
Monash University • Clayton’s School of Software Engineering

Lecture 14: Introduction to 3D graphics

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

CSE3313: Computer Graphics Lecture 14 / Lecture Notes 20072

• In many ways three dimensional graphics is an extension of two

dimensional graphics.

• Main differences:

• Objects and the viewer are in a 3D world but the image

produced on the display device is 2D.

• In producing the final image an additional step called projection

is necessary.

• The extra dimension in the data means an increase in the

amount of work — efficiency becomes more important.

• OpenGL works natively in three-dimensions — 2D graphics are just

a restricted case of 3D.

T h r e e - D i m e n s i o n a l G r a p h i c s

CSE3313: Computer Graphics Lecture 14 / Lecture Notes 20073

• We need to add an extra axis which is at right angles to
the normal x and y axes.

• Two options:

• Left-handed coordinate system;

• Right-handed coordinate system.

• By convention, we will use a right-handed coordinate
system. Some packages may use a left-handed system, or
a combination of both.

• A further convention will be necessary to determine the
directions of positive rotation around the coordinate
axes.

• A positive rotation will be counter-clockwise when
looking at the origin from the positive side of the axis.

E x t e n s i o n o f 2 D p r i m i t i v e s t o 3 D

x

y

z

x

y

z

CSE3313: Computer Graphics Lecture 14 / Lecture Notes 20074

P o i n t s a n d L i n e s i n 3 D

€

p =

x
y
z

















Points in 3D space can be represented:

A line connecting (x1, y1, z1) and (x2, y2, z2) can be represented

parametrically by:

€

x(t)= (1− t)x1 + tx2

y(t)= (1− t)y1 + ty2

z(t)= (1− t)z1 + tz2

or :
l (t)= (1− t)p1 + tp2

x

y

z

p = (px, py, pz)

x

y

z(x1, y1, z1)

(x2, y2, z2)

t

CSE3313: Computer Graphics Lecture 14 / Lecture Notes 20075

• A line in 2D space can be represented by the general equation:
 ax + by + D = 0

• In 3D space this can be generalized to give
 ax + by + cz + D = 0 (1)

• As long as D ≠ 0 we could scale D so that (1) only has three distinct
parameters.

• Any 3 non-colinear points define a plane.

• We can normalize (1) by choosing

 a2 + b2 + c2 = 1

• In which case D gives the distance from the origin to the plane.

• Planes with the same a, b and c are parallel to each other.

• If D = 0 then the origin is in the plane.

L i n e s a n d P l a n e s

CSE3313: Computer Graphics Lecture 14 / Lecture Notes 20076

• Then from (1) we have (p - p0).n = 0, ((p-p0)Tn = 0).

• n is orthogonal (perpendicular, at right angles) to all vectors in the
plane.

• n is the unit normal to the plane and is
useful in describing the orientation of
the plane.

• n can also be found by taking the cross
product of the two vectors formed by the
three non-colinear points that define
the plane.

P o i n t - N o r m a l f o r m o f a p l a n e

€

p =

x
y
z

















and n =

a
b
c

















Let

€

p0 =

x0
y0
z0

















CSE3313: Computer Graphics Lecture 14 / Lecture Notes 20077

• OpenGL is inherently 3D API.

• All vertices are stored as 3D vectors in homogeneous form.

• For 2D graphics, 2D vectors were used by setting the z coordinate

to 0. In 3D the z coordinate is no longer necessarily 0.

T h r e e - D i m e n s i o n a l P r i m i t i v e s

CSE3313: Computer Graphics Lecture 14 / Lecture Notes 20078

• We can describe a polygon in 3D by specifying a sequence of
vertices. If the vertices do not all lie in the same plane we may get
unpredictable results on different implementations of the API.

• It is best to ensure that the vertices of an individual polygon all lie
in the same plane.

• In 3D a polygon has 2 faces. We can display either or both of them.

• A face is outward-facing if the vertices are
traversed in a counter clockwise order when
the face is viewed from the outside.

• If you orient your hand in the direction the
vertices are traversed, the thumb points
outward (right-hand rule).

I n w a r d a n d O u t w a r d P o i n t i n g F a c e s

CSE3313: Computer Graphics Lecture 14 / Lecture Notes 2007

P o l y h e d r a

• Complex objects are usually represented by large collections of

polygons.

• Each polygon belongs to a larger structure, a polyhedron, where

polygons are connected edge-to-edge A simple polyhedron has the

following properties:

• Each edge connects exactly two vertices, and is the boundary

between exactly two faces;

• Each vertex is a meeting point for at least three edges;

• No two faces intersect, except along their common edge.

• Provided there are no holes the polyhedron satisfies Euler’s Rule:

V – E + F = 2

9

CSE3313: Computer Graphics Lecture 14 / Lecture Notes 200710

• Representations vary depending on the use to which we wish to
put them.

• For graphics, it is often necessary to capture a cubes topology as
opposed to its geometry.

• Many 3D polygonal objects share vertices — hence the vertex list
data structure may be useful.

D a t a S t r u c t u r e s f o r 3 D r e p r e s e n t a t i o n

CSE3313: Computer Graphics Lecture 14 / Lecture Notes 2007

W i n g e d E d g e D a t a S t r u c t u r e

• Vertex-Face data structures can be limiting when more complex
queries or modifications to the database are required. The Winged-
Edge data structure (Baumgart 1975) allows a rich set of queries:

• for any face, find all of the edges in a CW/CCW order;

• for any face, traverse all of the vertices;

• for any vertex, find all the faces that meet at that vertex;

• for any vertex, find all the edges that meet at that vertex;

• for any edge, find its two vertices;

• for any edge, find its two faces;

• for any edge, find the next edge on a face in CW/CCW order

11

Ref: Slater et. al. pp 170–172

CSE3313: Computer Graphics Lecture 14 / Lecture Notes 2007

W i n g e d E d g e D a t a S t r u c t u r e

• Polyhedron represented as a Body

• Body contains rings (doubly linked lists) called Vertex, Edge, and

Face (plus information linking to other Bodies).

• Vertex Ring: vertex data (x,y,z), previous and next vertices,

associated edge ring.

• Edge Ring: previous and next edges, “wings”: neighbouring

vertices and faces

• Vertex ring: geometry <–> Edge ring: topology

• Face Ring: links to next and previous faces, edge ring

12

Ref: Slater et. al. pp 170–172

