
Monash University • Clayton’s School of Information Technology

Lecture 19: Viewing in 3D

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

€

pw =

wx

wy

wz

















= wx

1
0
0
















+ wy

0
1
0
















+ wz

0
0
1

















= wxex + wyey + wzez

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 20072

• A view plane is established by defining a viewing coordinate

system.

• The user defines the origin for the viewing coordinate system by

picking a world coordinate position as the view reference point.

• The orientation of the view plane is defined by specifying the view

plane normal vector. This vector establishes the direction for the

positive z axis of the viewing coordinate system.

• The view plane normal N, can be specified via a world coordinate

system position.

• The direction of N is the direction of a line from the origin to that

world coordinate position.

• A vertical vector V, called the view up vector defines the direction

of the positive y axis. V can be specified in a similar manner to N.

S p e c i f y i n g a V i e w P l a n e

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 20073

• Some systems allow V to be not perpendicular to N and use the

component of the specified vector which is perpendicular to N as

the View up vector. (the vector is resolved in the direction

orthogonal to N).

• We can think of the view plane as a logical device upon which the

image is to be displayed.

S p e c i f y i n g t h e V i e w P l a n e (c o n t .)

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 20074

• The viewing coordinate system can be either left-handed or right-

handed.

• Left-handed system, increasing z coordinate means objects are

further away from the viewer;

• Right-handed system is consistent with right-handed master/

world coordinates.

• In this discussion, a left-handed coordinate system is used.

• In establishing the view plane, some systems use an extra parameter

called the view distance.

• The view plane is defined as the plane parallel to the viewing

coordinate x–y plane that is a specified distance from the view

reference point.

S p e c i f y i n g t h e V i e w P l a n e (c o n t .)

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 20075

• As part of the viewing process, points defined in world coordinates

must be converted to viewing coordinates.

• This transformation can be accomplished conceptually by a

sequence of translations and rotations that map the viewing system

axes onto the world coordinate axes.

• The matrix representing this transformation can be obtained by

concatenating the following transformations:

V i e w C o o r d i n a t e Tr a n s f o r m a t i o n

Right-handed world coordinate system and

left-handed viewing coordinate system.

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 20076

V i e w C o o r d i n a t e Tr a n s f o r m a t i o n (c o n t .)

(1) Reflect relative to the x–y plane, reversing

the sign of each z coordinate. This changes to

a right-handed coordinate system.

(2) Translate the view reference point to the

origin of the world coordinate system.

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 20077

V i e w C o o r d i n a t e Tr a n s f o r m (c o n t .)

(3) Rotate about the world coordinate x axis to

bring the viewing coordinate z axis into the x–z

plane of the world coordinate system.

(4) Rotate about the world coordinate y axis

until the z axes of both coordinate systems are

aligned.

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 20078

• When applied to world coordinate definitions of objects in the

scene, this sequence of transformations converts them to their

positions within the viewing coordinate system.

• This sequence has much in common with the transformation

sequence that rotates an object about an arbitrary axis.

V i e w C o o r d i n a t e Tr a n s f o r m (c o n t .)

(5) Rotate about the world coordinate z axis to

align the viewing and world axes.

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 20079

• It turns out that there is a more efficient method for performing

the rotation component of the transformation rather than

multiplying 3 rotation transformation matrices together. We can use

the orthogonal properties of the axes and fact that the inverse of a

rotation matrix is its transpose.

• Given a view plane normal , n and a view up vector, v, we require

that v is orthogonal to n. If the v specified by the user is not

orthogonal to n we can resolve the component of v orthogonal to

n. i.e.:

S p e c i f y i n g t h e V i e w P l a n e

€

v← v − v ⋅ n
n ⋅ n

n

Where v.n is the vector dot product:

€

v ⋅ n = vxnx + vyny + vznz

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 200710

• We need to derive a third vector which is orthogonal to both n and

v. This can be calculated from:

S p e c i f y i n g t h e V i e w P l a n e (c o n t .)

E.g.:

€

v =

1
0
0
















, n =

0
1
0
















, v × n =

0 ⋅0−0 ⋅1
0 ⋅0−1⋅0
1⋅1−0 ⋅0

















=

0
0
1

















In this case, v, u and n will generate a right-handed coordinate system.

Suppose:

€

pw =

wx

wy

wz

















= wx

1
0
0
















+ wy

0
1
0
















+ wz

0
0
1

















= wxex + wyey + wzez

then ex, ey and ez are all unit

vectors and are all at right

angles to each other.

€

u = v × n =

vynz − vzny

vznx − vxnz

vxny − vynx

















CSE3313: Computer Graphics Lecture 19 / Lecture Notes 200711

• In the viewing coordinate system we normalise the new coordinate

axes to be unit vectors.

Tr a n s f o r m i n g t h e V i e w R e f e r e n c e P o i n t

€

v← v
v

, v = vx
2 + vy

2 + vz
2

The viewing transformation can be conveniently specified using this

information.

€

pw = vrp w + pv (1)

where pw is a point’s position in the world coordinate system;

vrpw is the view reference point, given in world coordinates;

pv is the point’s position relative to the viewing coordinate

system axis, i.e. its view system coordinates.

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 200712

• The first stage of converting from world coordinates to viewing

coordinates is a translation from the view reference point to the

origin.

• Suppose u’, v’ and n’ are the unit vectors for the coordinate axes in

the viewing coordinate system.

Tr a n s f o r m i n g t h e V i e w R e f e r e n c e P o i n t (c o n t .)

€

′ u v =

1
0
0

















v

=

′ u x
′ u y
′ u z

















w

, ′ v v =

0
1
0

















v

=

′ v x
′ v y
′ v z

















w

, ′ n v =

0
0
1

















v

=

′ n x
′ n y
′ n z

















w

The world coordinate representation of

€

′ u is
′ u x
′ u y
′ u z

















where the subscript v denotes coordinates with respect to the viewing

coordinate system, and the subscript w denotes coordinates with respect

to the world coordinate system.

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 200713

• is a matrix that converts coordinates using basis vectors, which

converts coordinates expressed in terms of u ’ , v ’ and n ’ to

coordinates expressed in terms of ex, ey and ez.

V i e w C o o r d i n a t e R o t a t i o n s u s i n g B a s i s Ve c t o r s

€

C =

cx,u cx,v cx,n

cy,u cy,v cy,n

cz,u cz,v cz,n

















€

C ′ u v =

cx,u cx,v cx,n

cy,u cy,v cy,n

cz,u cz,v cz,n

















1
0
0

















=

cx,u

cy,u

cz,u
















, C ′ v v =

cx,v

cy,v

cz,v
















, C ′ n v =

cx,n

cy,n

cz,n

















The world coordinate representation of

€

′ u is
′ u x
′ u y
′ u z

















so the columns of C are the world coordinates of the new axis system.

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 200714

• C is a matrix whose columns have unit length and are orthogonal to

each other, thus C is an orthogonal matrix.

• C is orthogonal and square, thus C-1 = CT

C-1 converts from coordinates expressed in terms of ex, ey and ez into

coordinates expressed in terms of u’, v’ and n’.

• The overall transformation of pw into pv is:

1. A translation which brings the view reference point to the

origin.

2. C-1

V i e w C o o r d i n a t e R o t a t i o n s

€

C =

′ u x ′ v x ′ n x
′ u y ′ v y ′ n y
′ u z ′ v z ′ n z

















CSE3313: Computer Graphics Lecture 19 / Lecture Notes 2007

C a m e r a C o n t r o l : E u l e r A n g l e s

• Orientation in 3D space can be represented with three Euler
Angles: pitch, yaw and roll (also: elevation, azimuth and roll)
corresponding to rotations in the y, z and x axes respectively.

• To control a camera’s movement (or indeed any object’s movement)
in 3D space we need both a position and orientation. This
information forms a coordinate reference frame.

• Position can be specified as a 3D vector

• Orientation can be expressed in terms of three vectors representing
the Heading, Left and Up vectors of the camera’s coordinate system

• Transform objects in world coordinates so that they are relative to
the camera’s coordinate reference frame requires the inverse
transform to that of transforming from camera to world
coordinates.

15

We need a function to convert Euler angles to [H,L,U]

CSE3313: Computer Graphics Lecture 19 / Lecture Notes 2007

E u l e r t o H L U c o n v e r s i o n f u n c t i o n

void eulerToReference(EulerFrame * ef, ReferenceFrame * r)

{

 float cosPitch, cosYaw, cosRoll;

 float sinPitch, sinYaw, sinRoll;

 cosPitch = cos(ef->pitch);

 cosYaw = cos(ef->yaw);

 cosRoll = cos(ef->roll);

 sinPitch = sin(ef->pitch);

 sinYaw = sin(ef->yaw);

 sinRoll = sin(ef->roll);

 r->h[0] = sinYaw * cosPitch;

 r->h[1] = sinPitch;

 r->h[2] = cosPitch * -cosYaw;

 r->u[0] = -cosYaw * sinRoll - sinYaw * sinPitch * cosRoll;

 r->u[1] = cosPitch * cosRoll;

 r->u[2] = -sinYaw * sinRoll - sinPitch * cosRoll * -cosYaw;

 crossVect3(r->l, r->u, r->h); /* l = u x h */

 copyVect3(r->pos, ef->pos); /* copy the position vector */

}

17

