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Lecture 11: Scan Conversion of Lines
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• A line is defined by its two endpoints.

• To draw a line all pixels between the two endpoint pixels must be 

illuminated. On vector devices we can vary the deflection inputs 

linearly to draw a line.

• On raster devices we need to calculate exactly which pixels in the 

frame buffer are to be set. This conversion is usually done in 

hardware.

S c a n  C o n v e r s i o n
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• Criteria for well generated lines:

• lines must appear straight or gently curving. Points must be set 

so that they are ≤ 1 pixel away from the true position of the 
line;

• the line must start and end accurately, so lines can be joined;

• the line should have a constant brightness (thickness) along its 

length (number of pixels per unit distance constant);

• all lines should have the same density (brightness, thickness) 

irrespective of their length or orientation;

• all lines should be drawn rapidly.

S c a n  C o n v e r s i o n  ( c o n t . )
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• The equation for a line is
 y = m x + c
where m and c are constants. m gives the gradient or slope of the 
line.

• For two points (x1, y1) and (x2, y2) we have

 y1 = m x1  + c and y2 = m x2 + c                                    (1)

Thus
 y2 – y1 = m(x2 – x1) and y2 = m(x2 – x1) + y1                (2)

• To compute y2 from (1) requires 1 multiplication and 1 addition.

• To compute y2 from (2) requires 1 addition if m(x2 – x1) is held 

constant.

• Incremental methods save on computational effort in computing a 
new point by computing a difference from the previous point.

I n c r e m e n t a l  L i n e  D r a w i n g  M e t h o d s
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• Using a parametric representation for a line
 x = x1 + α (x2 – x1)

 y = y1 + α (y2 – y1)

where 0 ≤ α ≤ 1.

• With an incremental method we have a choice of incrementing 
either x or y to produce a pixel in the next column or row.
 x = x1 + α Δx, Δx = (x2 – x1)

 y = y1 +α Δy, Δy = (y2 – y1)

• We could increment α so that either x or y in increased by exactly 
one each time (e.g. α Δx = 1 or α Δy = 1).

• if (|Δx| > |Δy|) then increment x, since x is changing quicker
else increment y since y is changing quicker.

T h e  D D A  a l g o r i t h m  (Digital  Differential  Analyser)
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• dx ← x2 – x1

dy ← y2 – y1

if ( abs(dx) > abs(dy) ) {

 increment ← dy / dx

 for i ← x1 to x2 {

     setPixel( i, round(y) )

     y ← y + increment

 }

} else {

 increment ← dx / dy

 for i ← y1 to y2 {

     setPixel( round(x), i )

     x ←x + increment

 }

} 

D D A  A l g o r i t h m



CSE3313: Computer Graphics Lecture 11 / Lecture Notes 20077

• The main work is done in the body of the for loops where there is 
a floating point addition and at each stage we need to convert a 
floating point number to an integer device coordinate.

• Bresenham’s Algorithm is more efficient than the DDA since it 
avoids the use of any floating point arithmetic. It still sets the same 
pixels that the DDA would set.

• It first checks the slope to see whether x or y should be 
incremented. Without loss of generality we consider the case 

where Δx is positive and 0 ≤ m ≤ 1.

• Suppose we have just set a pixel at (I, J). (I,J) might not be on the 
actual line but it is within 1 pixel of the line

 J – 0.5 ≤ y ≤ J + 0.5
where (I, y) is on the actual line.

B r e s e n h a m ’s  A l g o r i t h m
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• The constraints on m imply the next point must be either ( I + 1, J ) 

or ( I + 1, J + 1)

B r e s e n h a m ’s  A l g o r i t h m  ( c o n t . )

y = mx + c

(1) if a > b, i.e. a – b > 0 then 

the y coordinate is J.

(2) if a < b, i.e. a – b < 0 then the 

y coordinate is J + 1.
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• If J was not incremented at the last point:

 a’ ←a – m

 b’ ← b + m

 a’ – b’ ← (a – b) – 2m

• If J was incremented at the last point:

 a’ ←1+ a – m

 b’ ← b + m – 1

 a’ – b’ ← (a – b) – 2m + 2

• (a – b) is the important quantity. It is a

floating point number, but we are only

interested in its sign.

B r e s e n h a m ’s  A l g o r i t h m  ( c o n t . )
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• In Bresenham’s algorithm we scale (a – b) so that we can deal with 
quantities that are purely integer.

• Thus e = ∆x( a – b ) has the same sign as (a – b) and will tell us 
when it is time to increment the y coordinate.

• When we decrement (a – b) by either 2m or 2m – 2 we need to 

decrement ∆x( a – b) ( = e) by either:

 2m ∆x (= 2 ∆y)
or
 2m ∆x – 2 ∆x   (= 2 ∆y – 2 ∆x)

B r e s e n h a m ’s  A l g o r i t h m  ( c o n t . )

Bresenham’s algorithm takes advantage of the fact that x1, y1, x2, y2 are 

all integers, so that the slope m is a rational number.

    

� 

m = y2 − y1

x2 − x1

= Δy
Δx
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B r e s e n h a m ’s  L i n e - d r a w i n g  A l g o r i t h m  f o r  | m |  <  1

1. Input the two line endpoints and store left endpoint in (x0, y0)

2. Plot the first point at (x0, y0)

3. Calculate the constants ∆x, ∆y, 2∆y and 2∆y – 2∆x  and starting 

value for the decision parameter as:

e0 =  ∆x – 2∆y 

4. At each xk along the line, starting at k = 0 perform the following 

test: if ek > 0 the next point is (xk+1, yk) and ek+1 = ek – 2∆y

Otherwise, the next point is (xk+1, yk+1) and ek+1 = ek – 2∆y + 2∆x 

5. Repeat step 4 ∆x – 1 times.

11
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• ∆x = |x2 – x1|, ∆y = |y2 – y1|
twoDy  = 2 * ∆y
twoDyMinusDx  = 2 * (∆y – ∆x)
e = ∆x – 2 * ∆y

• Determine endpoint to start:
if (x1 > x2) { x = x2, y = y2, x2 = x1; }
else { x = x1, y = y1; }
setPixel(x,y);

• Body of main loop:
while (x < x2) {
    x = x + 1
    if (e > 0) {
   /* a - b > 0,  a > b, don’t increment J */
       e = e – twoDy;
    } else {
       y = y + 1
       e = e - twoDyMinusDx;
    }
    setPixel(x, y)
}

B r e s e n h a m ’s  A l g o r i t h m  ( c o n t . )
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• All those operations can proceed using only integer arithmetic.

• For each output pixel we have one integer comparison, and an 

integer addition and possibly an increment by 1.

• Looking at the conditions for the initial point, (x1, y1), the initial 

value for ∆x(a – b) is ∆x – 2∆y.

• The initial value assumes the first point of the line coincides exactly 

with the pixel location for the start of the line.

• For lines with gradient greater than 1 the roles of x and y are 
swapped.

• The case where lines have negative slopes is handled by symmetry.

B r e s e n h a m ’s  A l g o r i t h m  ( c o n t . )


