line.
- For lines with gradient greater than 1 the roles of x and y are swapped.
- The case where lines have negative slopes is handled by symmetry.