
Monash University • Clayton’s School of Information Technology

Lecture 22: Illumination Models

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 20072

• In trying to depict a natural scene we
need to model the effect of light hitting a
surface. This may depend on:

• the orientation of the surface;

• the angle between the light source
and the surface normal;

• the surface properties of the object.

• A light source provides illumination of an
object. Light may came from a point or
area of emission, or may be transferred
through reflection.

I l l u m i n a t i o n a n d S h a d i n g M o d e l s

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 20073

• The simplest light sources in computer graphics are known as point

light sources. Rays of light originate from an single point.

L i g h t S o u r c e s

Other light sources include area or distributed light sources:

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 20074

• Light sources may also be constrained to effect only conic or
rectangular areas (like a spotlight, sometimes with barn doors).

• Hidden surface methods may be used to locate areas where light
sources produce shadows. By applying a hidden surface elimination
method with the light source as the point of view, those areas
which can not be seen from the light source are shadow areas –
shadow polygons.

• There may be more than one light source in a scene. If the position
of the lights does not change the position of the shadows do not
change, even though the point of view may change.

L i g h t S o u r c e s (c o n t .)

Point Light Source
(no
shadows)

Point Light Source
(shadows)

Blue Point Light
Source
(shadows)

Spot Light (cone)

Point Light with
falloff

Area Light

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 20077

• We will consider a surface, S, illuminated by a point light source.

• The surface is struck by the cast ray, V, where V gives the direction

of the point of view.

• The orientation of the surface is given by the surface normal, N. The

vector from the point on the surface to the light source is L.

• R is the direction of a perfect reflection. R is determined from L

and N by noting that the angle of incidence equals the angle of

reflection for a perfect mirror.

S h a d i n g M o d e l

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 20078

• When the light hits the surface some energy is reflected while the
rest is absorbed.

• An ideal mirror reflects light in a single direction.

• A diffuse reflector (surface) reflects an incident ray in all directions.

• Specular reflections are highlights about the angle of reflection.

Diffuse Reflections

• Light reflected from a perfectly diffuse surface is scattered equally
in all directions. The surface appears the same to all viewers (V is
not important).

• The component which is scattered depends on the cosine of the
angle between L and N – Lambert’s Law.

S h a d i n g M o d e l (c o n t .)

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 20079

• Since:

D i f f u s e I l l u m i n a t i o n

€

cosθ =
L ⋅N
L N

If the incoming light has intensity Is and we allow for a fraction,

which is diffused, then the reflected intensity is given by:

€

kd ,0≤ kd ≤ 1

€

I diff =
I skdL ⋅N

L N

This model can be extended to include the effect of the light intensity

diminishing with the square of the distance from the source.

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 200710

• Point sources for light can produce harsh images that appear
unrealistic with high contrast. This problem can be alleviated to
some extent by adding more point lights to a scene.

• However, in modelling real light sources and environments, we
might need so many that it becomes impractical. A compromise is to
use an ambient light level, Ia. This light will be partially absorbed at
a point on the surface, and so the contribution from the ambient
light is of the form:

A m b i e n t I l l u m i n a t i o n

€

I amb = I a ka

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 200711

• The smoother an object is, the more like a mirror it will behave: the
rougher the surface of an object is, the greater the diffuse
reflection. If the surface is smooth enough, we can notice specular
highlights in an image.

• This occurs because a significant amount of incoming light is being
reflected at angles near that of a perfect reflector (around R).

• Physical principles can be used to model such phenomena but this
tends to be expensive in computational terms.

• Less computationally expensive models can be used to model the
phenomenon approximately.

S p e c u l a r R e f l e c t i o n

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 200712

• An empirical model, developed by Phong Bui Tuong, known as the

Phong specular-reflection model or simply the Phong model, sets

the intensity of specular reflection proportional to , where

Φ is the angle between R and V.

• Angle Φ may be assigned the values between 0 and 90º. The value

assigned to the specular-reflection parameter ns, is determined by

the type of surface.

S p e c u l a r R e f l e c t i o n (c o n t .)

€

cosns φ

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 200713

• The specular reflection contribution can be written:

S p e c u l a r R e f l e c t i o n (c o n t .)

€

I spec = I sks cosns φ

= I sks
V ⋅ R
V R















ns

The intensity of specular reflection depends on an adsorption constant,

ks, dependent on the material.

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 200714

• Assuming unit vectors, a basic model with a single point light source

incorporating ambient, diffuse and specular components is of the

form:

A n I l l u m i n a t i o n M o d e l

€

I =
I s

d + d0

(kd
ˆ L ⋅ ˆ N + ks(ˆ R ⋅ ˆ V)ns)+ I a ka

The intensity of the light source can be scaled according to the distance

of the light to the surface. In reality this follows an inverse square law,

however a linear approximation may provide better looking images and

allow easier positioning of lights within the scene.

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 2007

O p e n G L L i g h t i n g

• Steps to specifying lighting in OpenGL:

1. Define normal vectors for each vertex of every object.

2. Create, select, and position one or more light sources.

3. Create and select a lighting model, which defines the level of

global ambient light and the effective location of the viewpoint

(for the purposes of lighting calculations).

4. Define material properties for the objects in the scene.

15

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 2007

L i g h t i n g i n O p e n G L : N o r m a l s

• For surfaces to be correctly lit in OpenGL requires specification of

surface normals:

 glNormal3f(nx, ny, nz);

• Normals are part of the OpenGL state and bound to vertices when

the call to glVertex is made.

• OpenGL does not calculate normals for you (except for

gluCurvedSurface). Your program needs to supply the normals to

OpenGL.

• Normally we want to supply unit normals:

• Normal length can be affected by transformations
• In particular, scaling does not preserve normal length (or even

direction)
• glEnable(GL_NORMALIZE) allows for autonormalization at a

performance penalty

16

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 2007

O p e n G L L i g h t s

• OpenGL allows up to 8 lights to be active at any one time (may be

implementation dependent);

• Two types of lights are supported:

• Local (point) lights; Infinite (directional) lights;

• The light type is determined by the w co-ordinate:

 w = 0 : Infinite light directed along (x,y,z);

 w ≠ 0 : Point light positioned at (x/w, y/w, z/w);

17

glLightfv(light, property, value)

specifies which
light (e.g.

GL_LIGHT0)

properties
include: colour,
position, type,
attenuation

value of the
property

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 2007

O p e n G L L i g h t s : e x a m p l e

GLfloat light0_pos[] = {1.0, 2.0, 3.0, 1.0};

GLfloat ambient0[] = {1.0, 0.0, 0.0, 1.0};

GLfloat diffuse0[] = {1.0, 0.0, 0.0, 1.0};

GLfloat specular0[] = {1.0, 1.0, 1.0, 1.0};

GLfloat lmodel_ambient[]= {0.1, 0.1, 0.1, 1.0};

glEnable(GL_LIGHT0);

glLightfv(GL_LIGHT0, GL_POSITION, light0_pos);

glLightfv(GL_LIGHT0, GL_AMBIENT, ambient0);

glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse0);

glLightfv(GL_LIGHT0, GL_SPECULAR, specular0);

glLightModelfv(GL_LIGHT_MODEL_AMBIENT,

 lmodel_ambient);

18

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 2007

S p o t l i g h t s i n O p e n G L

• A local light can be converted into a spotlight

• By setting the GL_SPOT_DIRECTION, GL_SPOT_CUTOFF, and

GL_SPOT_EXPONENT, the local light will shine in a direction and its

light will be limited to a cone centred around that direction vector.

GLfloat light0_spotDir[3] = {0.0F, 0.0F, -1.0F};

glLightf(GL_LIGHT0, GL_SPOT_EXPONENT, 0.0F);

glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 180.0F);

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, light0_spotDir);

19

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 2007

Tw o - s i d e d l i g h t i n g i n O p e n G L

• Lighting calculations are performed for all polygons, both front

and back facing. However, back facing polygons may not light

correctly.

• You can render the front and back sides of a surface correctly, using

front and back materials by invoking the function:

• glLightModeli(GL_LIGHT_MODEL_TWO_SIDED, GL_TRUE);

• You can control which faces are considered to be front facing using

the command:

 glFrontFace(GL_CCW) — counter clockwise orientation

 glFrontFace(GL_CW) — clockwise orientation

20

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 2007

P o s i t i n g L i g h t S o u r c e s i n O p e n G L

• Light sources are geometric objects whose positions or directions

are affected by the model-view matrix

• Depending on where we place the position (direction) setting

function, we can

★ Move the light source(s) with the object(s)

★ Fix the object(s) and move the light source(s)

★ Fix the light source(s) and move the object(s)

★ Move the light source(s) and object(s) independently

• The light source position is bound when glLightfv(GL_LIGHTn,

GL_POSITION, light_position) is called.

21

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 2007

S p e c i f y i n g M a t e r i a l s

• Material properties in OpenGL match the Phong reflection model

• Different material properties can be specified for the front and

back sides of a surface

• The properties give slightly different results to what you would

expect, the visual result is as follows:

★ GL_DIFFUSE - base color of object

★ GL_SPECULAR - color of highlights on object

★ GL_AMBIENT - color of object when not directly illuminated

★ GL_EMISSION - color emitted from the object (Unaffected by

other light sources, adds a fixed colour to the surface)

★ GL_SHININESS - concentration of highlights on objects. Values

range from 0 (very rough surface - no highlight) to 128 (very

shiny)

22

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 2007

O p e n G L M a t e r i a l E x a m p l e

GLfloat ambient[] = {1.0, 0.0, 0.0, 1.0};

GLfloat diffuse[] = {1.0, 0.0, 0.0, 1.0};

GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient);

glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse);

glMaterialfv(GL_FRONT, GL_SPECULAR, specular);

glMaterialf(GL_FRONT, GL_SHININESS, 100.0);

• We can simulate a physical light source in OpenGL by giving a

material an emissive component. This component is unaffected by

any sources or transformations:

GLfloat emission[] = 0.0, 0.3, 0.3, 1.0);

glMaterialf(GL_FRONT, GL_EMISSION, emission);

23

CSE3313: Computer Graphics Lecture 22 / Lecture Notes 2007

E n a b l i n g L i g h t i n g i n O p e n G L

• Lighting is normally used in conjunction with depth buffering and

normal RGBA colour mode.

• Lighting as a whole can be turned on and off, as can individual

lights:

 glEnable(GL_DEPTH_TEST);

 glEnable(GL_LIGHTING);

 glEnable(GL_LIGHT0);

• Smooth shading (Gouraud interpolation) is enabled with:

 glShadeModel(GL_SMOOTH);

(use GL_FLAT to turn it off). Note that vertex normals must be

correctly specified for Gouraud interpolation to work.

24

