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‣ Developed: USA in the 1970’s

‣ Early names: J. Holland, K. DeJong, D. Goldberg

‣ Typically applied to:

-  discrete optimisation

‣ Attributed features:

- not too fast

- good heuristic for combinatorial problems

‣ Special Features:

- Traditionally emphasises combining information from good 
parents (crossover)

- many variants, e.g., reproduction models, operators

GA Quick Overview
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Reading: Eiben& Smith Chapter 3
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‣ Holland’s original GA is now known as the simple genetic 
algorithm (SGA)

‣ Other GAs use different:

- Representations

- Mutations

- Crossovers

- Selection mechanisms

Genetic algorithms
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Representation Binary strings
Recombination N-point or uniform

Mutation Bitwise bit-flipping 
with fixed probability

Parent selection Fitness-Proportionate

Survivor selection All children replace 
parents

Speciality Emphasis on crossover

SGA technical summary tableau



Genotype space = {0,1}LPhenotype space

Encoding 
(representation)

Decoding
(inverse representation)

011101001

010001001

10010010

10010001

Representation
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1. Select parents for the mating pool
(size of mating pool = population size)

2. Shuffle the mating pool

3. For each consecutive pair apply crossover with probability pc , 
otherwise copy parents

4. For each offspring apply mutation (bit-flip with probability pm 
independently for each bit)

5. Replace the whole population with the resulting offspring

SGA reproduction cycle
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‣ Choose a random point on the two parents

‣ Split parents at this crossover point

‣ Create children by exchanging tails

‣ Pc typically in range (0.6, 0.9)

SGA operators: 1-point crossover
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‣ Alter each gene independently with a probability pm 

‣ pm is called the mutation rate

- Typically between 1/pop_size and 1/ chromosome_length

SGA operators: mutation
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‣ Main idea: better individuals get higher chance

- Chances proportional to fitness

- Implementation: roulette wheel technique
✴ Assign to each individual a part of the roulette wheel
✴  Spin the wheel n times to select n individuals

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A C

3/6 = 50%

B

2/6 = 33%

SGA operators: Selection
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‣ Simple problem: max x2 over {0,1,…,31}

‣ GA approach:

- Representation: binary code, e.g. 01101 ↔ 13

- Population size: 4

- 1-point xover, bitwise mutation 

- Roulette wheel selection

- Random initialisation

‣ We show one generational cycle done by hand 

An example after Goldberg ‘89 (1)
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x2 example: selection



x2 example: crossover



x2 example: mutation



FIT4012 EVOLUTIONARY SIMULATION AND SYNTHESIS

‣ Has been subject of many (early) studies

- still often used as benchmark for novel GAs

‣ Shows many shortcomings, e.g.

- Representation is too restrictive

- Mutation & crossovers only applicable for bit-string & integer 
representations

- Selection mechanism sensitive for converging populations with 
close fitness values

- Generational population model (step 5 in SGA repr. cycle) can be 
improved with explicit survivor selection

The simple GA
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‣ Performance with 1 Point Crossover depends on the order that 
variables occur in the representation

- more likely to keep together genes that are near each other

- Can never keep together genes from opposite ends of string

- This is known as Positional Bias

- Can be exploited if we know about the structure of our problem, 
but this is not usually the case

Alternative Crossover Operators
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‣ Choose n random crossover points

‣ Split along those points

‣ Glue parts, alternating between parents

‣ Generalisation of 1 point (still some positional bias)

n-point crossover
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‣ Assign 'heads' to one parent, 'tails' to the other

‣ Flip a coin for each gene of the first child

‣ Make an inverse copy of the gene for the second child

‣ Inheritance is independent of position

Uniform crossover
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‣ Decade long debate: which one is better / necessary / main-
background 

‣ Answer (at least, rather wide agreement):

- it depends on the problem, but

- in general, it is good to have both

- both have another role

- mutation-only-EA is possible, xover-only-EA would not work

Crossover OR mutation?
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‣ Exploration: Discovering promising areas in the search space, i.e. 
gaining information on the problem

‣ Exploitation: Optimising within a promising area, i.e. using 
information

★ There is co-operation AND competition between them:

•  Crossover is explorative, it makes a big jump to an area 
somewhere “in between” two (parent) areas

•  Mutation is exploitative, it creates random small diversions, 
thereby staying near (in the area of ) the parent

Crossover OR mutation? (cont’d)
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‣ Only crossover can combine information from two parents

‣ Only mutation can introduce new information (alleles)

‣ Crossover does not change the allele frequencies of the population 
(thought experiment: 50% 0’s on first bit in the population, ?% after 
performing n crossovers)

‣ To hit the optimum you often need a ‘lucky’ mutation

Crossover OR mutation? (cont’d)
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‣ Gray coding of integers (still binary chromosomes)

- Gray coding is a mapping that means that small changes in the 
genotype cause small changes in the phenotype (unlike binary 
coding). “Smoother” genotype-phenotype mapping makes life 
easier for the GA

★ Nowadays it is generally accepted that it is better to encode 
numerical variables directly as

‣ Integers

‣ Floating point variables

Other representations
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‣ Some problems naturally have integer variables, e.g. image 
processing parameters 

‣ Others take categorical values from a fixed set e.g. {blue, green, 
yellow, pink}

‣ N-point / uniform crossover operators work

‣ Extend bit-flipping mutation to make

- “creep” i.e. more likely to move to similar value

- Random choice (esp. categorical variables)

- For ordinal problems, it is hard to know correct range for creep, 
so often  use two mutation operators in tandem 

Integer representations
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‣ Many problems occur as real valued problems, e.g. continuous 
parameter optimisation f : ℜ n ➔ ℜ

‣ Illustration: Ackley’s function (often used in EC)

Real valued problems
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‣ z ∈ [x,y] ⊆ ℜ represented by {a1,…,aL} ∈ {0,1}L

‣ [x,y] → {0,1}L must be invertible (one phenotype per genotype)

‣ Γ: {0,1}L → [x,y] defines the representation 

‣ Only 2L values out of infinite are represented

‣ L determines possible maximum precision of solution

‣ High precision → long chromosomes (slow evolution)

Mapping real values on bit strings
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‣ General scheme of floating point mutations  

‣ Uniform mutation: 

‣ Analogous to bit-flipping (binary) or random resetting (integers)

Floating point mutations 1
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‣ Non-uniform mutations:

- Many methods proposed,such as time-varying range of change 
etc.

- Most schemes are probabilistic but usually only make a small 
change to value

- Most common method is to add random deviate to each variable 
separately, taken from N(0, σ) Gaussian distribution and then 
curtail to range

- Standard deviation σ controls amount of change (2/3 of 
deviations will lie in range (- σ to + σ)

Floating point mutations 2
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‣ Discrete:

- each allele value in offspring z comes from one of its parents (x,y) 
with equal probability: zi  = xi or yi

-  Could use n-point or uniform
‣ Intermediate

- exploits idea of creating children “between” parents (hence a.k.a. 
arithmetic recombination)

- zi = α xi  + (1 - α) yi    where α : 0 ≤ α  ≤ 1.

-  The parameter α can be:
• constant: uniform arithmetical crossover
• variable (e.g. depend on the age of the population) 
• picked at random every time

Crossover operators for real valued GAs
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‣ Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉

‣ Pick a single gene (k) at random, 

‣ child1 is:

‣ •% reverse for other child. e.g. with α = 0.5

Single arithmetic crossover
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‣ Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉

‣ Pick random gene (k) after this point mix values
‣ child1 is:

‣ •% reverse for other child. e.g. with α = 0.5

Simple arithmetic crossover
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‣ Most commonly used

‣ Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉

‣ child1 is:

‣ % reverse for other child. e.g. with α = 0.5

Whole arithmetic crossover
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‣ Ordering/sequencing problems form a special type

‣ Task is (or can be solved by) arranging some objects in a certain 
order 

- Example: sort algorithm: important thing is which elements 
occur before others (order)

- Example: Travelling Salesman Problem (TSP) : important thing is 
which elements occur next to each other (adjacency)

‣ These problems are generally expressed as a permutation:

- if there are n variables then the representation is as a list of n 
integers, each of which occurs exactly once

Permutation Representations
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‣ Problem:

- Given n cities

- Find a complete tour with minimal length

‣ Encoding:

- Label the cities 1, 2, … , n

- One complete tour is one permutation 
(e.g. for n =4 [1,2,3,4], [3,4,2,1] are OK)

‣ Search space is BIG: 

- for 30 cities there are 30! ≈ 1032 possible tours

Permutation representation: TSP example
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‣ Normal mutation operators lead to inadmissible solutions

- e.g. bit-wise mutation : let gene i  have value j

- changing to some other value k  would mean that k occurred 
twice and j no longer occurred 

‣ Therefore we must change at least two values

‣ Mutation parameter now reflects the probability that some operator 
is applied once to the whole string, rather than individually in each 
position

Mutation operators for permutations
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‣ Pick two allele values at random

‣ Move the second to follow the first,  shifting the rest along to 
accommodate

‣ Note that this preserves most of the order and the adjacency 
information

Insert Mutation for permutations
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‣ Pick two alleles at random and swap their positions

‣ Preserves most of adjacency information (4 links broken), disrupts 
order more

Swap mutation for permutations
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‣ Pick two alleles at random and then invert the substring between 
them.

‣ Preserves most adjacency information (only breaks two links) but 
disruptive of order information

Inversion mutation for permutations
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‣ Pick a subset of genes at random

‣ Randomly rearrange the alleles in those positions

(note subset does not have to be contiguous)

Scramble mutation for permutations
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‣ “Normal” crossover operators will often lead to inadmissible 
solutions

‣ Many specialised operators have been devised which focus on  
combining order or adjacency information from the two parents

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

Crossover operators for permutations
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‣ Idea is to preserve relative order that elements occur

‣ Informal procedure:

1. Choose an arbitrary part from the first parent

2. Copy this part to the first child

3. Copy the numbers that are not in the first part, to the first child:

• starting right from cut point of the copied part, 

• using the order of the second parent 

• and wrapping around at the end

4. Analogous for the second child, with parent roles reversed

Order 1 crossover
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‣ Copy randomly selected set from first parent

‣ Copy rest from second parent in order 1,9,3,8,2

Order 1 crossover example
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‣ Informal procedure for parents P1 and P2:

1. Choose random segment and copy it from P1 

2. Starting from the first crossover point look for elements in that 
segment of P2 that have not been copied

3. For each of these i look in the offspring to see what element j has 
been copied in its place from P1

4. Place i into the position occupied j in P2, since we know that we 
will not be putting j there (as is already in offspring)

5. If the place occupied by j in P2 has already been filled in the 
offspring k, put i in the position occupied by k in P2

6. Having dealt with the elements from the crossover segment, the 
rest of the offspring can be filled from P2. 

‣ Second child is created analogously

Partially Mapped Crossover (PMX)
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‣ Step 1

‣ Step 2

‣ Step 3

PMX  example
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Basic idea: 
‣ Each allele comes from one parent together with its position.

Informal procedure:
1. Make a cycle of alleles from P1 in the following way. 

a. Start with the first allele of P1. 
b. Look at the allele at the same position in P2.
c. Go to the position with the same allele in P1. 
d. Add this allele to the cycle.
e. Repeat step b through d until you arrive at the first allele of 

P1.
2. Put the alleles of the cycle in the first child on the positions they 

have in the first parent.
3. Take next cycle from second parent

Cycle crossover
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‣ Step 1: identify cycles

‣ Step 2: copy alternate cycles into offspring

Cycle crossover example
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‣ Works by constructing a table listing which edges are present in the 
two parents, if an edge is common to both, mark with a +

‣ e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]% %

Edge Recombination
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Informal procedure once edge table is constructed

1. Pick an initial element at random and put it in the offspring

2. Set the variable current element = entry

3. Remove all references to current element from the table

4. Examine list for current element:
• If there is a common edge, pick that to be next element

• Otherwise pick the entry in the list which itself has the shortest list

• Ties are split at random

5. In the case of reaching an empty list:
• Examine the other end of the offspring for extension

• Otherwise a new element is chosen at random

Edge Recombination 2
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Edge Recombination example
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‣ Recall that we are not constricted by the practicalities of nature

‣ Noting that mutation uses 1 parent, and “traditional” crossover 2, 
the extension to a>2 is natural to examine

‣ Been around since 1960s, still rare but studies indicate useful

‣  Three main types:

- Based on allele frequencies, e.g., p-sexual voting generalising uniform 
crossover

- Based on segmentation and recombination of the parents, e.g., diagonal 
crossover generalising n-point crossover

- Based on numerical operations on real-valued alleles, e.g.,  centre of mass 
crossover, generalising arithmetic recombination operators

Multiparent recombination
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‣ SGA uses a Generational model:

- each individual survives for exactly one generation

- the entire set of  parents is replaced by the offspring

‣ At the other end of the scale are Steady-State models:

-  one offspring is generated per generation,

-  one member of population replaced,

‣ Generation Gap 

-  the proportion of the population replaced

- 1.0 for GGA,  1/pop_size for SSGA

Population Models

49



FIT4012 EVOLUTIONARY SIMULATION AND SYNTHESIS

‣ Selection can occur in two places:

- Selection from current generation to take part in mating (parent 
selection) 

- Selection from parents + offspring to go into next generation (survivor 
selection)

‣ Selection operators work on whole individual

- i.e. they are representation-independent

‣ Distinction between selection

- operators: define selection probabilities  

- algorithms: define how probabilities are implemented  

Fitness Based Competition
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‣ Expected number of copies of an individual i  

 % % %  E( ni ) = μ • f(i)/ ∑fj

(μ = pop.size, f(i) = fitness of i, ∑fj = sum of fitness)

‣ Roulette wheel algorithm:

- Given a probability distribution, spin a 1-armed wheel n times to 
make n selections

- No guarantees on actual value of ni 

‣ Baker’s SUS algorithm:

- n evenly spaced arms on wheel and spin once

- Guarantees  floor(E( ni ) ) ≤ ni ≤ ceil(E( ni ) )

Implementation example: SGA
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‣ Problems include

- One highly fit member can rapidly take over if rest of population is 
much less fit: Premature Convergence

- At end of runs when fitnesses are similar, lose selection pressure 

- Highly susceptible to function transposition

‣ Scaling can fix last two problems

- Windowing: f’(i) = f(i) - β t  

where β is worst fitness in this (last n) generations

- Sigma Scaling: f’(i) = max( f(i) – (〈 f 〉 - c • σf ), 0.0)

where c is a constant, usually 2.0

Fitness-Proportionate Selection

52



Function transposition for FPS
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‣ Attempt to remove problems of FPS by basing selection 
probabilities on relative rather than absolute fitness

‣ Rank population according to fitness and then base selection 
probabilities on rank where fittest has rank μ and worst rank 1

‣ This imposes a sorting overhead on the algorithm, but this is 
usually negligible compared to the fitness evaluation time

Rank – Based Selection
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‣ Parameterised by factor s: 1.0 < s ≤ 2.0

- measures advantage of best individual

- in GGA this is the number of children allotted to it 

‣ Simple 3 member example

Linear Ranking
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‣ Linear Ranking is limited to selection pressure

‣ Exponential Ranking can allocate more than 2 copies to fittest 
individual

‣ Normalise constant factor c according to population size

Exponential Ranking
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‣ All methods above rely on global population statistics

- Could be a bottleneck esp. on parallel machines

- Relies on presence of external fitness function which might not 
exist: e.g. evolving game players

‣  Informal Procedure:

- Pick k members  at random then select the best of these

- Repeat to select more individuals

Tournament Selection
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‣ Probability of selecting i  will depend on:

- Rank of i

- Size of sample k 

•  higher k increases selection pressure

- Whether contestants are picked with replacement

• Picking without replacement increases selection pressure

- Whether fittest contestant always wins (deterministic) or this 
happens with probability p

‣ For k = 2, time for fittest individual to take over population is the 
same as linear ranking with s = 2 • p

Tournament Selection 2
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‣ Most of methods above used for parent selection

‣ Survivor selection can be divided into two approaches:

- Age-Based Selection

• e.g. SGA

• In SSGA can implement as “delete-random” (not 
recommended) or as first-in-first-out (a.k.a. delete-oldest) 

- Fitness-Based Selection

• Using one of the methods above or...

Survivor Selection
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‣ Elitism

- Widely used in both population models (GGA, SSGA)

- Always keep at least one copy of the fittest solution so far

‣ GENITOR: a.k.a. “delete-worst”

- From Whitley’s original Steady-State algorithm (he also used linear 
ranking for parent selection)

- Rapid takeover : use with large populations or “no duplicates” policy

Two Special Cases
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Precedence constrained job shop scheduling problem
‣ J is a set of jobs.
‣ O is a set of operations
‣ M is a set of machines 
‣ Able ⊆ O × M defines which machines can perform which 

operations  
‣ Pre ⊆ O × O defines which operation should precede which 
‣ Dur : ⊆ O × M → IR defines the duration of o ∈ O on m ∈ M 

The goal is now to find a schedule that is:
‣ Complete: all jobs are scheduled
‣ Correct: all conditions defined by Able and Pre are satisfied
‣ Optimal: the total duration of the schedule is minimal

Example application of order based GAs: JSSP 
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‣ Representation: individuals are permutations of operations
‣ Permutations are decoded to schedules by a decoding procedure

- take the first (next) operation from the individual

- look up its machine (here we assume there is only one)

- assign the earliest possible starting time on this machine, subject to
• machine occupation
• precedence relations holding for this operation in the schedule created so 

far

‣ fitness of a permutation is the duration of the corresponding 
schedule (to be minimised)

‣ use any suitable mutation and crossover
‣ use roulette wheel parent selection on inverse fitness
‣ Generational GA model for survivor selection
‣ use random initialisation

Precedence constrained job shop scheduling GA
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JSSP example: operator comparison


