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Lecture 23: Polygonal Shading and Global Illumination

C S E 3 3 1 3  C o m p u t e r  G r a p h i c s

Flat shading (Phong Model)
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• The shape of the surface at any point is described by the normal at 
that point.

• Representing a curved surface by a mesh of flat, polygonal faces is 
efficient with respect to hidden surface elimination and scan 
conversion, but it means every point on the same face gets the 
same normal.

• If we only consider ambient light and
diffuse reflection and the light source

is far away, we might say that L is con-
stant for all points on the plane and 
calculate one intensity/colour for each
 surface element – constant shading.

P o l y g o n a l  S h a d i n g

Constant or Flat Shading across Polygons

Reference: Angle 6.5
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• Problems with constant shading:

• specular reflections;

• abrupt changes at polygon boundaries get emphasized by the 
human visual system.

• With a polygonal mesh a unique normal may not exist at the 
boundaries of polygons. We can create a normal for a vertex by 
averaging the unit normals of the faces that meet at that vertex:

P o l y g o n a l  S h a d i n g  ( c o n t . )

Nv =
N1 + N2 + N3 + N4

4

Nv =

∑n

i=1
Ni

n
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• The normal along an edge can be calculated by interpolating the 

normal at each endpoint of the edge since the endpoints are 

vertices.

• In Gouraud shading, intensities at edges are linearly interpolated to 

derive intensities at pixels within a face. Interpolation is normally 

across a scanline and the scanline hidden surface removal algorithm 

can be generalised to include this interpolation.

Ve r t e x  N o r m a l s  a n d  G o u r a u d  S h a d i n g

A

B

C

D

E F
Scan Line

IE = (1 − α)IA + αIB IF = (1 − β)IB + βIC
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• Gouraud shading still has some problems:

• If the polygons are large;

• If specular reflections need to be included;

• Intensity differential is not continuous at edges (Mach banding).

• Gouraud shading can be carried out relatively efficiently since the 
intensities can be calculated incrementally across a scanline.

G o u r a u d  S h a d i n g  ( c o n t . )

The intensities along EF get calculated by:

Step Chart

I(γ) = (1 − γ)IE + γIF
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• An improvement on Gouraud shading which is significantly more 
computationally expensive is Phong interpolation shading.

• With Phong shading, the normal is interpolated across a scanline 
with the full shading model being applied to every pixel in the 
polygon.

• The normals across the scanline can be calculated using linear 
interpolation and computed incrementally:

P h o n g  S h a d i n g

    

€ 

N E = (1−α)N A +αN B

N F = (1− β)N B + βNC

while the normals along EF get calculated by:

    

€ 

N(γ)= (1−γ)N E + γN F

Phong shading can allow for specular reflections and Mach banding 

does not occur.



Flat shading (Phong Model) Phong Interpolation (Phong Model)

Local Illumination Models

Ray Tracing Ray Tracing (close up) Radiosity

Global Illumination Models
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R a y  Tr a c i n g

• An extension of the ray casting algorithm, one of the earliest 

image-based methods of HSR.

• Based on principles of geometric optics (physics)

• Ray tracing determines visibility, calculates shadows, reflection, 

refraction, transparency, even does the perspective transform.

• Extensions include:

• Anti-alising enhancements

• Camera-like effects: depth-of-field and focusing effects, motion 

blur

• Partitioning algorithms to deal with complex scenes

8
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R a y  Tr a c i n g

• We assume pixel positions on the x-y plane and a centre of 
projection (projection reference point) on the z axis.

• Rays beginning at the COP are passed through each pixel position 
and tested for intersection with objects in the scene.

• Further rays may be spawned as a result of transmission, shadow or 
reflection.

• Each ray returns its contribution to the pixel intensity.
9
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R a y  Tr a c i n g  ( c o n t . )

• One primary “reverse” ray is generated for each pixel in the image 
(a bit like a “pinhole” camera).

• If an intersection occurs it means a surface is visible to that pixel.

• Shading can be performed at the intersection point, using a Phong 
model for local shading + contributions from spawned rays (if any).

• Secondary rays: reflection, refraction, transmission, shadow (trace 
ray from intersection point to the light source).

• Secondary rays may intersect with other surfaces in the scene (even 
ones outside the viewing frustum!). These intersections may spawn 
further rays as a result of reflection or refraction for example.

• A binary ray-tracing tree can be built based on these intersections. 
Traversing the tree returns the final illumination  for the pixel.

10
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R a y  Tr a c i n g  ( c o n t )

11

Reflection and Refraction 
paths for a pixel ray 
traveling through a scene 
are shown in (a) and the 
corresponding binary ray-
tracing tree given in (b)

Unit vectors at the surface 
of an object intersected by 
an incoming ray along 
direction u.

R = u − (2u · N)N
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R a y  R e f r a c t i o n

12

Refracted ray-
transmission path T 
through a transparent 
material.

T =
ηi

ηr

u − (cos θr −

ηi

ηr

cos θi)N

indices of refraction 
(incident and reflected)

cos θr =

√

1 − (
ηi

ηr

)2(1 − cos2 θi)

by Snell’s law:
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R a y  R e p r e s e n t a t i o n

13

A ray can be represented with 
an initial-position vector P0 
and unit direction vector u.

P = P0 + suThe ray-equation:

point on ray distance along the ray

• u can be calculated by creating a unit vector formed from the 
different from the current pixel centre and the COP
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R a y - S u r f a c e  I n t e r s e c t i o n s

• Ray-surface intersection algorithms have been devised for many 

geometric primitives. Here we will look at ray-sphere intersection 

testing.

• We assume a sphere of radius r and centre position Pc. Any point P 

on the surface satisfies the sphere equation:

14

• Substitute the ray equation for P:

|P0 − su − Pc|
2 − r

2
= 0

|P − Pc|
2 − r

2
= 0

• Expanding we obtain the quadratic equation:

s
2 − 2(u · ∆P)s + (|∆P|2 − r

2) = 0 where ∆P = Pc − P0

• solving gives...
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R a y - S p h e r e  I n t e r s e c t i o n s  ( c o n t . )

• If the discriminant is negative, the ray does not intersect (or is 
behind P0

• For a non-negative discriminant, the intersection point is calculated 
from the smaller of the two values (the “front” side of the sphere)

15

s = u · ∆P ±
√

(u · ∆P) − |∆P|2 + r
2
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R a y - S p h e r e  O p t i m i s a t i o n

• The ray-sphere intersection test can be optimised.

• The intersection test is susceptible to round-off errors for very small 

spheres or spheres far from the initial ray position. i.e. if:

16

s = u · ∆P ±
√

r
2 − |∆P − (u · ∆P)u|2

r
2 ! |∆P|2

• The r2 term may be lost due to the large size of |∆P|2

• This can be avoided by rearranging the calculation for distance s:
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Cook, R. L, T. Porter and L. Carpenter (1984), Distributed Ray Tracing, 
Computer Graphics (SIGGRAPH ’84 Proceedings), pp. 137-145 
(http://doi.acm.org/10.1145/800031.808590)

D i s t r i b u t e d  R a y  Tr a c i n g

18

http://doi.acm.org/10.1145/800031.808590
http://doi.acm.org/10.1145/800031.808590
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R a d i o s i t y

• Radiosity methods use physical methods to model radient-energy 
transfers between surfaces in a scene.

• The basic radiosity model treats surfaces as small, opaque, ideal 
diffuse reflectors. For a given point on the surface, we measure the 
incoming energy from all other surfaces.

• The radiant energy transfer form a surface dB is the visible radiant 
flux emanating from the surface point in the direction given by 

angles θ and ϕ within the 

differential solid angle  dω 
per unit time, per unit surface 
area.

20

I =

dB

dω cos φ
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R a d i o s i t y  ( c o n t . )

• Assume the surface is an ideal diffuse reflector (I is constant in all 

directions). dB/dω is proportional to the projected surface area.

• To obtain the total rate of energy radiation from the surface point 

we sum the radiation over all directions (a hemisphere centered on 

the surface point)

21

B =

∫
hemi

dB

B = I

∫
hemi

cos φdω

• I is constant for a perfect diffuser so the radiant flux, B is:

dω =
dS

r2
= sinφdφdθ

B = I

∫ 2π

0

∫ π/2

0

cos φ sin φdφdθ = Iπ

since
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B a s i c  R a d i o s i t y  M o d e l

• Surfaces in the enclosed scene are one of:

(i) reflectors

(ii) emitters (light source)

(iii)combination of (i) and (ii)

22

Hk =

∑

j

BjFjk

Incident energy 
parameter

Total rate of radiant 
energy leaving surface 

j per unit area

Form factor, fraction of 
radiant energy from 
surface j that reaches 

surface k (Fkk = 0)
Summed over all 
surfaces in the 

enclosure

Bk = Ek + ρkHk

Radiant energy from 
surface k

Rate of energy emitted from surface k 
per unit area (watts/m2) – light source

Diffuse reflection 
coefficient for surface k  

(like kd)

Radiosity Equation
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B a s i c  R a d i o s i t y  M o d e l  ( c o n t . )

• For a scene with n surfaces we need to solve the simultaneous 

radiosity equations. i.e.:

23

(1 − ρkFkk)Bk − ρk

∑

j !=k

BjFjk = Ek k = 1, 2, 3, · · · , n
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• Intensity values are calculated by dividing Bk by π
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F o r m  F a c t o r  C a l c u l a t i o n

• Form factors Fjk are calculated by considering the energy transfer 

from surface j to surface k.

24

FdAj ,dAk
=

energy incident on dAk

total energy leaving dAj

=
Ij cos φj cos φkdAjdAk

r2 ·
1

BjdAj
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F o r m  F a c t o r  C a l c u l a t i o n  ( c o n t . )

• This equation can be evaluated using numerical integration 

methods, with the following conditions:

25

•

∑n
k=1

Fjk = 1, for all k (conservation of energy)

• AjFjk = AkFkj (uniform light reflection)

• Fjj = 0, for all j (assuming only planar or convex surface patches)

• Form Factor calculation can be speeded up using the hemicube 

method, which approximates the hemisphere integration with a cube 

of linear surface patches.

• For more information see Hearn & Baker, Section 10-12.

Fjk =
1

Aj

∫
surfj

∫
surfk

cos φj cos φk

πr2
dAkdAj
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M o r e  F u n

• Pharr, M. and G. Humphreys (2004): Physically-based Rendering: 

From Theory to Implementation, Morgan Kaufmann. http://

pbrt.org/ – advanced open source renderer with book written in 

literate programming style (available in the library)

• POVRay - www.povray.org

• Rayshade - graphics.stanford.edu/%7Ecek/rayshade/

• See the subject “Course Resources” page for more...

28

http://pbrt.org
http://pbrt.org
http://pbrt.org
http://pbrt.org
http://www.povray.org
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