Monash University • Clayton's School of Information Technology

CSE3313 Computer Graphics

Lecture 13: Mathematical Representations

Reference: Hearn & Baker: Appendix A

In computer graphics, we are interested in 3 major representations of equations:

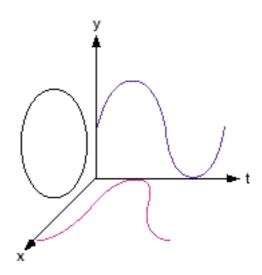
Implicit form: F(x,y) = 0

Explicit form: y = f(x)

Parametric form: $x(t) = f_x(t) \\ y(t) = f_y(t) \end{bmatrix} \text{2D} \\ z(t) = f_z(t)$

Some representations are more convenient than others, depending on our application for them. For example, a circle can be represented:

$$x^2 + y^2 = r^2$$
 implicit form $x(t) = r \cos(2\pi t)$ parametric form $y(t) = r \sin(2\pi t)$



In the parametric form it is easy do draw a curve with equal spaced samples along t.

Parametric curves:

$$\mathbf{p}(t) = (x(t), y(t))$$
surfaces:
$$\mathbf{p}_{3D}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k}$$

For example, a sphere can be represented:

$$f(x,y,z) = (x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2$$

$$\mathbf{p}(u,v) = r\cos(v)\cos(u)\mathbf{i} + r\sin(v)\mathbf{j} + r\cos(v)\sin(u)\mathbf{k}$$

The implicit form can make certain comparisons easy. Given a point P,

P is "inside surface" if
$$f(x,y,z) < 0$$

"outside surface" if $f(x,y,z) > 0$
on surface if $f(x,y,z) = 0$

Surface normal:
$$\underline{\mathbf{n}}(u_0, v_0) = \frac{\partial \mathbf{P}}{\partial u} \times \frac{\partial \mathbf{P}}{\partial v}\bigg|_{u=u_0, v=v_0}$$

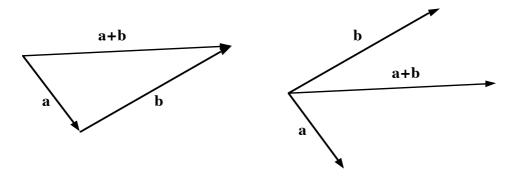
A parametric curve can be represented:

$$\mathbf{p}(t) = (x(t), y(t))$$

as a sum of polynomials:

$$p(u) = p_0 + p_1 u + p_2 u^2 + \dots + p_n u^n = \sum_{i=0}^n p_i u^i$$

Sum of Vectors:



dot product (also called scalar or inner product):

2D:
$$\begin{aligned} \mathbf{a} &= (a_1,a_2), \mathbf{b} = (b_1,b_2) \\ \mathbf{a} \cdot \mathbf{b} &= a_1b_1 + a_2b_2 \end{aligned}$$

In *n* dimensions:

$$\mathbf{v} = (v_1, v_2, \dots v_n), \mathbf{w} = (w_1, w_2, \dots w_n)$$
$$d = \mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^n v_i w_i$$

$$\mathbf{a} \cdot \mathbf{b} \equiv \mathbf{b} \cdot \mathbf{a}$$
$$(\mathbf{a} + \mathbf{c}) \cdot \mathbf{b} \equiv \mathbf{a} \cdot \mathbf{b} + \mathbf{c} \cdot \mathbf{b}$$
$$(s\mathbf{a}) \cdot \mathbf{b} \equiv s(\mathbf{a} \cdot \mathbf{b})$$
$$\left| \mathbf{b}^{2} \right| = \mathbf{b} \cdot \mathbf{b} \quad \therefore \left| \mathbf{b} \right| = \sqrt{\mathbf{b} \cdot \mathbf{b}}$$

The angle between 2 vectors:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$\mathbf{u}_a = \frac{\mathbf{a}}{|\mathbf{a}|}, \mathbf{u}_b = \frac{\mathbf{b}}{|\mathbf{b}|}, \cos \theta = \mathbf{u}_{\mathbf{a}} \cdot \mathbf{u}_{\mathbf{b}}$$

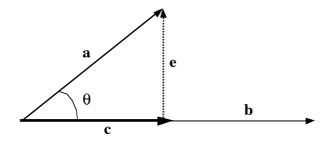
If:

$$\mathbf{a} \cdot \mathbf{b} > 0 \quad \theta < \frac{\pi}{2}$$

$$\mathbf{a} \cdot \mathbf{b} = 0 \quad \theta = \frac{\pi}{2}$$

$$\mathbf{a} \cdot \mathbf{b} < 0 \quad \theta > \frac{\pi}{2}$$

Projection and Resolution of Vectors



Projection of a in the direction of b.

a is resolved into a component c along b.

we know:
$$e = a - c$$

$$\mathbf{u}_{\mathbf{c}} = \mathbf{u}_{\mathbf{b}} \quad \therefore \text{ need } |\mathbf{c}|$$

$$|\mathbf{c}| = |\mathbf{a}| \cos \theta$$

by law of cosines:

$$\begin{vmatrix} \mathbf{a} - \mathbf{b} \end{vmatrix}^2 = \begin{vmatrix} \mathbf{a} \end{vmatrix}^2 + \begin{vmatrix} \mathbf{b} \end{vmatrix}^2 - 2 \begin{vmatrix} \mathbf{a} \end{vmatrix} \mathbf{b} \begin{vmatrix} \cos \theta \end{vmatrix}$$

$$\therefore \quad |\mathbf{c}| = |\mathbf{a}| \frac{(\mathbf{a} \cdot \mathbf{b})}{|\mathbf{a}| |\mathbf{b}|}$$

$$= \mathbf{a} \cdot \mathbf{u}_{\mathbf{b}}$$

$$\mathbf{c} = (\mathbf{a} \cdot \mathbf{u}_{\mathbf{b}}) \mathbf{u}_{\mathbf{b}}$$

$$= \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b}$$

Normal of a line

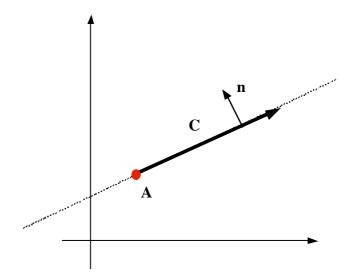
A line can be represented using a point and a direction vector:

$$\mathbf{L} = \mathbf{A} + \mathbf{C}t$$

$$\mathbf{A} = (A_x, A_y)$$

$$\mathbf{C} = (c_x, c_y) \text{ direction vector}$$

$$\mathbf{n} = (n_x, n_y) \text{ normal}$$



In 2 dimensions:

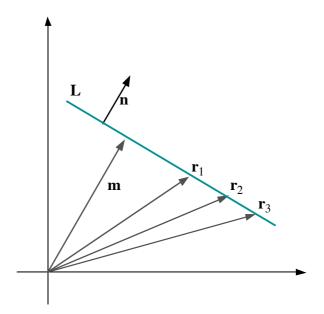
$$\mathbf{C} \cdot \mathbf{n} = 0 \quad \Rightarrow \quad c_x n_x + c_y n_y = 0$$

$$\frac{c_y}{c_x} = \frac{-n_x}{n_y}$$

 ${\bf n}$ can be any multiple of $(c_{\scriptscriptstyle y}, -c_{\scriptscriptstyle x})$

Consider an arbitrary point $\mathbf{R} = (x,y)$, on the line, \mathbf{L}

$$\begin{aligned} \mathbf{n} \cdot (\mathbf{R} - \mathbf{A}) &= 0 \\ \mathbf{n} \cdot \mathbf{r} &= \mathbf{n} \cdot \mathbf{a} \quad \text{(replace points with vectors)} \\ \mathbf{n} \cdot \mathbf{r} &= D = n_x A_x + n_y A_y \quad \text{(point normal eqn.)} \\ n_x x + n_y y &= D \end{aligned}$$



all vectors \mathbf{r} have the same projection \mathbf{m} onto \mathbf{n} .

n.r is proportional to m:

$$\mathbf{n} \cdot \mathbf{r} = D$$

$$|\mathbf{m}| = \mathbf{r} \cdot \mathbf{u}_{\mathbf{n}}$$

$$= \mathbf{r} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}$$

$$= \frac{D}{|\mathbf{n}|}$$

 $\frac{D}{|\mathbf{n}|}$ is the closest distance from the line to the origin.

Likewise for a plane (note this is in 3 dimensions):

$$\mathbf{n} = (n_x, n_y, n_z)$$

$$\mathbf{n} \cdot \mathbf{r} = D$$

$$Ax + By + Cz = D$$

$$n_x x + n_y y + n_z z = D$$

Example:

Consider a plane that passes through the point (1,2,3), with normal (2,-1,-2).

In Point normal form: $(2,-1,-2) \cdot (x,y,z) = D$

$$(2,-1,-2) \cdot (1,2,3) = -6 = D$$

 \therefore plane equation is: 2x - y - 2z = 6

Vector Cross Product:

Given two vectors \mathbf{v} and \mathbf{w} , the *cross product* (or *vector product*) is the vector that is orthogonal to both \mathbf{v} and \mathbf{w} . There are two possible choices for the direction of the cross product. The correct direction is defined by the *right-hand rule*.

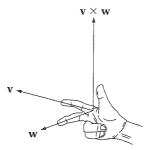


FIGURE 1.15 Cross product direction.

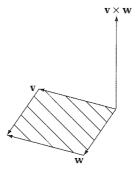


FIGURE 1.16 Cross product length equals area of parallelogram.

The length of the cross product is equal to the area of a parallelogram bordered by the two vectors. This can be computed using the formula:

$$\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$$

where θ is the angle between \mathbf{v} and \mathbf{w} . The cross product does not commute, so order is important:

$$\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$$

The formula for the cross product is:

$$\mathbf{u} = \mathbf{v} \times \mathbf{w} = (v_y w_z - w_y v_z, \quad v_z w_x - w_z v_x, \quad v_x w_y - w_x v_y)$$

For vectors **u**, **v**, **w**, and scalar *a* the following algebraic rules apply:

$$\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v}$$

$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$

$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$

$$a(\mathbf{v} \times \mathbf{w}) - (a\mathbf{v}) \times \mathbf{w} = \mathbf{v} \times (a\mathbf{w})$$

$$\mathbf{v} \times \mathbf{0} = \mathbf{0} \times \mathbf{v} = \mathbf{0}$$

$$\mathbf{v} \times \mathbf{v} = \mathbf{0}$$