Evolution strategies

Lecture 4

MONASH UNIVERSITY CLAYTON'S SCHOOL OF INFORMATION TECHNOLOGY

ES quick overview

- Developed: Germany in the 1970's
- Early names: I. Rechenberg, H.-P. Schwefel
- Typically applied to:
 - numerical optimisation
- Attributed features:
 - fast
 - good optimizer for real-valued optimisation
 - relatively much theory
- Special:
 - self-adaptation of (mutation) parameters standard

ES technical summary tableau

Representation	Real-valued vectors	
Recombination	Discrete or intermediary	
Mutation	Gaussian perturbation	
Parent selection	Uniform random	
Survivor selection	(μ,λ) or $(\mu+\lambda)$	
Speciality	Self-adaptation of mutation step sizes	

Introductory example

- ▶ Task: minimimise $f : \mathbb{R}^n \to \mathbb{R}$
- Algorithm: "two-membered ES" using
 - Vectors from Rⁿ directly as chromosomes
 - Population size 1
 - Only mutation creating one child
 - Greedy selection

Introductory example: pseudocode

- Create initial point $x^t = \langle x_1^t, ..., x_n^t \rangle$
- REPEAT UNTIL (TERMIN.COND satisfied) DO
 - Draw z_i from a normal distr. for all i = 1,...,n
 - $y_i^t = x_i^t + z_i$ (for all i = 1,...,n)
 - IF $f(x^t) < f(y^t)$ THEN $x^{t+1} = x^t$
 - ELSE $x^{t+1} = y^t$
 - FI
 - Set t = t+1
- END REPEAT

Introductory example: mutation mechanism

- \triangleright z values drawn from normal distribution N(ξ , σ)
 - mean ξ is set to 0
 - variation σ is called mutation step size
- \triangleright or is varied on the fly by the "1/5 success rule":
- \blacktriangleright This rule resets σ after every k iterations by

$$- \sigma = \sigma / c \quad \text{if } p_s > 1/5$$

$$- \sigma = \sigma \cdot c \quad \text{if } p_s < 1/5$$

$$\sigma = \sigma$$
 if $p_s = 1/5$

▶ where p_s is the % of successful mutations, $0.8 \le c \le 1$

Illustration of normal distribution

Another historical example:

Task: to optimise the shape of a jet nozzle Approach: random mutations to shape + selection

Final shape

Another historical example: the jet nozzle experiment cont'd

Jet nozzle: the movie

Genetic operators: mutations (2)

Representation

- Chromosomes consist of three parts:
 - Object variables: x₁,...,x_n
 - Strategy parameters:
 - Mutation step sizes: $\sigma_1, ..., \sigma_{n_{\sigma}}$
 - Rotation angles: $\alpha_1, ..., \alpha_{n_{\alpha}}$
- Not every component is always present
- Full size: $\langle x_1, ..., x_n, \sigma_1, ..., \sigma_n, \alpha_1, ..., \alpha_k \rangle$
- where k = n(n-1)/2 (no. of i,j pairs)

Mutation

- Main mechanism: changing value by adding random noise drawn from normal distribution
- $x'_i = x_i + N(0,\sigma)$
- Key idea:
 - σ is part of the chromosome $\langle x_1, ..., x_n, \sigma \rangle$
 - σ is also mutated into σ' (see later how)
- Thus: mutation step size σ is coevolving with the solution x

Mutate of first

- Net mutation effect: $\langle x, \sigma \rangle \rightarrow \langle x', \sigma' \rangle$
- Order is important:
 - first $\sigma \rightarrow \sigma'$ (see later how)
 - then $x \rightarrow x' = x + N(0, \sigma')$
- Rationale: new $\langle x', \sigma' \rangle$ is evaluated twice
 - Primary: x' is good if f(x') is good
 - Secondary: σ' is good if the x' it created is good
- Reversing mutation order this would not work

Mutation case 1: Uncorrelated mutation with one σ

- Chromosomes: $\langle x_1, ..., x_n, \sigma \rangle$
- $\bullet \quad \sigma' = \sigma \bullet \exp(\tau \bullet N(0,1))$
- $x'_i = x_i + \sigma' \cdot N(0,1)$
- Typically the "learning rate" $\tau \propto 1/\ n^{1/2}$
- And we have a boundary rule $\sigma' < \epsilon_0 \Rightarrow \sigma' = \epsilon_0$

Mutants with equal likelihood

Circle: mutants having the same chance to be created

Mutation case 2: Uncorrelated mutation with n σ's

- Chromosomes: $\langle x_1, ..., x_n, \sigma_1, ..., \sigma_n \rangle$
- $\bullet \quad \sigma'_{i} = \sigma_{i} \cdot \exp(\tau' \cdot N(0,1) + \tau \cdot N_{i}(0,1))$
- $x'_{i} = x_{i} + \sigma'_{i} \cdot N_{i} (0,1)$
- Two learning rate parameters:
 - τ' overall learning rate
 - τ coordinate wise learning rate
- ▶ $\tau' \propto 1/(2 \text{ n})^{\frac{1}{2}}$ and $\tau \propto 1/(2 \text{ n}^{\frac{1}{2}})^{\frac{1}{2}}$
- And $\sigma_i' < \varepsilon_0 \Rightarrow \sigma_i' = \varepsilon_0$

Mutants with equal likelihood

Ellipse: mutants having the same chance to be created

Mutation case 3: Correlated mutations

- Chromosomes: $\langle x_1, ..., x_n, \sigma_1, ..., \sigma_n, \alpha_1, ..., \alpha_k \rangle$
- where $k = n \cdot (n-1)/2$
- and the covariance matrix C is defined as:
 - $c_{ii} = \sigma_i^2$
 - $c_{ij} = 0$ if i and j are not correlated
 - $c_{ij} = \frac{1}{2} \cdot (\sigma_i^2 \sigma_j^2) \cdot \tan(2 \alpha_{ij})$ if i and j are correlated
- Note the numbering / indices of the α 's

Correlated mutations cont'd

The mutation mechanism is then:

$$\bullet \ \alpha'_{j} = \alpha_{j} + \beta \bullet N (0,1)$$

$$x' = x + N(0,C')$$

- \boldsymbol{x} stands for the vector $\langle x_1, ..., x_n \rangle$
- C' is the covariance matrix C after mutation of the α values

▶
$$\tau' \propto 1/(2 \text{ n})^{\frac{1}{2}}$$
 and $\tau \propto 1/(2 \text{ n}^{\frac{1}{2}})^{\frac{1}{2}}$ and $\beta \approx 5^{\circ}$

$$\sigma_i' < \epsilon_0 \Rightarrow \sigma_i' = \epsilon_0 \text{ and }$$

$$| \alpha'_{j} | > \pi \Rightarrow \alpha'_{j} = \alpha'_{j} - 2 \pi \operatorname{sign}(\alpha'_{j})$$

Mutants with equal likelihood

Ellipse: mutants having the same chance to be created

Recombination

- Creates one child
- Acts per variable / position by either
 - Averaging parental values, or
 - Selecting one of the parental values
- From two or more parents by either:
 - Using two selected parents to make a child
 - Selecting two parents for each position anew

Names of recombinations

	Two fixed parents	Two parents selected for each i
$z_i = (x_i + y_i)/2$	Local intermediary	Global intermediary
z _i is x _i or y _i chosen randomly	Local discrete	Global discrete

Parent selection

- Parents are selected by uniform random distribution whenever an operator needs one/some
- Thus: ES parent selection is unbiased every individual has the same probability to be selected
- Note that in ES "parent" means a population member (in GA's: a population member selected to undergo variation)

Survivor selection

- Applied after creating λ children from the μ parents by mutation and recombination
- Deterministically chops off the "bad stuff"
- Basis of selection is either:
 - The set of children only: (μ, λ) -selection
 - The set of parents and children: $(\mu+\lambda)$ -selection

Survivor selection cont'd

- $(\mu+\lambda)$ -selection is an elitist strategy
- (μ,λ) -selection can "forget"
- Often (μ,λ) -selection is preferred for:
 - Better in leaving local optima
 - Better in following moving optima
 - Using the + strategy bad σ values can survive in $\langle x, \sigma \rangle$ too long if their host x is very fit
- Selective pressure in ES is very high ($\lambda \approx 7 \cdot \mu$ is the common setting)

Self-adaptation illustrated

- Given a dynamically changing fitness landscape (optimum location shifted every 200 generations)
- Self-adaptive ES is able to
 - follow the optimum and
 - adjust the mutation step size after every shift!

Self-adaptation illustrated cont'd

Changes in the fitness values (left) and the mutation step sizes (right)

Prerequisites for self-adaptation

- $\mu > 1$ to carry different strategies
- $\lambda > \mu$ to generate offspring surplus
- Not "too" strong selection, e.g., $\lambda \approx 7 \cdot \mu$
- (μ,λ) -selection to get rid of misadapted o's
- Mixing strategy parameters by (intermediary) recombination on them

Example application: the cherry brandy experiment

- Task to create a colour mix yielding a target colour (that of a well known cherry brandy)
- ▶ Ingredients: water + red, yellow, blue dye
- Representation: \(\lambda \, \text{r, y ,b } \) no self-adaptation!
- Values scaled to give a predefined total volume (30 ml)
- Mutation: lo / med / hi σ values used with equal chance
- Selection: (1,8) strategy

Example application: cherry brandy experiment cont'd

- Fitness: students effectively making the mix and comparing it with target colour
- Termination criterion: student satisfied with mixed colour
- Solution is found mostly within 20 generations
- Accuracy is very good

Example application: the Ackley function (Bäck et al '93)

The Ackley function (here used with n = 30):

$$f(\bar{x}) = -20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n} x_i^2}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$

- Evolution strategy:
 - Representation:
 - $-30 < x_i < 30$ (coincidence of 30's!)
 - 30 step sizes
 - **-** (30,200) selection
 - Termination: after 200000 fitness evaluations
 - Results: average best solution is 7.48 10 ⁻⁵ (very good)