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Recap of EC metaphor

‣ A population of individuals exists in an  environment with limited 
resources

‣ Competition for those resources causes selection of those fitter 
individuals that are better adapted to the environment

‣ These individuals act as seeds for the generation of new 
individuals through recombination and mutation

‣ The new individuals have their fitness evaluated and compete 
(possibly also with parents) for survival.

‣ Over time Natural selection causes a rise in the fitness of the 
population
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Recap of EC metaphor (cont.)

‣ EAs fall into the category of “generate and test” algorithms

‣ They are stochastic, population-based algorithms

‣ Variation operators (recombination and mutation) create the 
necessary diversity and thereby facilitate novelty

‣ Selection reduces diversity and acts as a force pushing quality
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General Scheme of EAs



Pseudo-code for typical EA
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What are the different types of EAs

‣ Historically different flavours of EAs have been associated with 
different representations

- Binary strings : Genetic Algorithms

- Real-valued vectors : Evolution Strategies

- Finite state Machines: Evolutionary Programming

- LISP trees: Genetic Programming

‣ These differences are largely irrelevant, best strategy 

- choose representation to suit problem

- choose variation operators to suit representation

‣ Selection operators only use fitness and so are independent of 
representation
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Representations

‣ Candidate solutions (individuals) exist in phenotype  space

‣ They are encoded in chromosomes, which exist in genotype space

- Encoding : phenotype=> genotype (not necessarily one to one)

- Decoding : genotype=> phenotype  (must be one to one)

‣ Chromosomes contain genes, which are in (usually fixed) positions 
called loci (sing. locus) and have a value (allele)

In order to find the global optimum, every feasible solution must be 
represented in genotype space
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Evaluation (Fitness) Function

‣ Represents the requirements that the population should adapt to

‣ a.k.a. quality function or objective function

‣ Assigns a single real-valued fitness to each phenotype which forms 
the basis for selection

- So the more discrimination (different values) the better

‣ Typically we talk about fitness being maximised

- Some problems may be best posed as minimisation problems, but conversion 
is trivial
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Population

‣ Holds (representations of) possible solutions

‣ Usually has a fixed size and is a multiset of genotypes

‣ Some sophisticated EAs also assert a spatial structure on the 
population e.g., a grid.

‣ Selection operators usually take whole population into account i.e., 
reproductive probabilities are relative to current generation

‣ Diversity  of a population refers to the number of different 
fitnesses / phenotypes / genotypes present (note not the same 
thing)
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Parent Selection Mechanism

‣ Assigns variable probabilities of individuals acting as parents 
depending on their fitnesses

‣ Usually probabilistic

- high quality solutions more likely to become parents than low quality

- but not guaranteed

- even worst in current population usually has non-zero probability of 
becoming a parent

‣ This stochastic nature can aid escape from local optima
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Variation Operators

‣ Role is to generate new candidate solutions 

‣ Usually divided into two types according to their arity (number of 
inputs):

- Arity 1 : mutation operators

- Arity >1 : Recombination operators

- Arity = 2 typically called crossover

‣ There has been much debate about relative importance of 
recombination and mutation

- Nowadays most EAs use both

- Choice of particular variation operators is representation dependant
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Mutation

‣ Acts on one genotype and delivers another

‣ Element of randomness is essential and differentiates it from other 
unary heuristic operators

‣ Importance ascribed  depends on representation and dialect:

- Binary GAs – background operator responsible for preserving and introducing 
diversity

- EP for FSM’s/ continuous variables – only search operator

- GP – hardly used

‣ May guarantee connectedness of search space and hence 
convergence proofs
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Recombination

‣ Merges information from parents into offspring

‣ Choice of what information to merge is stochastic

‣ Most offspring may be worse, or the same as the parents

‣ Hope is that some are better by combining elements of genotypes 
that lead to good traits

‣ Principle has been used for millennia by breeders of plants and 
livestock
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two parents’ genes and their 
matching crossover points 1 & 2

offspring’s genes

mutated offspring’s genes

mutation

crossover

1 12 2

Explaining crossover
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Survivor Selection

‣ a.k.a. replacement

‣ Most EAs use fixed population size so need a way of going from 
(parents + offspring) to next generation

‣ Often deterministic

- Fitness based : e.g., rank parents+offspring and take best 

- Age based: make as many offspring as parents and delete all parents 

‣ Sometimes do combination (elitism)
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Initialisation / Termination

‣ Initialisation usually done at random, 

- Need to ensure even spread and mixture of possible allele values

- Can include existing solutions, or use problem-specific heuristics, to “seed” 
the population

‣ Termination condition checked every generation 

- Reaching some (known/hoped for) fitness

- Reaching some maximum allowed number of generations

- Reaching some minimum level of diversity

- Reaching some specified number of generations without fitness improvement
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Example: the 8 Queens Problem

Place 8 queens on an 8x8 chessboard in
such a way that they cannot check each other



The 8 Queens Problem: Representation

1 23 45 6 7 8

Genotype: 
a permutation of 
the numbers 1 - 8

Phenotype: 
a board configuration 

Obvious mapping
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8 Queens Problem: Fitness Evaluation

‣ Penalty of one queen:

‣ the number of queens she can check.

‣  Penalty of a configuration: 

‣ the sum of the penalties of all queens.

‣  Note: penalty is to be minimized

‣  Fitness of a configuration: 

‣ inverse penalty to be maximised
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The 8 Queens Problem: Mutation

1 23 45 6 7 8 1 23 4 567 8

Small variation in one permutation, e.g.:
• swapping values of two randomly chosen positions, 
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The 8 Queens Problem: Recombination

‣ Combining  two permutations into two new permutations:

‣ choose random crossover point

‣ copy first parts into children

‣ create second part by inserting values from other parent:

‣ in the order they appear there 

‣ beginning after crossover point

‣ skipping values already in child
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8 7 6 42 531
1 3 5 24 678

8 7 6 45 123
1 3 5 62 874
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The 8 Queens Problem: Selection

‣ Parent selection:

- Pick 5 parents and take best two to undergo crossover

‣ Survivor selection (replacement)

- When inserting a new child into the population, choose an existing member to 
replace by:

- sorting the whole population by decreasing fitness

- enumerating this list from high to low

- replacing the first with a fitness lower than the given child
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8 Queens Problem: Summary

Note that this is only one possible 
set of choices of operators and parameters



Typical Behaviour of an EA

Phases in optimising on a 1-dimensional fitness landscape

Early phase:
quasi-random population distribution

Mid-phase:
population arranged around/on hills

Late phase:
population concentrated on high hills



Typical Run: Progression of Fitness
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Typical run of an EA shows so-called “anytime behaviour”



Are long runs beneficial?
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• Answer: 
  - it depends how much you want the last bit of progress
  - it may be better to do more shorter runs



Is it worth expending effort on smart initialisation?

T: time needed to reach level F after random initialisation  

T
Time (number of generations)
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F: fitness after smart initialisationF

•  Answer : it depends: 
 - possibly, if good solutions/methods exist.
 - care is needed, see Eiben & Smith chapter on hybridisation
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Evolutionary Algorithms in Context

‣ There are many views on the use of EAs as robust problem solving 
tools

‣ For most problems a problem-specific tool may:

- perform better than a generic search algorithm on most instances, 

- have limited  utility, 

- not do well on all instances

‣ Goal is to provide robust tools that provide:

- evenly good performance 

- over a range of problems and instances
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EA Design (from CSE460)
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Initialisation

Population Size

Variation

Selection

Fitness

Mutation Crossover

EvaluationRepresentation

•All these decisions are interdependent

•Problem-specific knowledge must be taken into account



EAs as problem solvers: Goldberg’s 1989 view
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EAs and Domain Knowledge

‣ Trend in the 90’s:

    adding problem specific knowledge to EAs

    (special variation operators, repair, etc)

‣ Result: EA performance curve “deformation”: 

- better on problems of the given type

- worse on problems different from given type

- amount of added knowledge is variable

‣ Recent theory suggests the search for an “all-purpose” algorithm 
may be fruitless
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Michalewicz’ 1996 view
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EC and Global Optimisation

‣ Global Optimisation: search for finding best solution x* out of some 

fixed set S

‣ Deterministic approaches

- e.g. box decomposition (branch and bound etc)

- Guarantee to find x* , but may run in super-polynomial time

‣ Heuristic Approaches (generate and test)

- rules for deciding which x ∈ S  to generate next

- no guarantees that best solutions found are globally optimal
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EC and Neighbourhood Search

‣ Many heuristics impose a neighbourhood structure on S

‣ Such heuristics may guarantee that best point found is locally 
optimal  e.g. Hill-Climbers: 
– But problems often exhibit many local optima  

- Often very quick to identify good solutions

‣ EAs are distinguished by:!

- Use of population,

- Use of multiple, stochastic search operators 

- Especially variation operators with arity >1

- Stochastic selection
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