
Monash University • Clayton’s School of Information Technology

Lecture 16: Compound Modelling Transformations and Projections

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 20072

• Suppose our application program draws cars.

• A low level routine might be called to draw a wheel.

• There is no special place for a wheel to appear in the scene, so the
wheel drawing routine draws the wheel in a modelling coordinate
system.

• The modelling routine that draws the car calls the routine to draw
the wheel at least four times. Each time a wheel is drawn it can be
scaled, translated and rotated to fit in a particular part of the full
model, thus it can have a single transformation matrix of its own to
indicate how the modelling coordinates can be turned into world
coordinates.

• The routine to draw a car draws the car in its own modelling
coordinate system.

M o d e l l i n g Tr a n s f o r m a t i o n s

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 20073

• A routine which draws a road may call the routine to draw a car
multiple times. Each instance where a car gets drawn gets its own
transformation matrix.

• A wheel object is transformed to place it in the car object and all
the car objects are transformed when the car object is placed in the
scene. The overall effect is as follows:
 [wheel1]world coords. = Mwheel1[wheel]modeling coords.

 [wheel2]world coords. = Mwheel2[wheel]modeling coords.

 .

 .

 .

• At any stage, modelling transformation that gets carried out on
the initial modelling coordinates is a product of separate modelling
transformation matrices.

M o d e l l i n g Tr a n s f o r m a t i o n s (c o n t .)

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 20074

• Many APIs have the concept of a current transformation matrix
(CTM). This transformation matrix is applied to any vertex.

• By default the CTM is the identity matrix.

• Functions for changing the CTM are often of two forms:

• (1) functions that reset the CTM to some matrix;

• (2) functions that pre-multiply or post-multiply the CTM by
some new transformation matrix.

• OpenGL only uses post-multiplication.

• Suppose the CTM is post-multiplied by Tnew
 CTMnew ← CTMold Tnew

• The effect of CTMnew is to carry out Tnew first and then to carry

out CTMold.

T h e C u r r e n t Tr a n s f o r m a t i o n M a t r i x

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 20075

• Consider what happens with hierarchical modelling. Suppose we
call a routine to draw a car which positions the car using Tcar.

• This routine post-multiplies the CTM by Tcar.

• The routine to draw the car calls the routine to draw a wheel.

• The wheel drawing routine positions the wheel, within the car,
using Twheel1 so that the CTM becomes:

 CTM Tcar Twheel1

• When this new CTM is applied to the vertices of wheel, [wheel]wheel
coordinates, they are transformed to the appropriate place in the

car’s modeling coordinates via Twheel and the resulting

coordinates, Twheel1[wheel]wheel coordinates are transformed by

Tcar to appear where the car should appear in the scene.

T h e C u r r e n t Tr a n s f o r m a t i o n M a t r i x (c o n t .)

drawScene()

drawRoad()

drawCar()

drawWheel() drawWheel() drawWheel() drawWheel()

drawCar()

draw other
parts of this

road

draw other
parts of this

scene

draw other parts of this car

glPushMatrix()

glPushMatrix()

glPushMatrix()

glPopMatrix()

glPopMatrix()

glPopMatrix()

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 2007

drawRoad()

C a r D r a w i n g E x a m p l e

7

drawRoad()
{
draw road geometry
for i = 1 to NUM_CARS
{
glPushMatrix();
load car i transform
drawCar(i);
glPopMatrix();

}
return;

}

drawCar()

drawCar()
{
...

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 2007

drawCar()

C a r D r a w i n g E x a m p l e

8

drawCar()
{
draw car geometry
for i = 1 to 4
{
glPushMatrix();
load wheel i transform
drawWheel(i);
glPopMatrix();

}
return;

}

drawWheel()

drawWheel()
{
draw wheel in local co-ordinates
return;

}

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 2007

S c e n e G r a p h s

• A scene graph is a generalised structure for drawing 3D scenes

• Nodes can represent geometry, , lights, cameras, transformations,

grouping, state changes (e.g. rendering mode), even animation

drivers.

• Nodes are connected together to form a graph representing the

scene.

• Nodes in the graph are traversed from the root node in order to

render the scene.

• A much higher level of abstraction and usually more efficient than

direct OpenGL calls. Functionality such as bounding box culling can

reduce geometry sent to the graphics card.

9

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 2007

S c e n e G r a p h s (c o n t .)

10

Conceptual Scene Graph vs. implementation for OpenSG

Some Scene Graphs:

OpenSG - www.opensg.org
OpenSceneGraph - http://www.openscenegraph.org
Coin - www.coin3d.org (based on OpenInventor)
Simple Scene Graph - plib.sourceforge.net/ssg/index.html

http://www.opensg.org
http://www.opensg.org
http://www.coin3d.org
http://www.coin3d.org
http://www.plib.sourceforge.net/ssg/index.html
http://www.plib.sourceforge.net/ssg/index.html

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 200711

• In OpenGL the matrix that is applied to all primitives is the product
of the model-view matrix and the projection matrix. We can think
of the CTM as the product of these two matrices. We can change
each matrix individually by setting the mode using glMatrixmode.

• A matrix can be loaded via the function
 glLoadMatrix(pointer_to_matrix);

or we can set it to the identity via
 glLoadIdentity();

• The matrix we load is a one dimensional array of 16 entries, stored
by columns. We can use this to post-multiply the selected matrix by
 glMultMatrix(pointer_to_matrix);

• We can get the contents of the current matrix using
glGetFloatv(GL_MODELVIEW_MATRIX, pointer_to_matrix);

M a t r i x M a n i p u l a t i o n

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 200712

• Rotation, translation and scaling are provided via:

 glRoatatef(angle, vx, vy, vz);

 glTranslatef(dx, dy, dz);

 glScalef(sx, sy, sz);

• For rotation, vx, vy, and vz are the components of the vector

about which we wish to rotate.

• In the translation function, dx, dy and dz are the components of

the displacement vector.

• For scaling, sx, sy and sz are the scaling factors along the x, y and

z coordinate axes respectively.

• Transformations must be specified in the reverse order to that
which we want them performed.

R o t a t i o n , Tr a n s l a t i o n a n d S c a l e

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 200713

• Sometimes we want to perform a transformation and then return

to the same state as before the transformation.

• Rather than undo the previous transformation by post-multiplying

by its inverse or recomputing the old CTM we can push the CTM

onto a stack. e.g.

 glPushMatrix();

 glTranslatef(...);

 glRotatef(...);

 glScalef(...);

 /* draw the object ... */

 glPopMatrix();

P u s h i n g a n d P o p p i n g M a t r i c e s

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 200714

• Views formed by parallel projections are characterized by the angle
the direction of projection makes with the projection plane.

• If the angle of projection is perpendicular to the projection plane,
we have an orthographic projection, otherwise we have an oblique
projection.

• Orthographic projections are often used to provide front, side and
top views of an object. Orthographic front, side and rear views are
often called elevations while top views are called plans.

• Engineering drawings (CAD/CAM) commonly employ orthographic
projections since lengths and angles are accurately depicted and
can be measured from the drawings.

• Orthographic views which show more than one face of an object
are called axonometric views.

P a r a l l e l P r o j e c t i o n s

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 200715

O r t h o g r a p h i c P r o j e c t i o n s

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 200716

• Transformation equations are straightforward for orthographic
parallel projections.

• If the projection plane is z = 0, for any point (x,y,z) the projection

point on the viewing surface is (xp, yp, zp) with

xp = x, yp = y, zp = 0.

• The transformation matrix is Mortho. This transformation cannot be

reversed: information about the z coordinate is lost.

O r t h o g r a p h i c Tr a n s f o r m a t i o n

€

M ortho =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1



















Projection Plane

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 200717

• All perspective views are characterised by a diminution of size.

• As objects move further from the viewer, their images become

smaller. This is an example of a depth cue. I.e. We have a 2D picture

but we can deduce missing depth information from information

contained in the 2D image.

• This size change means we cannot use perspective views to get

measurements of line lengths as in engineering drawings.

P e r s p e c t i v e P r o j e c t i o n

Perspective projection of lines of equal length

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 200718

• In classical perspective views, the viewer is located at the apex of a

symmetrical pyramid which is determined by a window in the

projection plane.

• The pyramid shape determines the view volume for clipping. It is

often termed the frustum of vision or viewing frustum.

• The view volume for clipping is different for parallel and

perspective projections.

P e r s p e c t i v e P r o j e c t i o n (c o n t .)

CSE3313: Computer Graphics Lecture 16 / Lecture Notes 200719

• The classical perspective views as used in art are usually known as
one–, two– and three–point perspectives.

• Parallel groups of lines that are parallel to the projection plane
appear parallel in projection, while groups of parallel lines that are
not parallel to the projection plane will converge at a vanishing
point.

• 1–, 2– and 3–point perspectives have 1, 2 or 3 vanishing points
respectively. Technically the number of vanishing points is
determined by the number of principle axes of the world
coordinate system that intersect with the projection plane.

• With hand drawn perspectives, higher point perspectives are more
difficult to achieve, however in computer graphics all perspectives
can be achieved using the general perspective projection.

P e r s p e c t i v e P r o j e c t i o n (c o n t .)

