
Monash University • Clayton’s School of Information Technology

Lecture 23: Polygonal Shading and Global Illumination

C S E 3 3 1 3 C o m p u t e r G r a p h i c s

Flat shading (Phong Model)

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 20072

• The shape of the surface at any point is described by the normal at
that point.

• Representing a curved surface by a mesh of flat, polygonal faces is
efficient with respect to hidden surface elimination and scan
conversion, but it means every point on the same face gets the
same normal.

• If we only consider ambient light and
diffuse reflection and the light source

is far away, we might say that L is con-
stant for all points on the plane and
calculate one intensity/colour for each
 surface element – constant shading.

P o l y g o n a l S h a d i n g

Constant or Flat Shading across Polygons

Reference: Angle 6.5

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 20073

• Problems with constant shading:

• specular reflections;

• abrupt changes at polygon boundaries get emphasized by the
human visual system.

• With a polygonal mesh a unique normal may not exist at the
boundaries of polygons. We can create a normal for a vertex by
averaging the unit normals of the faces that meet at that vertex:

P o l y g o n a l S h a d i n g (c o n t .)

Nv =
N1 + N2 + N3 + N4

4

Nv =

∑n

i=1
Ni

n

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 20074

• The normal along an edge can be calculated by interpolating the

normal at each endpoint of the edge since the endpoints are

vertices.

• In Gouraud shading, intensities at edges are linearly interpolated to

derive intensities at pixels within a face. Interpolation is normally

across a scanline and the scanline hidden surface removal algorithm

can be generalised to include this interpolation.

Ve r t e x N o r m a l s a n d G o u r a u d S h a d i n g

A

B

C

D

E F
Scan Line

IE = (1 − α)IA + αIB IF = (1 − β)IB + βIC

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 20075

• Gouraud shading still has some problems:

• If the polygons are large;

• If specular reflections need to be included;

• Intensity differential is not continuous at edges (Mach banding).

• Gouraud shading can be carried out relatively efficiently since the
intensities can be calculated incrementally across a scanline.

G o u r a u d S h a d i n g (c o n t .)

The intensities along EF get calculated by:

Step Chart

I(γ) = (1 − γ)IE + γIF

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 20076

• An improvement on Gouraud shading which is significantly more
computationally expensive is Phong interpolation shading.

• With Phong shading, the normal is interpolated across a scanline
with the full shading model being applied to every pixel in the
polygon.

• The normals across the scanline can be calculated using linear
interpolation and computed incrementally:

P h o n g S h a d i n g

€

N E = (1−α)N A +αN B

N F = (1− β)N B + βNC

while the normals along EF get calculated by:

€

N(γ)= (1−γ)N E + γN F

Phong shading can allow for specular reflections and Mach banding

does not occur.

Flat shading (Phong Model) Phong Interpolation (Phong Model)

Local Illumination Models

Ray Tracing Ray Tracing (close up) Radiosity

Global Illumination Models

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a y Tr a c i n g

• An extension of the ray casting algorithm, one of the earliest

image-based methods of HSR.

• Based on principles of geometric optics (physics)

• Ray tracing determines visibility, calculates shadows, reflection,

refraction, transparency, even does the perspective transform.

• Extensions include:

• Anti-alising enhancements

• Camera-like effects: depth-of-field and focusing effects, motion

blur

• Partitioning algorithms to deal with complex scenes

8

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a y Tr a c i n g

• We assume pixel positions on the x-y plane and a centre of
projection (projection reference point) on the z axis.

• Rays beginning at the COP are passed through each pixel position
and tested for intersection with objects in the scene.

• Further rays may be spawned as a result of transmission, shadow or
reflection.

• Each ray returns its contribution to the pixel intensity.
9

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a y Tr a c i n g (c o n t .)

• One primary “reverse” ray is generated for each pixel in the image
(a bit like a “pinhole” camera).

• If an intersection occurs it means a surface is visible to that pixel.

• Shading can be performed at the intersection point, using a Phong
model for local shading + contributions from spawned rays (if any).

• Secondary rays: reflection, refraction, transmission, shadow (trace
ray from intersection point to the light source).

• Secondary rays may intersect with other surfaces in the scene (even
ones outside the viewing frustum!). These intersections may spawn
further rays as a result of reflection or refraction for example.

• A binary ray-tracing tree can be built based on these intersections.
Traversing the tree returns the final illumination for the pixel.

10

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a y Tr a c i n g (c o n t)

11

Reflection and Refraction
paths for a pixel ray
traveling through a scene
are shown in (a) and the
corresponding binary ray-
tracing tree given in (b)

Unit vectors at the surface
of an object intersected by
an incoming ray along
direction u.

R = u − (2u · N)N

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a y R e f r a c t i o n

12

Refracted ray-
transmission path T
through a transparent
material.

T =
ηi

ηr

u − (cos θr −

ηi

ηr

cos θi)N

indices of refraction
(incident and reflected)

cos θr =

√

1 − (
ηi

ηr

)2(1 − cos2 θi)

by Snell’s law:

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a y R e p r e s e n t a t i o n

13

A ray can be represented with
an initial-position vector P0
and unit direction vector u.

P = P0 + suThe ray-equation:

point on ray distance along the ray

• u can be calculated by creating a unit vector formed from the
different from the current pixel centre and the COP

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a y - S u r f a c e I n t e r s e c t i o n s

• Ray-surface intersection algorithms have been devised for many

geometric primitives. Here we will look at ray-sphere intersection

testing.

• We assume a sphere of radius r and centre position Pc. Any point P

on the surface satisfies the sphere equation:

14

• Substitute the ray equation for P:

|P0 − su − Pc|
2 − r

2
= 0

|P − Pc|
2 − r

2
= 0

• Expanding we obtain the quadratic equation:

s
2 − 2(u · ∆P)s + (|∆P|2 − r

2) = 0 where ∆P = Pc − P0

• solving gives...

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a y - S p h e r e I n t e r s e c t i o n s (c o n t .)

• If the discriminant is negative, the ray does not intersect (or is
behind P0

• For a non-negative discriminant, the intersection point is calculated
from the smaller of the two values (the “front” side of the sphere)

15

s = u · ∆P ±
√

(u · ∆P) − |∆P|2 + r
2

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a y - S p h e r e O p t i m i s a t i o n

• The ray-sphere intersection test can be optimised.

• The intersection test is susceptible to round-off errors for very small

spheres or spheres far from the initial ray position. i.e. if:

16

s = u · ∆P ±
√

r
2 − |∆P − (u · ∆P)u|2

r
2 ! |∆P|2

• The r2 term may be lost due to the large size of |∆P|2

• This can be avoided by rearranging the calculation for distance s:

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

Cook, R. L, T. Porter and L. Carpenter (1984), Distributed Ray Tracing,
Computer Graphics (SIGGRAPH ’84 Proceedings), pp. 137-145
(http://doi.acm.org/10.1145/800031.808590)

D i s t r i b u t e d R a y Tr a c i n g

18

http://doi.acm.org/10.1145/800031.808590
http://doi.acm.org/10.1145/800031.808590

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a d i o s i t y

• Radiosity methods use physical methods to model radient-energy
transfers between surfaces in a scene.

• The basic radiosity model treats surfaces as small, opaque, ideal
diffuse reflectors. For a given point on the surface, we measure the
incoming energy from all other surfaces.

• The radiant energy transfer form a surface dB is the visible radiant
flux emanating from the surface point in the direction given by

angles θ and ϕ within the

differential solid angle dω
per unit time, per unit surface
area.

20

I =

dB

dω cos φ

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

R a d i o s i t y (c o n t .)

• Assume the surface is an ideal diffuse reflector (I is constant in all

directions). dB/dω is proportional to the projected surface area.

• To obtain the total rate of energy radiation from the surface point

we sum the radiation over all directions (a hemisphere centered on

the surface point)

21

B =

∫
hemi

dB

B = I

∫
hemi

cos φdω

• I is constant for a perfect diffuser so the radiant flux, B is:

dω =
dS

r2
= sinφdφdθ

B = I

∫ 2π

0

∫ π/2

0

cos φ sin φdφdθ = Iπ

since

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

B a s i c R a d i o s i t y M o d e l

• Surfaces in the enclosed scene are one of:

(i) reflectors

(ii) emitters (light source)

(iii)combination of (i) and (ii)

22

Hk =

∑

j

BjFjk

Incident energy
parameter

Total rate of radiant
energy leaving surface

j per unit area

Form factor, fraction of
radiant energy from
surface j that reaches

surface k (Fkk = 0)
Summed over all
surfaces in the

enclosure

Bk = Ek + ρkHk

Radiant energy from
surface k

Rate of energy emitted from surface k
per unit area (watts/m2) – light source

Diffuse reflection
coefficient for surface k

(like kd)

Radiosity Equation

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

B a s i c R a d i o s i t y M o d e l (c o n t .)

• For a scene with n surfaces we need to solve the simultaneous

radiosity equations. i.e.:

23

(1 − ρkFkk)Bk − ρk

∑

j !=k

BjFjk = Ek k = 1, 2, 3, · · · , n











1 − ρ1F11 −ρ1F12 · · · −ρ1F1n

−ρ2F21 1 − ρ2F22 · · · −ρ2F2n

.

.

.
.
.
.

.

.

.

−ρnFn1 −ρ2Fn2 · · · 1 − ρnFnn











·











B1

B2

.

.

.

Bn











=











E1

E2

.

.

.

En











or

• Intensity values are calculated by dividing Bk by π

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

F o r m F a c t o r C a l c u l a t i o n

• Form factors Fjk are calculated by considering the energy transfer

from surface j to surface k.

24

FdAj ,dAk
=

energy incident on dAk

total energy leaving dAj

=
Ij cos φj cos φkdAjdAk

r2 ·
1

BjdAj

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

F o r m F a c t o r C a l c u l a t i o n (c o n t .)

• This equation can be evaluated using numerical integration

methods, with the following conditions:

25

•

∑n
k=1

Fjk = 1, for all k (conservation of energy)

• AjFjk = AkFkj (uniform light reflection)

• Fjj = 0, for all j (assuming only planar or convex surface patches)

• Form Factor calculation can be speeded up using the hemicube

method, which approximates the hemisphere integration with a cube

of linear surface patches.

• For more information see Hearn & Baker, Section 10-12.

Fjk =
1

Aj

∫
surfj

∫
surfk

cos φj cos φk

πr2
dAkdAj

CSE3313: Computer Graphics Lecture 23 / Lecture Notes 2007

M o r e F u n

• Pharr, M. and G. Humphreys (2004): Physically-based Rendering:

From Theory to Implementation, Morgan Kaufmann. http://

pbrt.org/ – advanced open source renderer with book written in

literate programming style (available in the library)

• POVRay - www.povray.org

• Rayshade - graphics.stanford.edu/%7Ecek/rayshade/

• See the subject “Course Resources” page for more...

28

http://pbrt.org
http://pbrt.org
http://pbrt.org
http://pbrt.org
http://www.povray.org
http://www.povray.org

