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‣ Experiment design

‣ Algorithm design

‣ Test problems

‣ Measurements and statistics

‣ Some tips and summary

Issues considered Reading: Eiben& Smith Chapter 14
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‣ Has a goal or goals 

‣ Involves algorithm design and implementation 

‣ Needs problem(s) to run the algorithm(s) on

‣ Amounts to running the algorithm(s) on the problem(s)

‣ Delivers measurement data, the results

‣ Is concluded with evaluating the results in the light of the given 
goal(s)

‣ Is often documented (see tutorial on paper writing)

Experimentation 
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‣ EA objectives determined by problem context:

‣ Design (engineering) problems – single ‘good’ solution required.

‣ Control (optimization) problems – requiring many ‘good’ yet 
‘timely’ solutions.

EA experimentation 
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‣ Optimizing Internet shopping 

! delivery routes

- Different destinations each day

- Limited time to run algorithm each day

- Must always be reasonably good route in limited time

Example: Production Perspective
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‣ Optimizing spending on improvements to national 
road network

–Total cost: billions of Euro
–Computing costs negligible
–Six months to run algorithm 
 on hundreds computers
–Many runs possible
–Must produce very good 
 result just once

Example: Design Perspective
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l Design perspective:

! find a very good solution at least once

l Production perspective:

! find a good solution at almost every run

l Academic perspective: 

! must meet scientific standards
These perspectives have very different implications when evaluating EA 

results.

Perspectives of an EA’s goals
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‣ Design a representation

‣ Design a way of mapping a genotype to a phenotype

‣ Design a way of evaluating an individual

‣ Design suitable mutation operator(s)

‣ Design suitable recombination operator(s)

‣ Decide how to select individuals to be parents

‣ Decide how to select individuals for the next generation (how to 
manage the population)

‣ Decide how to start: initialisation method

‣ Decide how to stop: termination criterion

Algorithm design
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‣ Use problem instances from an academic repository

‣ Use randomly generated problem instances 

‣ Use real life problem instances

Test problems for experimental comparisons 
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‣ 5 DeJong functions

‣ 25 “hard” objective functions

‣ Frequently encountered or otherwise important variants of given 
practical problem

‣ Selection from recognised benchmark problem repository 
(“challenging” by being NP--- ?!) 

‣ Problem instances made by random generator

Choice has severe implications on

- generalisability and 

- scope of the results

Test problems for experimental 
comparisons 
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‣ I invented “tricky mutation”

‣ Showed that it is a good idea by:

- Running standard (?) GA and tricky GA

- On 10 objective functions from the literature

- Finding tricky GA better on 7, equal on 1, worse on 2 cases

‣ I wrote it down in a paper

‣ And it got published!

‣ Q: what did I learned from this experience? 

‣ Q: is this good work?

Bad example
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‣ What did I (my readers) did not learn:

- How relevant are these results (test functions)?

- What is the scope of claims about the superiority of the tricky 
GA?

- Is there a property distinguishing the 7 good and the 2 bad 
functions?

- Can the results be generalised ? (Is the tricky GA applicable for 
other problems? Which ones?)

Bad example
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‣ Testing on real data

‣ Advantages:

- Results are application oriented

‣ Disadvantages

- Can be few available sets of real data

- May be commercial sensitive – difficult to publish and to allow others to 
compare

- Results are hard to generalise

Getting Problem Instances 1
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‣ Standard data sets in problem repositories, e.g.:

- OR-Library

! http://www.ms.ic.ac.uk/info.html

- UCI Machine Learning Repository www.ics.uci.edu/~mlearn/
MLRepository.html

‣ Advantage: 

- Tried and tested problems and instances (hopefully)

- Much other work on these à results comparable

‣ Disadvantage:

- Not real – might miss crucial aspect 

- Algorithms get tuned for popular test suites

Getting Problem Instances 2
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‣ Problem instance generators produce simulated data 
for given parameters, e.g.:
– GA/EA Repository of Test Problem Generators

! ! http://www.cs.uwyo.edu/~wspears/generators.html

‣ Advantage:
– Allow systematic investigation of an objective function 

parameter range

– Can be shared allowing comparisons with other researchers

‣ Disadvantage:
– Not real – might miss crucial aspect

– Given generator might have hidden bias

Getting Problem Instances 3
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l EAs are stochastic à 

! never draw any conclusion from a single run 
– perform sufficient number of independent runs 

– use statistical measures (averages, standard deviations) 

– use statistical tests to assess reliability of conclusions

l EA experimentation is about comparison à

! always do a fair competition
– use the same amount of resources for the competitors

– try different competition limits

– use the same performance measures   

Basic rules of experimentation
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Many different ways. Examples:

‣ Average result in given time

‣ Average time for given result

‣ Proportion of runs within % of target

‣ Best result over n runs

‣ Amount of computing required to reach target in given time with % 
confidence

‣ …

Things to Measure
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‣ Elapsed time? 

- Depends on computer, network, etc…

‣ CPU Time?

- Depends on skill of programmer, implementation, etc…

‣ Generations?

- Difficult to compare when parameters like population size change

‣ Evaluations?

- Evaluation time could depend on algorithm, e.g. direct vs. indirect 
representation

What time units do we use?
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‣ Performance measures (off-line)
- Efficiency (alg. speed)

• CPU time

• No. of steps, i.e., generated points in the search space

- Effectivity (alg. quality)
• Success rate

• Solution quality at termination

‣ “Working” measures (on-line)
- Population distribution (genotypic)

- Fitness distribution (phenotypic)

- Improvements per time unit or per genetic operator

- …

Measures
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‣ No. of generated points in the search space 

! = no. of fitness evaluations 

! (don’t use no. of generations!)

‣ AES: average no. of evaluations to solution

‣ SR: success rate = % of runs finding a solution 
(individual with acceptable quality / fitness)

‣ MBF: mean best fitness at termination, i.e., best per 
run, mean over a set of runs

‣ SR ≠ MBF

- Low SR, high MBF: good approximiser (more time helps?)

- High SR, low MBF: “Murphy” algorithm

Performance measures
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‣ Basic rule: use the same computational limit for each 
competitor

‣ Allow each EA the same no. of evaluations, but 

- Beware of hidden labour, e.g. in heuristic mutation 
operators

- Beware of possibly fewer evaluations by smart 
operators

‣ EA vs. heuristic: allow the same no. of steps:

- Defining “step” is crucial, might imply bias!

- Scale-up comparisons eliminate this bias

Fair experiments
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Which algorithm 
is better? 

Why? 
When?

0

5
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15
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-50
51-60

61-70
71-80

81-90
91-100

Example: off-line performance 
measure evaluation 
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Populations mean (best) fitness

Which algorithm is better? Why? When?

Algorithm B

Algorithm A

Example: on-line performance measure 
evaluation
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time

Run 2

Run 1

average

Averaging can “choke” interesting information

Example: averaging on-line measures 
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time

Overlay of curves can lead to very “cloudy” figures

Example: overlaying on-line measures
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‣ Algorithms are stochastic

‣ Results have element of “luck”

‣ Sometimes can get away with less rigour – e.g. parameter tuning

‣ For scientific papers where a claim is made: “Newbie 
recombination is better ran uniform crossover”, need to show 
statistical significance of comparisons

Statistical Comparisons and Significance



FIT4012 EVOLUTIONARY SIMULATION AND SYNTHESIS 27

Is the new method better?

Example
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• Standard deviations supply additional info
• T-test (and alike) indicate the chance that the values came 

from the same underlying distribution (difference is due to 
random effects) E.g. with 7% chance in this example.

Example (cont’d)
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‣ T-test assumes:

- Data taken from continuous interval or close approximation

- Normal distribution

- Similar variances for too few data points

- Similar sized groups of data points

‣ Other tests: 

- Wilcoxon – preferred to t-test where numbers are small or distribution is not 
known.

- F-test – tests if two samples have different variances.

Statistical tests
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‣ http://fonsg3.let.uva.nl/Service/Statistics.html

‣ http://department.obg.cuhk.edu.hk/ResearchSupport/

‣ http://faculty.vassar.edu/lowry/webtext.html

‣ R, Mathematica

‣ http://www.octave.org/

Statistical Resources
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‣ I invented myEA for problem X

‣ Looked and found 3 other EAs and a traditional benchmark 
heuristic for problem X in the literature

‣ Asked myself when and why is myEA better

Better example: problem setting
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‣ Found/made problem instance generator for problem 
X with 2 parameters:
– n  (problem size)

– k  (some problem specific indicator)  

‣ Selected 5 values for k and 5 values for n

‣ Generated 100 problem instances for all combinations

‣ Executed all alg’s on each instance 100 times 
(benchmark was also stochastic)

‣ Recorded AES, SR, MBF values w/ same comp. limit

! (AES for benchmark?)

‣ Put my program code and the instances on the Web

Better example: experiments
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‣ Arranged results “in 3D” (n,k) + performance 
! (with special attention to the effect of n, as for scale-up)
‣ Assessed statistical significance of results 
‣ Found the niche for my_EA: 

- Weak in … cases, strong in - - - cases, comparable otherwise

- Thereby I answered the “when question”

‣ Analysed the specific features and the niches of each 
algorithm thus answering the “why question”

‣ Learned a lot about problem X and its solvers
‣ Achieved generalisable results, or at least claims with 

well-identified scope based on solid data
‣ Facilitated reproducing my results à further research

Better example: evaluation
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‣ Be organised
‣ Decide what you want & define appropriate measures
‣ Choose test problems carefully
‣ Make an experiment plan (estimate time when possible)
‣ Perform sufficient number of runs
‣ Keep all experimental data (never throw away 

anything)
‣ Use good statistics (“standard” tools from Web, MS)
‣ Present results well (figures, graphs, tables, …)
‣ Watch the scope of your claims
‣ Aim at generalisable results
‣ Publish code for reproducibility of results (if applicable)

Some tips


