Parameter control

Lecture 11

MONASH UNIVERSITY CLAYTON'S SCHOOL OF INFORMATION TECHNOLOGY

An EA has many strategy parameters, e.g.

- mutation operator and mutation rate
- crossover operator and crossover rate
- selection mechanism and selective pressure (e.g. tournament size)
- population size

Good parameter values facilitate good performance

Q1 How to find good parameter values?

Motivation 2

EA parameters are rigid (constant during a run)

BUT

an EA is a dynamic, adaptive process

THUS

optimal parameter values may vary during a run

Q2: How to vary parameter values?

Parameter tuning

Parameter tuning: the traditional way of testing and comparing different values before the "real" run

Problems:

- users mistakes in settings can be sources of errors or sub-optimal performance
- costs much time
- parameters interact: exhaustive search is not practicable
- good values may become bad during the run

Parameter control

Parameter control: setting values on-line, during the actual run, e.g.

- predetermined time-varying schedule p = p(t)
- using feedback from the search process
- encoding parameters in chromosomes and rely on natural selection

Problems:

- finding optimal p is hard, finding optimal p(t) is harder
- still user-defined feedback mechanism, how to ``optimize''?
- when would natural selection work for strategy parameters?

Example

Task to solve:

- min $f(x_1,...,x_n)$
- L_i ≤ X_i ≤ U_i for i = 1,...,n bounds
- $g_i(x) ≤ 0$ for i = 1,...,q inequality constraints
- $h_i(x) = 0$ for i = q+1,...,m equality constraints

Algorithm:

- **E**A with real-valued representation $(x_1,...,x_n)$
- arithmetic averaging crossover
- Gaussian mutation: $x'_i = x_i + N(0, \sigma)$
- standard deviation σ is called mutation step size

• Replace the constant σ by a function $\sigma(t)$

$$\sigma(t) = 1 - 0.9 \times \frac{t}{T}$$

▶ $0 \le t \le T$ is the current generation number

- -changes in σ are independent from the search progress
- -strong user control of σ by the above formula
- -σ is fully predictable
- -a given σ acts on all individuals of the population

- Replace the constant σ by a function σ (t) updated after
- every n steps by the 1/5 success rule (cf. ES chapter):

$$\sigma(t) = \begin{cases} \sigma(t-n)/c & \text{if } p_s > 1/5 \\ \sigma(t-n) \times c & \text{if } p_s < 1/5 \\ \sigma(t-n) & \text{otherwise} \end{cases}$$

- -changes in σ are based on feedback from the search progress
- -some user control of σ by the above formula
- -σ is not predictable
- -a given σ acts on all individuals of the population

- Assign a personal σ to each individual
- Incorporate this σ into the chromosome: (x1, ..., xn, σ)
- Apply variation operators to xi's and σ

$$\sigma' = \sigma \times e^{N(0,\tau)}$$

$$x'_i = x_i + N(0, \sigma')$$

- -changes in σ are results of natural selection
- -(almost) no user control of σ
- **-**σ is not predictable
- -a given σ acts on one individual

- Assign a personal σ to each variable in each individual
- Incorporate σ 's into the chromosomes: (x1, ..., xn, σ 1, ..., σ n)
- Apply variation operators to xi's and σi's

$$\sigma'_{i} = \sigma_{i} \times e^{N(0,\tau)}$$
$$x'_{i} = x_{i} + N(0,\sigma'_{i})$$

- -changes in σ_i are results of natural selection
- -(almost) no user control of σ_i
- $-\sigma_i$ is not predictable
- -a given σ_i acts on 1 gene of one individual

Example cont'd

Constraints

-
$$gi(x) \le 0$$
 for $i = 1,...,q$ inequality constraints

-
$$hi(x) = 0$$
 for $i = q+1,...,m$ equality constraints

are handled by penalties:

$$eval(x) = f(x) + W \times penalty(x)$$

where:

$$penalty(x) = \sum_{j=1}^{m} \begin{cases} 1 & \text{for violated constraint} \\ 0 & \text{for satisfied constraint} \end{cases}$$

Varying penalty: option 1

Replace the constant W by a function W(t)

$$W(t) = (C \times t)^{\acute{a}}$$

▶ $0 \le t \le T$ is the current generation number

- -changes in W are independent from the search progress
- -strong user control of W by the above formula
- -W is fully predictable
- -a given W acts on all individuals of the population

Varying penalty: option 2

Replace the constant W by W(t) updated in each generation

$$W(t+1) = \begin{cases} \hat{a} \times W(t) & \text{if last } k \text{ champions all feasible} \\ \tilde{a} \times W(t) & \text{if last } k \text{ champions all infeasible} \\ W(t) & \text{otherwise} \end{cases}$$

 β < 1, γ > 1, β × γ ≠ 1 champion: best of its generation

- -changes in W are based on feedback from the search progress
- -some user control of W by the above formula
- -W is not predictable
- -a given W acts on all individuals of the population

Varying penalty: option 3

- Assign a personal W to each individual
- Incorporate this W into the chromosome: $(x_1, ..., x_n, W)$
- Apply variation operators to x_i 's and W

- Alert:
- eval $((x, W)) = f(x) + W \times penalty(x)$
- while for mutation step sizes we had
- eval $((x, \sigma)) = f(x)$
- ▶ this option is thus sensitive "cheating" ⇒ makes no sense

Lessons learned from examples

Various forms of parameter control can be distinguished by:

- primary features:
 - what component of the EA is changed
 - how the change is made

- secondary features:
 - evidence/data backing up changes
 - level/scope of change

What

- Practically any EA component can be parameterised and thus controlled on-the-fly:
 - representation
 - evaluation function
 - variation operators
 - selection operator (parent or mating selection)
 - replacement operator (survival or environmental selection)
 - population (size, topology)

How

- Three major types of parameter control:
 - deterministic: some rule modifies strategy parameter without feedback from the search (based on some counter)
 - adaptive: feedback rule based on some measure monitoring search progress
 - self-adaptative: parameter values evolve along with solutions;
 encoded onto chromosomes they undergo variation and selection

Global taxonomy

Evidence informing the change

The parameter changes may be based on:

- time or nr. of evaluations (deterministic control)
- population statistics (adaptive control)
 - progress made
 - population diversity
 - gene distribution, etc.
- relative fitness of individuals created with given values (adaptive or self-adaptive control)

Evidence informing the change

- Absolute evidence: predefined event triggers change, e.g. increase p_m by 10% if population diversity falls under threshold x
- Direction and magnitude of change is fixed
- Relative evidence: compare values through solutions created with them, e.g. increase p_m if top quality offspring came by high mutation rates
- Direction and magnitude of change is not fixed

Scope/level

- ▶ The parameter may take effect on different levels:
 - environment (fitness function)
 - population
 - individual
 - sub-individual

Note: given component (parameter) determines possibilities, thus: scope/level is a derived or secondary feature in the classification scheme.

Refined taxonomy

- Combinations of types and evidences
 - Possible: +
 - Impossible: -

	Deterministic	Adaptive	Self-adaptive
Absolute	+	+	_
Relative	_	+	+

Evaluation / Summary

- Parameter control offers the possibility to use appropriate values in various stages of the search
- Adaptive and self-adaptive parameter control
 - offer users "liberation" from parameter tuning
 - delegate parameter setting task to the evolutionary process
 - the latter implies a double task for an EA: problem solving + self-calibrating (overhead)
- Robustness, insensitivity of EA for variations assumed
 - If no. of parameters is increased by using (self)adaptation
- For the "meta-parameters" introduced in methods
 FIT4012 EVOLUTIONARY SIMULATION AND SYNTHESIS