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CSE3313 Computer Graphics

Lecture 11: Scan Conversion of Lines




A line is defined by its two endpoints.

To draw a line all pixels between the two endpoint pixels must be
illuminated. On vector devices we can vary the deflection inputs

linearly to draw a line.

On raster devices we need to calculate exactly which pixels in the

frame buffer are to be set. This conversion is usually done in

hardware.
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Criteria for well generated lines:

lines must appear straight or gently curving. Points must be set

so that they are < 1 pixel away from the true position of the

line;
the line must start and end accurately, so lines can be joined;

the line should have a constant brightness (thickness) along its
length (number of pixels per unit distance constant);

all lines should have the same density (brightness, thickness)
irrespective of their length or orientation;

all lines should be drawn rapidly.
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The equation for a line is
y=mx+tc

where m and ¢ are constants. m gives the gradient or slope of the
line.

For two points xp ¥ and (x5 y,) We have

y;=mx, +candy2=mx2+c (1)
Thus
Yy=y;=mx,—x,) andy2 =mx,—x;) Ty, (2)

To compute Y5 from (1) requires 1 multiplication and 1 addition.

To compute y, from (2) requires 1 addition if m(x,—x,) is held
constant.

Incremental methods save on computational effort in computing a
new point by computing a difference from the previous point.
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Using a parametric representation for a line
X=X +Oc(x2—x])
y=y;ta@y,-y,)

where0 < x < 1.

With an incremental method we have a choice of incrementing
either x or y to produce a pixel in the next column or row.
X=x; % o Ax, Ax = (x2—x])

y=y; T0Ay Ay =(y,-y,)

We could increment o so that either x or y in increased by exactly
one each time (e.g. x Ax=1or o Ay = 1).

if (|Ax| > |Ay|) then increment x, since x is changing quicker
else increment y since y is changing quicker.
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DDA Algorithm

® dx &« x2 - x1
dy & y2 - vyl
1f ( abs(dx) > abs(dy) ) {
increment ¢+ dy / dx

for 1 < x1 to x2 {

setPixel ( 1, round(y) )

y & y + 1ncrement

J

} else {

increment + dx / dy

for 1 & yl to y2 {
setPixel ( round(x), 1 )

X X 4+ 1ncrement
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The main work is done in the body of the for loops where there is
a floating point addition and at each stage we need to convert a
floating point number to an integer device coordinate.

Bresenham’s Algorithm is more efficient than the DDA since it
avoids the use of any floating point arithmetic. It still sets the same
pixels that the DDA would set.

It first checks the slope to see whether x or y should be
incremented. Without loss of generality we consider the case

where Ax is positive and 0 < m < 1.

Suppose we have just set a pixel at (1, J). (I,J) might not be on the
actual line but it is within 1 pixel of the line

J-05=<y=<J+05

where (1, y) is on the actual line.
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e The constraints on m imply the next point must be either (1+1,1])

or(I+1,J+1) ~

_/ J+1
fff”fy=mx+c
)

J

il

(1) ifa>b,i.e.a—b>0then {

the y coordinate is J.

N _—
(2) ifa< b, i.e. a— b <0 then the S
— 1

y coordinate is J + 1.

[+1
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If J was not incremented at the last point:

a’ «—a—m

b’<—b+m

a’—b’< (a—b)—2m

If J was incremented at the last point:
a’«—Il+a—-—m

b’«—b+m—1

a’—b’«— (a—b)—2m + 2

(a — b) is the important quantity. It is a

floating point number, but we are only

interested in its sign.
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Bresenham’s algorithm takes advantage of the fact that X,V Xy y,are

all integers, so that the slope m is a rational number.

m:yz_yl :Ay

x,—%x, Ax

In Bresenham’s algorithm we scale (a — b) so that we can deal with
guantities that are purely integer.

Thus e = Ax(a —b) has the same sign as (a —b) and will tell us

when it is time to increment the y coordinate.

When we decrement (a — b) by either 2m or 2m — 2 we need to
decrement Ax( a — b) (= e) by either:

2m Ax (=2 Ay)
or 2mAx-2Ax (=2Ay-2 Ax)
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Input the two line endpoints and store left endpoint in (xo, yo)

Plot the first point at (xo, yo)

Calculate the constants Ax, Ay, 2Ay and 2Ay - 2Ax and starting

value for the decision parameter as:

eo= Ax—-2Ay

. At each xx along the line, starting at kK = 0 perform the following
test: if ex > 0 the next point is (xk+7, y«) and ex+1 = ex — 2Ay

Otherwise, the next point is (Xk+1, yk+1) and ex+1 = ex — 2Ay + 2Ax

5. Repeat step 4 Ax — 1 times.
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Bresenham’s Algorithm (cont.)

®  Ax = |x2 - x1|, Ay = |y2 — vyl
twoDy = 2 * Ay
twoDyMinusDx = 2 * (Ay - AXx)
e =AX — 2 * Ay

Determine endpoint to start:

1f (x1 > x2) { x = x2, vy =y2, x2 = x1; }
else { x =x1, v = vl; }

setPixel (x,V);

® Body of main loop:
while (x < x2) {

x + 1

a > b, don’t increment J */
e — twoDy;

v + 1
e — twoDyMinusDx;

setPixel (x, V)
}
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(Xk+1s Yk+1)

(21, 11)
(22, 12)
(23, 12)
(24, 13)
(25, 14)

FIGURE 3-12 Pixel
positions along the line path
between endpoints (20, 10) and
(30, 18), plotted with
Bresenham’s line algorithm.

(Xk+1s Vk+1)

(26, 15)
(27, 16)
(28, 16)
(29, 17)
(30, 18)




All those operations can proceed using only integer arithmetic.

For each output pixel we have one integer comparison, and an

integer addition and possibly an increment by 1.

Looking at the conditions for the initial point, (x], y]), the initial

value for Ax(a — b) is Ax — 2Ay.

The initial value assumes the first point of the line coincides exactly

with the pixel location for the start of the line.

For lines with gradient greater than 1 the roles of x and y are
swapped.

The case where lines have negative slopes is handled by symmetry.
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