
Monash University • Clayton’s School of Information Technology

Lecture 11: Scan Conversion of Lines

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 20072

• A line is defined by its two endpoints.

• To draw a line all pixels between the two endpoint pixels must be

illuminated. On vector devices we can vary the deflection inputs

linearly to draw a line.

• On raster devices we need to calculate exactly which pixels in the

frame buffer are to be set. This conversion is usually done in

hardware.

S c a n C o n v e r s i o n

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 20073

• Criteria for well generated lines:

• lines must appear straight or gently curving. Points must be set

so that they are ≤ 1 pixel away from the true position of the
line;

• the line must start and end accurately, so lines can be joined;

• the line should have a constant brightness (thickness) along its

length (number of pixels per unit distance constant);

• all lines should have the same density (brightness, thickness)

irrespective of their length or orientation;

• all lines should be drawn rapidly.

S c a n C o n v e r s i o n (c o n t .)

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 20074

• The equation for a line is
 y = m x + c
where m and c are constants. m gives the gradient or slope of the
line.

• For two points (x1, y1) and (x2, y2) we have

 y1 = m x1 + c and y2 = m x2 + c (1)

Thus
 y2 – y1 = m(x2 – x1) and y2 = m(x2 – x1) + y1 (2)

• To compute y2 from (1) requires 1 multiplication and 1 addition.

• To compute y2 from (2) requires 1 addition if m(x2 – x1) is held

constant.

• Incremental methods save on computational effort in computing a
new point by computing a difference from the previous point.

I n c r e m e n t a l L i n e D r a w i n g M e t h o d s

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 20075

• Using a parametric representation for a line
 x = x1 + α (x2 – x1)

 y = y1 + α (y2 – y1)

where 0 ≤ α ≤ 1.

• With an incremental method we have a choice of incrementing
either x or y to produce a pixel in the next column or row.
 x = x1 + α Δx, Δx = (x2 – x1)

 y = y1 +α Δy, Δy = (y2 – y1)

• We could increment α so that either x or y in increased by exactly
one each time (e.g. α Δx = 1 or α Δy = 1).

• if (|Δx| > |Δy|) then increment x, since x is changing quicker
else increment y since y is changing quicker.

T h e D D A a l g o r i t h m (Digital Differential Analyser)

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 20076

• dx ← x2 – x1

dy ← y2 – y1

if (abs(dx) > abs(dy)) {

 increment ← dy / dx

 for i ← x1 to x2 {

 setPixel(i, round(y))

 y ← y + increment

 }

} else {

 increment ← dx / dy

 for i ← y1 to y2 {

 setPixel(round(x), i)

 x ←x + increment

 }

}

D D A A l g o r i t h m

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 20077

• The main work is done in the body of the for loops where there is
a floating point addition and at each stage we need to convert a
floating point number to an integer device coordinate.

• Bresenham’s Algorithm is more efficient than the DDA since it
avoids the use of any floating point arithmetic. It still sets the same
pixels that the DDA would set.

• It first checks the slope to see whether x or y should be
incremented. Without loss of generality we consider the case

where Δx is positive and 0 ≤ m ≤ 1.

• Suppose we have just set a pixel at (I, J). (I,J) might not be on the
actual line but it is within 1 pixel of the line

 J – 0.5 ≤ y ≤ J + 0.5
where (I, y) is on the actual line.

B r e s e n h a m ’s A l g o r i t h m

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 20078

• The constraints on m imply the next point must be either (I + 1, J)

or (I + 1, J + 1)

B r e s e n h a m ’s A l g o r i t h m (c o n t .)

y = mx + c

(1) if a > b, i.e. a – b > 0 then

the y coordinate is J.

(2) if a < b, i.e. a – b < 0 then the

y coordinate is J + 1.

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 20079

• If J was not incremented at the last point:

 a’ ←a – m

 b’ ← b + m

 a’ – b’ ← (a – b) – 2m

• If J was incremented at the last point:

 a’ ←1+ a – m

 b’ ← b + m – 1

 a’ – b’ ← (a – b) – 2m + 2

• (a – b) is the important quantity. It is a

floating point number, but we are only

interested in its sign.

B r e s e n h a m ’s A l g o r i t h m (c o n t .)

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 200710

• In Bresenham’s algorithm we scale (a – b) so that we can deal with
quantities that are purely integer.

• Thus e = ∆x(a – b) has the same sign as (a – b) and will tell us
when it is time to increment the y coordinate.

• When we decrement (a – b) by either 2m or 2m – 2 we need to

decrement ∆x(a – b) (= e) by either:

 2m ∆x (= 2 ∆y)
or
 2m ∆x – 2 ∆x (= 2 ∆y – 2 ∆x)

B r e s e n h a m ’s A l g o r i t h m (c o n t .)

Bresenham’s algorithm takes advantage of the fact that x1, y1, x2, y2 are

all integers, so that the slope m is a rational number.

�

m = y2 − y1

x2 − x1

= Δy
Δx

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 2007

B r e s e n h a m ’s L i n e - d r a w i n g A l g o r i t h m f o r | m | < 1

1. Input the two line endpoints and store left endpoint in (x0, y0)

2. Plot the first point at (x0, y0)

3. Calculate the constants ∆x, ∆y, 2∆y and 2∆y – 2∆x and starting

value for the decision parameter as:

e0 = ∆x – 2∆y

4. At each xk along the line, starting at k = 0 perform the following

test: if ek > 0 the next point is (xk+1, yk) and ek+1 = ek – 2∆y

Otherwise, the next point is (xk+1, yk+1) and ek+1 = ek – 2∆y + 2∆x

5. Repeat step 4 ∆x – 1 times.

11

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 200712

• ∆x = |x2 – x1|, ∆y = |y2 – y1|
twoDy = 2 * ∆y
twoDyMinusDx = 2 * (∆y – ∆x)
e = ∆x – 2 * ∆y

• Determine endpoint to start:
if (x1 > x2) { x = x2, y = y2, x2 = x1; }
else { x = x1, y = y1; }
setPixel(x,y);

• Body of main loop:
while (x < x2) {
 x = x + 1
 if (e > 0) {
 /* a - b > 0, a > b, don’t increment J */
 e = e – twoDy;
 } else {
 y = y + 1
 e = e - twoDyMinusDx;
 }
 setPixel(x, y)
}

B r e s e n h a m ’s A l g o r i t h m (c o n t .)

CSE3313: Computer Graphics Lecture 11 / Lecture Notes 200714

• All those operations can proceed using only integer arithmetic.

• For each output pixel we have one integer comparison, and an

integer addition and possibly an increment by 1.

• Looking at the conditions for the initial point, (x1, y1), the initial

value for ∆x(a – b) is ∆x – 2∆y.

• The initial value assumes the first point of the line coincides exactly

with the pixel location for the start of the line.

• For lines with gradient greater than 1 the roles of x and y are
swapped.

• The case where lines have negative slopes is handled by symmetry.

B r e s e n h a m ’s A l g o r i t h m (c o n t .)

