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Lecture 19: Viewing in 3D

C S E 3 3 1 3  C o m p u t e r  G r a p h i c s
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• A view plane is established by defining a viewing coordinate 

system.

• The user defines the origin for the viewing coordinate system by 

picking a world coordinate position as the view reference point.

• The orientation of the view plane is defined by specifying the view 

plane normal vector. This vector establishes the direction for the 

positive z axis of the viewing coordinate system.

• The view plane normal N, can be specified via a world coordinate 

system position.

• The direction of N is the direction of a line from the origin to that 

world coordinate position.

• A vertical vector V, called the view up vector defines the direction 

of the positive y axis. V can be specified in a similar manner to N.

S p e c i f y i n g  a  V i e w  P l a n e
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• Some systems allow V to be not perpendicular to N and use the 

component of the specified vector which is perpendicular to N as 

the View up vector. (the vector is resolved in the direction 

orthogonal to N).

• We can think of the view plane as a logical device upon which the 

image is to be displayed.

S p e c i f y i n g  t h e  V i e w  P l a n e  ( c o n t . )
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• The viewing coordinate system can be either left-handed or right-

handed.

• Left-handed system, increasing z coordinate means objects are 

further away from the viewer;

• Right-handed system is consistent with right-handed master/

world coordinates.

• In this discussion, a left-handed coordinate system is used. 

• In establishing the view plane, some systems use an extra parameter 

called the view distance.

• The view plane is defined as the plane parallel to the viewing 

coordinate x–y plane that is a specified distance from the view 

reference point.

S p e c i f y i n g  t h e  V i e w  P l a n e  ( c o n t . )
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• As part of the viewing process, points defined in world coordinates 

must be converted to viewing coordinates.

• This transformation can be accomplished conceptually by a 

sequence of translations and rotations that map the viewing system 

axes onto the world coordinate axes.

• The matrix representing this transformation can be obtained by 

concatenating the following transformations:

V i e w  C o o r d i n a t e  Tr a n s f o r m a t i o n

Right-handed world coordinate system and 

left-handed viewing coordinate system.
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V i e w  C o o r d i n a t e  Tr a n s f o r m a t i o n  ( c o n t . )

(1) Reflect relative to the x–y plane, reversing 

the sign of each z coordinate. This changes to 

a right-handed coordinate system.

(2) Translate the view reference point to the 

origin of the world coordinate system.
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V i e w  C o o r d i n a t e  Tr a n s f o r m  ( c o n t . )

(3) Rotate about the world coordinate x axis to 

bring the viewing coordinate z axis into the x–z 

plane of the world coordinate system.

(4) Rotate about the world coordinate y axis  

until the z axes of both coordinate systems are 

aligned.
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• When applied to world coordinate definitions of objects in the 

scene, this sequence of transformations converts them to their 

positions within the viewing coordinate system.

• This sequence has much in common with the transformation 

sequence that rotates an object about an arbitrary axis.

V i e w  C o o r d i n a t e  Tr a n s f o r m  ( c o n t . )

(5) Rotate about the world coordinate z axis to 

align the viewing and world axes.
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• It turns out that there is a more efficient method for performing 

the rotation component of the transformation rather than 

multiplying 3 rotation transformation matrices together. We can use 

the orthogonal properties of the axes and fact that the inverse of a 

rotation matrix is its transpose.

• Given a view plane normal , n and a view up vector, v, we require 

that v is orthogonal to n. If the v specified by the user is not 

orthogonal to n we can resolve the component of v orthogonal to 

n. i.e.:

S p e c i f y i n g  t h e  V i e w  P l a n e
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Where v.n is the vector dot product:     
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• We need to derive a third vector which is orthogonal to both n and 

v. This can be calculated from:

S p e c i f y i n g  t h e  V i e w  P l a n e  ( c o n t . )

E.g.:
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In this case, v, u and n will generate a right-handed coordinate system.

Suppose:
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then ex, ey and ez are all unit 

vectors and are all at right 

angles to each other.
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• In the viewing coordinate system we normalise the new coordinate 

axes to be unit vectors.

Tr a n s f o r m i n g  t h e  V i e w  R e f e r e n c e  P o i n t
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The viewing transformation can be conveniently specified using this 

information.
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pw = vrp w + pv (1)

where pw is a point’s position in the world coordinate system;

vrpw is the view reference point, given in world coordinates;

pv is the point’s position relative to the viewing coordinate 

system axis, i.e. its view system coordinates.
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• The first stage of converting from world coordinates to viewing 

coordinates is a translation from the view reference point to the 

origin.

• Suppose u’, v’ and n’ are the unit vectors for the coordinate axes in 

the viewing coordinate system.

Tr a n s f o r m i n g  t h e  V i e w  R e f e r e n c e  P o i n t  ( c o n t . )
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The world coordinate representation of  
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where the subscript v denotes coordinates with respect to the viewing 

coordinate system, and the subscript w denotes coordinates with respect 

to the world coordinate system.
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• is a matrix that converts coordinates using basis vectors, which 

converts coordinates expressed in terms of u ’ , v ’ and n ’ to 

coordinates expressed in terms of ex, ey and ez.

V i e w  C o o r d i n a t e  R o t a t i o n s  u s i n g  B a s i s  Ve c t o r s
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The world coordinate representation of  
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so the columns of C are the world coordinates of the new axis system.
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• C is a matrix whose columns have unit length and are orthogonal to 

each other, thus C is an orthogonal matrix.

• C is orthogonal and square, thus C-1 = CT

C-1 converts from coordinates expressed in terms of ex, ey and ez into 

coordinates expressed in terms of u’, v’ and n’.

• The overall transformation of pw into  pv is:

1. A translation which brings the view reference point to the 

origin.

2.  C-1

V i e w  C o o r d i n a t e  R o t a t i o n s
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C a m e r a  C o n t r o l :  E u l e r  A n g l e s

• Orientation in 3D space can be represented with three Euler 
Angles: pitch, yaw and roll (also: elevation, azimuth and roll) 
corresponding to rotations in the y, z and x axes respectively.

• To control a camera’s movement (or indeed any object’s movement) 
in 3D space we need both a position and orientation. This 
information forms a coordinate reference frame.

• Position can be specified as a 3D vector

• Orientation can be expressed in terms of three vectors representing  
the Heading, Left and Up vectors of the camera’s coordinate system

• Transform objects in world coordinates so that they are relative to 
the camera’s coordinate reference frame requires the inverse 
transform to that of transforming from camera to world 
coordinates.

15



We need a function to convert Euler angles to [H,L,U]
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E u l e r  t o  H L U  c o n v e r s i o n  f u n c t i o n

void eulerToReference(EulerFrame * ef, ReferenceFrame * r)

{

    float cosPitch, cosYaw, cosRoll;

    float sinPitch, sinYaw, sinRoll;

 

    cosPitch = cos(ef->pitch);

    cosYaw = cos(ef->yaw); 

    cosRoll = cos(ef->roll);

    sinPitch = sin(ef->pitch);

    sinYaw = sin(ef->yaw);

    sinRoll = sin(ef->roll);

    r->h[0] = sinYaw * cosPitch;

    r->h[1] = sinPitch;

    r->h[2] = cosPitch * -cosYaw; 

    

    r->u[0] = -cosYaw * sinRoll - sinYaw * sinPitch * cosRoll;

    r->u[1] = cosPitch * cosRoll;

    r->u[2] = -sinYaw * sinRoll - sinPitch * cosRoll * -cosYaw;

    crossVect3(r->l, r->u, r->h); /* l = u x h */

    copyVect3(r->pos, ef->pos); /* copy the position vector */

}   
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