
Monash University • Clayton’s School of Information Technology

Lecture 18: Viewing, Perspective and Hidden Surface Removal in OpenGL

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

CSE3313: Computer Graphics Lecture 18 / Lecture Notes 20072

• In OpenGL the standard perspective transformation assumes:

• (1) the centre of projection is at the origin of the viewing
system;

• the viewing direction is along the negative z axis;

• the view plane is orthogonal to the z axis.

• Objects in world coordinates can be transformed relative to this
viewing coordinate system by setting the matrix mode to
GL_MODELVIEW and changing the current transformation matrix.

• OpenGL has a convenient way to specify the viewing
transformation. We position a synthetic camera at a point e (called
the eyepoint), in world coordinates.

• We specify a vector pointing from the eyepoint to a point, a, called
the at point.

V i e w i n g i n O p e n G L Reference: Angel, Chapter 5

CSE3313: Computer Graphics Lecture 18 / Lecture Notes 20073

• Since the camera can be rotated around the viewing direction, we

need to specify a view up vector.

• The OpenGL utility function

 gluLookAt(eyex, eyey, eyez, atx, aty, atz,

 upx, upy, upz);

alters the model-view matrix for a camera pointed along this line.

V i e w i n g i n O p e n G L (c o n t .)

CSE3313: Computer Graphics Lecture 18 / Lecture Notes 20074

• OpenGL provides two functions for specifying perspective views

and one for parallel views.

• The function

 glFrustrum(left, right, bottom, top, near, far)

specifies a view volume that is a viewing frustum.

P e r s p e c t i v e i n O p e n G L

CSE3313: Computer Graphics Lecture 18 / Lecture Notes 20075

• near and far define the front and back clipping planes, measured
from the COP. Both must be positive, with far > near.

• (left, bottom,near) defines the bottom left corner of the
front clipping window. (right, top, near) the top right
coordinates.

• Viewing parameters are measured in camera or viewing
coordinates.

• A typical code sequence is:
 glMatrixMode(GL_PROJECTION);

 glLoadIdentity();

 glFrustum(left, right, top, bottom, near, far);

 glMatrixMode(GL_MODELVIEW);

• Note: the frustum does not have to be symmetric with respect to
the z axis.

g l F r u s t u m

CSE3313: Computer Graphics Lecture 18 / Lecture Notes 20076

• In many applications we may want to specify an angle or field of

view. If the projection window is rectangular then there is a

different angle for the horizontal and vertical components of the

view.

• The OpenGL utility function

 gluPerspective(fovy, aspect, near, far);

fovy specifies the angle of view in the up (y) direction, aspect

specifies the aspect ratio –

width/height. In this case

the frustum is symmetric

about the z axis.

This matrix postmultiplies

the CTM.

g l u P e r s p e c t i v e

CSE3313: Computer Graphics Lecture 18 / Lecture Notes 20077

• The only parallel viewing function provided by OpenGL is

 glOrtho(left, right, bottom, top, near, far);

near and far need not be non-negative but we require far >

near.

P a r a l l e l V i e w i n g i n O p e n G L

CSE3313: Computer Graphics Lecture 18 / Lecture Notes 20078

• OpenGL allows the application program to specify that hidden

surface removal should be carried out using a depth buffer.

 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH);

 glEnable(GL_DEPTH_TEST);

• In order to render a new scene the buffer can be cleared by

 glClear(GL_DEPTH_BUFFER_BIT);

• Here OpenGL uses a z-buffer or depth buffer algorithm to remove

hidden surfaces.

• To animate with hidden surfaces, the depth buffer must be cleared

before each frame and then

 glutSwapBuffers()

called.

O p e n G L a n d H i d d e n S u r f a c e R e m o v a l

