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Lecture 14: Introduction to 3D graphics
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• In many ways three dimensional graphics is an extension of two 

dimensional graphics.

• Main differences:

• Objects and the viewer are in a 3D world but the image 

produced on the display device is 2D.

• In producing the final image an additional step called projection 

is necessary.

• The extra dimension in the data means an increase in the 

amount of work — efficiency becomes more important.

• OpenGL works natively in three-dimensions — 2D graphics are just 

a restricted case of 3D.

T h r e e - D i m e n s i o n a l  G r a p h i c s
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• We need to add an extra axis which is at right angles to 
the normal x and y axes.

• Two options:

• Left-handed coordinate system;

• Right-handed coordinate system.

• By convention, we will use a right-handed coordinate 
system. Some packages may use a left-handed system, or 
a combination of both.

• A further convention will be necessary to determine the 
directions of positive rotation around the coordinate 
axes.

• A positive rotation will be counter-clockwise when 
looking at the origin from the positive side of the axis.
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P o i n t s  a n d  L i n e s  i n  3 D
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Points in 3D space can be represented:

A line connecting (x1, y1, z1) and (x2, y2, z2) can be represented 

parametrically by:
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x(t)= (1− t)x1 + tx2

y(t)= (1− t)y1 + ty2

z(t)= (1− t)z1 + tz2

or :
l (t)= (1− t)p1 + tp2
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• A line in 2D space can be represented by the general equation:
 ax + by + D = 0

• In 3D space this can be generalized to give
 ax + by + cz + D = 0                                                   (1)

• As long as D ≠ 0 we could scale D so that (1) only has three distinct 
parameters.

• Any 3 non-colinear points define a plane.

• We can normalize (1) by choosing

 a2 + b2 + c2 = 1

• In which case D gives the distance from the origin to the plane.

• Planes with the same a, b and c are parallel to each other.

• If D = 0 then the origin is in the plane.

L i n e s  a n d  P l a n e s
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• Then from (1) we have (p - p0).n = 0, ((p-p0)Tn = 0).

• n is orthogonal (perpendicular, at right angles) to all vectors in the 
plane.

• n is the unit normal to the plane and is 
useful in describing the orientation of 
the plane.

• n can also be found by taking the cross
product of the two vectors formed by the
three non-colinear points that define 
the plane.

P o i n t - N o r m a l  f o r m  o f  a  p l a n e
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• OpenGL is inherently 3D API.

• All vertices are stored as 3D vectors in homogeneous form.

• For 2D graphics, 2D vectors were used by setting the z coordinate 

to 0. In 3D the z coordinate is no longer necessarily 0.

T h r e e - D i m e n s i o n a l  P r i m i t i v e s
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• We can describe a polygon in 3D by specifying a sequence of 
vertices. If the vertices do not all lie in the same plane we may get 
unpredictable results on different implementations of the API.

• It is best to ensure that the vertices of an individual polygon all lie 
in the same plane.

• In 3D a polygon has 2 faces. We can display either or both of them.

• A face is outward-facing if the vertices are 
traversed in a counter clockwise order when 
the face is viewed from the outside.

• If you orient your hand in the direction the 
vertices are traversed, the thumb points 
outward (right-hand rule).

I n w a r d  a n d  O u t w a r d  P o i n t i n g  F a c e s
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P o l y h e d r a

• Complex objects are usually represented by large collections of 

polygons.

• Each polygon belongs to a larger structure, a polyhedron, where 

polygons are connected edge-to-edge A simple polyhedron has the 

following properties:

• Each edge connects exactly two vertices, and is the boundary 

between exactly two faces;

• Each vertex is a meeting point for at least three edges;

• No two faces intersect, except along their common edge.

• Provided there are no holes the polyhedron satisfies Euler’s Rule: 

V – E + F = 2

9
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• Representations vary depending on the use to which we wish to 
put them.

• For graphics, it is often necessary to capture a cubes topology as 
opposed to its geometry.

• Many 3D polygonal objects share vertices — hence the vertex list 
data structure may be useful.

D a t a  S t r u c t u r e s  f o r  3 D  r e p r e s e n t a t i o n
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W i n g e d  E d g e  D a t a  S t r u c t u r e

• Vertex-Face data structures can be limiting when more complex 
queries or modifications to the database are required. The Winged-
Edge data structure (Baumgart 1975) allows a rich set of queries:

• for any face, find all of the edges in a CW/CCW order;

• for any face, traverse all of the vertices;

• for any vertex, find all the faces that meet at that vertex;

• for any vertex, find all the edges that meet at that vertex;

• for any edge, find its two vertices;

• for any edge, find its two faces;

• for any edge, find the next edge on a face in CW/CCW order 
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Ref: Slater et. al. pp 170–172
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W i n g e d  E d g e  D a t a  S t r u c t u r e

• Polyhedron represented as a Body

• Body contains rings (doubly linked lists) called Vertex, Edge, and 

Face (plus information linking to other Bodies).

• Vertex Ring: vertex data (x,y,z), previous and next vertices, 

associated edge ring.

• Edge Ring: previous and next edges, “wings”: neighbouring 

vertices and faces

• Vertex ring: geometry <–> Edge ring: topology

• Face Ring: links to next and previous faces, edge ring
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Ref: Slater et. al. pp 170–172




