
Monash University • Clayton’s School of Information Technology

Lecture 20: Hidden Surface Removal

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 20072

• Hidden surface and hidden line removal algorithms are often put
into 2 categories:

1. object space methods compare objects and parts of objects to
each other to determine what is visible from a given point of
view;

2. image space algorithms deal with projected images of objects
and determine for each pixel in the viewport what is visible.

• Hidden line removal algorithms are often in object space, while
hidden surface algorithms are often in image space.

• There is no single best algorithm: which algorithm is best depends
on many factors. These include:

• complexity of the scene

• kind of lighting model used

• shading features to be used (e.g. transparency).

• coherence properties of the image and the objects

• resolution

• type of output device

H i d d e n S u r f a c e R e m o v a l

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 20073

• Back faces of solid objects are invisible from the point of view.

• Such backfaces can immediately be removed from the viewing
pipeline since they cannot appear in the final scene.

• Suppose the face of a solid object lies in the plane:

 Ax + By + Cz + D = 0

• Suppose the coordinates for the point of view (centre of projection)

are (xi, yi, zi). When the coordinates for the point are substituted

into the plane equation we have:

B a c k f a c e R e m o v a l

€

Axi + Byi + Czi + D = ri
The plane divides space into two halves.

If ri = 0, the point is in the plane.

If ri ≠ 0 then the point lies to one side of the plane or the other,

depending on the sign of ri

Reference: Angel 8.8.3

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 20074

• If the point of view lies on the same side of the face as any other
point on the object, then that face must be a back face and can be
removed.

• If ri < 0 then the plane is a backface with respect to the point of

view and is therefore invisible.

• The normal to the plane can also be used to determine if a face is a
back face.

• The coordinates for the normal to the plane, N, are (A, B, C). If V is a
vector in the viewing direction from the “eye” or camera position,
then the polygon is a backface if:
 V . N > 0

B a c k f a c e R e m o v a l (c o n t .)

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 20075

• If the polygon has been converted to projection or eye coordinates

and our viewing direction is parallel to the viewing z axis, then

V = (0,0,Vz) and V.N = VzC

Thus we are only interested in the sign of C.

• For a right-handed viewing system, if C < 0 the normal points away

from the viewing position and the plane must be a backface.

• In a left-handed coordinate system, C > 0 for backfaces. If C = 0 the

viewing direction grazes the polygon and the polygon can thus be

considered invisible.

B a c k f a c e R e m o v a l (c o n t .)

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 20076

• For a right-handed coordinate system, given v1, v2,...vn (n ≥ 3) are

vertices of the polygon under consideration and that those vertices
are not collinear and also that the vertices have been taken in an
anti-clockwise order, then (v3 – v2) × (v2 – v1) will be the normal to

the plane in which lie.

• For a left-handed system, the points are taken in clockwise order.

• Backface removal is most effective for
convex objects. For concave objects
faces may be partly visible.

• To enable backface removal in OpenGL:
glEnable(GL_CULL_FACE);

glCullFace(GL_BACK);

S u r f a c e N o r m a l s

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 20077

• The z-buffer (or depth buffer) method is an image space approach

to hidden surface elimination. It is one of the most widely used

hidden surface removal algorithms, particularly in hardware.

• For each pixel (x, y) on the display screen we need to remember the

intensity of the pixel and the z coordinate of the object voxel that

was projected onto the pixel.

• As we project objects onto the depth buffer, we change the

intensity value associated with the pixel at (x, y) if the point we are

projecting has a z value less than the value remembered in the z

buffer for (x, y), i.e. the projected pixel is closer to the viewer.

z - b u f f e r A l g o r i t h m Reference: Angel 8.8.4

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 20078

z - b u f f e r A l g o r i t h m (c o n t .)

Depth values for a surface position (x, y) are calculated from the plane

equation for each surface:

€

z =
−Ax − By − D

C
At each scan line, positions differ by 1.

€

zx+1,y =
−A(x + 1)− By − D

C
or :

zx+1,y = zx,y −
A
C

The ratio A/C is constant for each surface.

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 20079

• We first determine the y-coordinate extents of each polygon and

process the polygon from top to bottom. The x positions can be

calculated recursively down the left edge as x’ = x – 1/m where m is

the slope of the edge. Depth values down the edge are then

calculated recursively as:

z - b u f f e r A l g o r i t h m (c o n t .)

€

′ z = z +
A m + B

C

x

y

y scan line
y + 1 scan line

x x’

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 200710

• The z-buffer needs a certain number of bit planes to store both
colour and depth information. In hardware implementations this is
related to the size of the frame buffer.

• A 1280 x 1024 display might have 24 bits per pixel for colour and 16
or 24 bits per pixel for depth. The more bit planes allocated to the
depth buffer, the more accurate it will be in correctly displaying
visible surfaces.

• OpenGL uses a z-buffer for hidden surface removal. To use the z-
buffer it first needs to be requested when initializing the display:
glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE|GLUT_DEPTH)

• Depth buffering can be enabled with
glEnable(GL_DEPTH_TEST)

• The depth buffer needs to be cleared before drawing each frame
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

O p e n G L H i d d e n S u r f a c e R e m o v a l

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 200711

• It takes a finite amount of time to draw objects into the frame
buffer. A complex object may take several refresh cycles of the
display before it is completely drawn.

• If we change the contents of the frame buffer during a refresh
cycle, we may see the object being drawn or other undesirable
artifacts of how we generate the display.

• Double buffering is a technique that provides two identical buffers.
The back buffer is never shown on the display, but is used to draw
in by the graphics hardware. The front buffer is only used for
image display.

• To draw an image, we draw into the back buffer. When drawing is
completed we swap the buffers around (back becomes front, front
becomes back). The swap operation can be done between refresh
cycles.

D o u b l e B u f f e r i n g Reference: Angel 3.9.2

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 200712

• Like depth buffering, double buffering needs to be set initialized

glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE|GLUT_DEPTH)

• Drawing automatically takes place in the back buffer. The last line

in the display function should call

 glutSwapBuffers()

This will swap the buffers and display the contents of the back
buffer.

• void display (void) {

 /* clear the window */

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 /* set camera and draw your objects here */

 . . . /* swap GL buffers */

 glutSwapBuffers();

}

D o u b l e B u f f e r i n g i n O p e n G L

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 200713

• The A-Buffer is an extension to the depth buffer: an antialiased,

area-averaged, accumulation-buffer method.

• The depth buffer cannot deal with transparent surfaces and has one

visible surface at each pixel position.

• With the A-Buffer each position in the buffer can reference a linked

list of surfaces. Each position in the buffer has 2 fields:

• depth field – stores a positive or negative real number;

• intensity field – stores surface intensity information or a pointer

value (dependent on the sign of the depth field).

T h e A - b u f f e r A l g o r i t h m

CSE3313: Computer Graphics Lecture 20 / Lecture Notes 200714

• Each field in the linked list includes:

• RGB intensity components;

• opacity parameter;

• depth;

• percent of area coverage;

• surface id;

• the surface rendering parameters;

• pointer to next surface.

• This method is better suited to software rendering.

• For more information:

Carpenter, L. (1984), The A-Buffer, an Antialiased Hidden Surface Method.
SIGGRAPH '84 Conference Proceedings (Minneapolis, Minnesota, July 23-27,
Christiansen, H., ed). In Computer Graphics 18(3) ACM SIGGRAPH, New
York, NY, pp. 103-108.

T h e A - b u f f e r (c o n t .)

