
Multivariant Non-failure Analysis

via Standard Abstract Interpretation

Francisco Bueno1, Pedro López-Garćıa1, and Manuel Hermenegildo1,2

1 School of Computer Science, Technical University of Madrid (UPM)
{bueno,pedro.lopez,herme}@fi.upm.es

http://www.cliplab.org/
2 Depts. of Comp. Science and El. and Comp. Eng., U. of New Mexico (UNM)

Abstract. Non-failure analysis aims at inferring that predicate calls in
a program will never fail. This type of information has many applica-
tions in functional/logic programming. It is essential for determining
lower bounds on the computational cost of calls, useful in the context
of program parallelization, instrumental in partial evaluation and other
program transformations, and has also been used in query optimization.
In this paper, we re-cast the non-failure analysis proposed by Debray
et al. as an abstract interpretation, which not only allows to investigate
it from a standard and well understood theoretical framework, but has
also several practical advantages. It allows us to incorporate non-failure
analysis into a standard, generic abstract interpretation engine. The ana-
lysis thus benefits from the fixpoint propagation algorithm, which leads
to improved information propagation. Also, the analysis takes advantage
of the multi-variance of the generic engine, so that it is now able to infer
separate non-failure information for different call patterns. Moreover, the
implementation is simpler, and allows to perform non-failure and cover-
ing analyses alongside other analyses, such as those for modes and types,
in the same framework. Finally, besides the precision improvements and
the additional simplicity, our implementation (in the Ciao/CiaoPP mul-
tiparadigm programming system) also shows better efficiency.

1 Introduction

Non-failure analysis involves detecting at compile time that, for any call belong-
ing to a particular (possibly infinite) class of calls, a predicate will never fail. As
an example, consider a predicate defined by the following two clauses:
abs(X, Y) :- X >= 0, Y is X.
abs(X, Y) :- X < 0, Y is -X.
and assume that we know that this predicate will always be called with its
first argument bound to an integer, and the second argument a free variable.
Obviously, for any particular call, one or the other of the tests X >= 0 and
X < 0 may fail; however, taken together, one of them will always succeed. Thus,
we can infer that calls to the predicate will never fail.

Being able to determine statically that a predicate will not fail has many
applications. It is essential for determining lower bounds on the computational

Y. Kameyama and P.J. Stuckey (Eds.): FLOPS 2004, LNCS 2998, pp. 100–116, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

http://www.cliplab.org/
Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

Multivariant Non-failure Analysis via Standard Abstract Interpretation 101

cost of goals since without such information a lower bound of almost zero (corre-
sponding to an early failure) must often be assumed [10]. Detecting non-failure
is also very useful in the context of parallelism because it allows avoiding unnec-
essary speculative parallelism and ensuring no-slowdown properties for the par-
allelized programs (in addition to using the lower bounds mentioned previously
to perform granularity control) [11]. Non-failure information is also instrumental
in partial evaluation and other program transformations, such as reordering of
calls, and has also been used in query optimization in deductive databases [8]. It
is also useful in program debugging, where it allows verifying user assertions re-
garding non-failure of predicates [12,13]. Finally, similar techniques can be used
to detect the absence of errors or exceptions when running particular predicates.

A practical non-failure analysis has been proposed by Debray et al. [9]. In a
similar way to the example above, this approach relies on first inferring mode
and type information, and then testing that the constraints in the clauses of the
predicate are entailed by the types of the input arguments, which is called a
covering test. Covering cannot be inferred by examining the constraints of each
clause separately: it is necessary to collect them together and examine the be-
havior of the predicate as a whole. Furthermore, non-failure of a given predicate
depends on non-failure of other predicates being called and also possibly on the
constraints in such predicates.

While [9] proposed the basic ideas behind non-failure analysis, only a simple,
monovariant algorithm was proposed for propagating the non-failure informa-
tion. In our experience since that proposal, we have found a need to improve
it in several ways. First, information propagation needs to be improved, which
leads us to a fixpoint propagation algorithm. Furthermore, the analysis really
needs to be multi–variant, which means that it should be able to infer separate
non-failure (and covering) information for different call patterns for a given pred-
icate in a program. This is illustrated by the following example which, although
simple, captures the very common case where the same (library) procedure is
called from a program (in different points) for different purposes:

Example 1 Consider the (exported) predicate mv/3 (which uses the library
predicate qsort/2), defined for the sake of discussion as follows:

mv(A,B,C):- qsort(A,B), !, C = B.
mv(A,B,C):- append(A,B,D), qsort(D, C).

Assume the following entry assertion for mv/3:

:- entry mv(A,B,C) : (list(A, num), list(B, num), var(C)).

which means that the predicate mv(A,B,C) will be called with A and B bound
to lists of numbers, and C a free variable. A multi–variant non-failure analysis
would infer two call patterns for predicate qsort/2:

1. The call pattern qsort(A,B): (list(A,num), list(B,num)), for which
the analysis infers that it can fail and is not covered, and

2. the call pattern qsort(A,B): (list(A,num), var(B)), for which the ana-
lysis infers that it will not fail and is covered.

102 Francisco Bueno, Pedro López-Garćıa, and Manuel Hermenegildo

This in turn allows the analysis to infer that the predicate mv/3 will not fail and
is covered (for the call pattern expressed by the entry assertion).

However, a monovariant analysis only considers one call pattern per predi-
cate. In particular, for predicate qsort/2, the call pattern used is qsort(A,B):
(list(A,num), term(B))3 (which is the result of “collapsing” all call patterns
which can appear in the program, so that precision is lost), for which it infers
that qsort/2 can fail and is not covered. This causes the analysis to infer that
the predicate mv/3 can fail (since the calls to qsort/2 in both clauses of predicate
mv/3 are detected as failing) and is covered. �

In order to address the different shortcomings of [9] in this paper we start
by casting the ideas behind non-failure and covering analysis as an abstract
interpretation [5]. This then allows us to incorporate non-failure analysis into
a (somewhat modified) standard, generic abstract interpretation engine. This
has several advantages. First of all, the analysis is now based on a standard
and well studied theoretical framework. But, most importantly, being able to
take advantage of standard and well developed analysis engines allows us to
obtain a simpler and more efficient implementation, with better propagation of
information, performing an efficient fixpoint. The non-failure and covering anal-
yses can be performed alongside other abstract interpretation based analyses,
such as those for modes and types, in the same framework. Furthermore, the
analysis that we obtain is multi–variant (on calls and successes) thus inferring
separate non-failure (and covering) information for different call patterns for a
given predicate in a program. Finally, the abstract domain for non-failure can
be easily enhanced to define a domain for determinacy of predicates.

Abstract Interpretation [5] is often proposed as a means for inferring prop-
erties of programs at compile–time. It was shown by Bruynooghe [2], Jones
and Sondergaard [15], Debray [7], and Mellish [17] that this technique can be
extended to flow analysis of programs in logic programming languages, and sev-
eral frameworks or particular analyses have evolved since (e.g. [16,20,21,22]).
Abstract interpretation formalizes the relation between analysis and semantics,
and, therefore, it is inherently semantics sensitive, different semantic definition
styles yielding different approaches to program analysis. For logic programs we
distinguish between two main approaches, namely bottom–up analysis and top–
down analysis. We also distinguish between goal dependent and goal independent
analyses. In this paper we use a goal dependent framework, since non-failure
analysis is inherently goal dependent. In [3], Bruynooghe describes a framework
for the goal-dependent, top–down abstract interpretation of logic programs. We
use the PLAI/CiaoPP framework [12,13], which follows [3], but incorporates a
number of optimizations and efficient fixpoint algorithms, described in [18,19,14].

3 term(B) means that argument B can be bound to any term.

Multivariant Non-failure Analysis via Standard Abstract Interpretation 103

2 Preliminaries

We will denote C the universal set of constraints. We let θ ↓L be the constraint
θ restricted to the variables of the syntactic object L. We denote constraint
entailment by |=, so that c1 |= c2 denotes that c1 entails c2.

An atom has the form p(t1, ..., tn) where p is a predicate symbol and the ti
are terms. A literal is either an atom or a constraint. A goal is a finite sequence of
literals. A rule is of the form H:- B where H , the head, is an atom and B, the
body, is a possibly empty finite sequence of literals. A constraint logic program,
or program, is a finite set of rules. The definition of an atom A in program P ,
defnP (A), is the set of variable renamings of rules in P such that each renaming
has A as a head and has distinct new local (but not head) variables.

The operational semantics of a program is in terms of its “derivations” which
are sequences of reductions between “states”. A state 〈G θ〉 consists of a goal
G and a constraint store (or store for short) θ. A state 〈L :: G θ〉, where L is a
literal and :: denotes concatenation of sequences, can be reduced as follows:

1. If L is a constraint and θ ∧ L is satisfiable, it is reduced to 〈G θ ∧ L〉.
2. If L is an atom, it is reduced to 〈B :: G θ〉 for some rule (L:-B) ∈ defnP (L).

assuming for simplicity that the underlying constraint solver is complete. We
use S �P S′ to indicate that in program P a reduction can be applied to
state S to obtain state S′. Also, S �∗

P S′ indicates that there is a sequence of
reduction steps from state S to state S′. A derivation from state S for program
P is a sequence of states S0 �P S1 �P ... �P Sn where S0 is S and there is a
reduction from each Si to Si+1. Given a non-empty derivation D, we denote by
curr goal(D) and curr store(D) the first goal and the store in the last state of
D, respectively. E.g., if D is the derivation S0 �∗

P Sn with Sn = 〈g :: G θ〉 then
curr goal(D) = g and curr store(D) = θ. A query is a pair (L, θ) where L is a
literal and θ a store of an initial state 〈L θ〉. The set of all derivations from Q for
P is denoted derivations(P, Q). We will denote sets of queries by Q. We extend
derivations to Q as follows: derivations(P,Q) =

⋃
Q∈Q derivations(P, Q).

The observational behavior of a program is given by its “answers” to queries.
A finite derivation from a query (L, θ) for program P is finished if the last
state in the derivation cannot be reduced. A finished derivation from a query
(L, θ) is successful if the last state is of the form 〈nil θ′〉, where nil denotes
the empty sequence. The constraint θ′ ↓L is an answer to (L, θ). We denote by
answers(P, Q) the set of answers to query Q. A finished derivation is failed if the
last state is not of the form 〈nil θ〉. Note that derivations(P,Q) contains not
only finished derivations but also all intermediate derivations. A query Q finitely
fails in P if derivations(P, Q) is finite and contains no successful derivation.

Abstract Interpretation. Abstract interpretation [5] is a technique for static pro-
gram analysis in which execution of the program is simulated on an abstract
domain (Dα) which is simpler than the actual, concrete domain (D). For this
study, we restrict to complete lattices over sets both for the concrete 〈2D,⊆〉
and abstract 〈Dα,�〉 domains.

104 Francisco Bueno, Pedro López-Garćıa, and Manuel Hermenegildo

Abstract values and sets of concrete values are related via a pair of monotonic
mappings 〈α, γ〉: abstraction α : 2D → Dα, and concretization γ : Dα → 2D,
such that ∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general � is
defined so that the operations of least upper bound (�) and greatest lower bound
(�) mimic those of 2D in a precise sense:

∀λ, λ′ ∈ Dα : λ � λ′ ⇔ γ(λ) ⊆ γ(λ′)
∀λ1, λ2, λ

′ ∈ Dα : λ1 � λ2 = λ′ ⇔ γ(λ1) ∪ γ(λ2) = γ(λ′)
∀λ1, λ2, λ

′ ∈ Dα : λ1 � λ2 = λ′ ⇔ γ(λ1) ∩ γ(λ2) = γ(λ′)
Goal dependent abstract interpretation takes as input a program P , an ab-

stract domain Dα, and a description Qα of the possible initial queries to P , given
as a set of abstract queries. An abstract query is a pair (L, λ), where L is an atom
(for one of the exported predicates) and λ ∈ Dα describes the initial stores for
L. A set Qα represents the set of queries γ(Qα), which is defined as γ(Qα) =
{(L, θ) | (L, λ) ∈ Qα∧θ ∈ γ(λ)}. Such an abstract interpretation computes a set
of triples Analysis(P,Qα, Dα) = {〈Lp, λ

c, λs〉 | p is a predicate of P}, where Lp

is a (program) atom for predicate p. Note that, the analysis being multivariant
(on calls), it may compute several tuples of the form 〈Lp, λ

c, λs〉 for different call
patterns 〈Lp, λ

c〉 of each predicate p (including different program atoms Lp). If
p is detected to be dead code then λc = λs = ⊥. As usual in abstract interpreta-
tion, ⊥ denotes the abstract constraint such that γ(⊥) = ∅, whereas � denotes
the most general abstract constraint, i.e., γ(�) = D.

3 The Abstract Interpretation Framework

PLAI is an analysis system based on the abstract interpretation framework of
Bruynooghe [3] with the optimizations described in [18]. The framework works
on an abstraction of the (SLD) AND-OR trees of the execution of a program for
given entry points. The abstract AND-OR graph makes it possible to provide in-
formation at each program point, a feature which is crucial for many applications
(such as, e.g., reordering, automatic parallelization, or garbage collection).

Program points and abstract substitutions are related as follows. Consider a
clause h:- p1, . . . , pn. Let λi and λi+1 be the abstract substitutions to the left
and right of the subgoal pi, 1 ≤ i ≤ n in this clause. Then λi and λi+1 are,
respectively, the abstract call substitution and the abstract success substitution
for the subgoal pi. For this same clause, λ1 is the abstract entry substitution and
λn+1 is the abstract exit substitution. Entry and exit substitutions are denoted
respectively βentry and βexit when projected on the variables of the clause head.

Computing the success substitution from the call substitution is done as
follows (see Figure 1(a)). Given a call substitution λcall for a subgoal p, let
h1, . . . , hm be the heads of clauses which unify with p. Compute the entry sub-
stitutions β1entry, . . . , βmentry for these clauses. Compute their exit substitu-
tions β1exit, . . . , βmexit as explained below. Compute the success substitutions
λ1success, . . . , λmsuccess from the corresponding exit substitutions. At this point,
all different success substitutions can be considered for the rest of the analysis,
or a single success substitution λsuccess for subgoal p computed by means of an
aggregation operation for λ1success, . . . , λmsuccess. This aggregator is usually the

Multivariant Non-failure Analysis via Standard Abstract Interpretation 105

p

h1 hm

λcall λsuccess

β1entry β1exit βmentry βmexit.......

h

p1 pnλ1 λ2 λn λn+1......

(a) (b)

Fig. 1. Illustration of the Top–Down Abstract Interpretation Process

LUB (least upper bound) of the abstract domain. In the first case the analysis
is multi-variant on successes, in the second case it is not.

Computing the exit substitution from the entry substitution is straightfor-
ward (see Figure 1(b)). Given a clause h:- p1, . . . , pn and an entry substitu-
tion βentry for the clause head h, λ1 is the call substitution for p1. This one
is computed simply by adding to βentry an abstraction for the free variables in
the clause. The success substitution λ2 for p1 is computed as explained above
(essentially, by repeating this same process for the clauses which match p1). Sim-
ilarly, λ3, . . . , λn+1 are computed. The exit substitution Bexit for this clause is
precisely the projection onto h of λn+1.

If, from a different subgoal in the program, a different entry substitution is
computed for an already analyzed clause, different call substitutions will appear
(for p1 and possibly the other subgoals). These substitutions can be collapsed
using the LUB operation, or a different node in the graph can be computed. In
the latter solution, different nodes exist in the graph for each call substitution
and subgoal, thus yielding an analysis which is multi–variant on calls.

Note that the framework itself is domain independent. To instantiate it, a
particular analysis needs to define an abstract domain and abstract unification,
and the � relation, which in turn defines � (LUB). Abstract unification is divided
into two in the framework, so that it is required to define: (1) how to compute the
entry substitution for a clause C given a subgoal p (which unifies with the head
of C) and its call substitution; and (2) how to compute the success substitution
for a subgoal p given its call substitution and the exit substitution for a clause
C whose head unifies with p. We formalize this with functions entry to exit and
call to success in Figure 2. The domain dependent functions used there are:

– call to entry(p(ū), C, λ) which gives an abstract substitution describing the
effects on vars(C) of unifying p(ū) with head(C) given an abstract substi-
tution λ describing ū,

– exit to success(λ, p(ū), C, β) which gives an abstract substitution describ-
ing ū accordingly to β (which describes vars(head(C))) and the effects of
unifying p(ū) with head(C) under the abstract substitution λ describing ū,

– extend(λ, λ′) which extends abstract substitution λ to incorporate the infor-
mation in λ′ in a way that it is still consistent,

– project in(v̄, λ) which extends λ so that it refers to all of the variables v̄,
– project out(v̄, λ) which restricts λ to only the variables v̄.

106 Francisco Bueno, Pedro López-Garćıa, and Manuel Hermenegildo

entry to exit(C, βentry) ≡
A1 := project in(vars(C), βentry);
For i := 1 to length(C) do

Ai+1 := call to success(qi(ūi), Ai));
return project out(vars(head(C)),An+1);

call to success(p(ū), λcall) ≡
λ := project out(ū, λcall); λ′ := ⊥;
For each clause C which matches p(ū) do

βexit := entry to exit(C, call to entry(p(ū), C, λ));
λ′ := λ′ � exit to success(λ, p(ū), C, βexit);

od;
return extend(λcall, λ

′);

Fig. 2. The Top–Down Framework

In the presence of recursive predicates, analysis requires a fixpoint compu-
tation. In [18,19] a fixpoint algorithm was proposed for the framework that
localizes fixpoint computations to only the strongly connected components of
(mutually) recursive predicates. Additionally, an initial approximation to the
fixpoint is computed from the non-recursive clauses of the recursive predicate.
Fixpoint convergence is accelerated by updating this value with the information
from every clause analyzed in turn. The algorithm is (schematically) shown in
Figure 3. For a complete description see [18,19].

4 Abstract Framework, Domain, and Operations for
Non-failure Analysis

In the non-failure analysis, the covering test is instrumental. In fact, covering can
be seen as a notion that characterizes the fact that execution of a query will not
finitely fail, i.e., if it has finished derivations then at least one is successful. Note
that, as in [9], non-failure does not imply success: a predicate that is non-failing
may nevertheless not produce an answer because it does not terminate.

Definition 1 (Covering). Given computation state 〈g :: G θ〉 in the execution
of program P , define the global answer constraint of goal g in store θ as:

c = ∨{ curr store(D′
i) | D′

i ∈ derivations(P, 〈g, θ〉) and is maximal }
Let ū denote the variables of g already constrained in θ, call them the input
variables. We say that g is covered in θ iff θ↓ū|= c↓ū.

It is not difficult to show that, in a pure language, where failure can only
be caused by constraint store inconsistency, covering is a sufficient condition
for non-failure. Indeed, if g is covered in θ, i.e., θ ↓ū|= c ↓ū, then one of the
disjunctions in (the projection of) c is entailed. This corresponds to a (maximal)

Multivariant Non-failure Analysis via Standard Abstract Interpretation 107

call to success recursive(p(ū), λcall) ≡
λ := project out(ū, λcall); λ′ := ⊥;
For each non-recursive clause C which matches p(ū) do

βexit := entry to exit(C, call to entry(p(ū), C, λ));
λ′ := λ′ � exit to success(λ, p(ū), C, βexit);

od;
λ′′ := fixpoint(p(ū), λ, λ′);
return extend(λcall, λ

′′);

fixpoint(p(ū), λ, λ′) ≡
λ′′ := λ′;
For each recursive clause C which matches p(ū) do

βexit := entry to exit(C, call to entry(p(ū), C, λ));
λ′′ := λ′′ � exit to success(λ, p(ū), C, βexit);

od;
If λ′′ = λ′ then return λ′′

else return fixpoint(p(ū), λ, λ′′);

Fig. 3. The Fixpoint Computation

derivation of 〈g, θ〉, and this derivation cannot be failed, since, if it were, it would
be inconsistent, and no inconsistent constraint can be entailed by a consistent
one. Therefore, either such derivation is infinite, or, if finite, it is successful.
Thus: If g is covered in θ then 〈g, θ〉 does not finitely fail.

A key issue in non-failure analysis will thus be how to approximate the current
store and the global answer constraint so that covering can be effectively and
accurately approximated. In [9] such an approximation is defined in the following
terms: A goal is non-failing if there is a subset of clauses of the predicate which
do not fail and which match the input types of the goal. This “matching” is
the so-called covering test, and basically amounts to the analysis being able to
gather, for each such clause, enough constraints on the input variables of the
goal to be able to prove that, for each of the variables, any element in the
corresponding type satisfies at least the constraint gathered for one clause. An
analysis for non-failure thus needs to traverse the clauses of a predicate to check
non-failure of the clause body goals, collect constraints that approximate the
global answer constraint, and finally check that they cover the input types of
the original goal. In the rest of this section, we show how to accommodate the
abstract interpretation based framework of the previous section to perform these
tasks, and define an abstract domain suitable for them.

4.1 Abstract Domain

The abstractions for non-failure analysis are made of four components. The first
two are (abstractions of) constraints that represent the current store and the

108 Francisco Bueno, Pedro López-Garćıa, and Manuel Hermenegildo

global answer constraint for the current goal. This is the core part of the domain.
The other two components carry the results of the covering test, specifying if the
current constraint store covers the global answer constraint, and if this implies
that the computation may fail or not. The covering and non-failure information
is represented by values of the set B = {�, 0̄, 1̄,⊥}, where 0̄ and 1̄ are not
comparable in the ordering. For covering, 0̄ is interpreted as “not covered” and
1̄ as covered. For non-failure, 0̄ is interpreted as “not failing” and 1̄ as failing.

Definition 2 (Abstract Domain). Let Cα1 and Cα2 be abstract domains for
C. The abstract domain for non-failure is the set

F = {(s, c, o, f) | s ∈ Cα1 , c ∈ Cα2 , o ∈ B, f ∈ B}
The ordering in domain F is induced from that in B, so that (overloading �):

(s1, c1, o1, f1) � (s2, c2, o2, f2) iff f1 � f2

In an element (s, c, o, f) ∈ F , components s and c are abstractions α1 and
α2 of the constraint domain C. The usual approximations used (e.g., in [9]) are
types (and modes) for s, and a finite set of (concrete) constraints for c.

Definition 3 (Abstraction Function). The abstraction of a derivation D in
the execution of program P , such that curr store(D) = θ and curr goal(D) = g,
and the input variables and global answer constraint of g in θ are respectively ū
and c, is α(D) = (θα1 , cα2 , o, f), where:

f =
{

1̄ if D is failed
0̄ otherwise and o =

{
1̄ if θα1 ↓ū|=α cα2 ↓ū

0̄ otherwise

It is easy to show that such an abstraction is correct, provided that α1 and α2

are also correct abstractions, and that the corresponding abstract covering test
(|=α) correctly approximates Definition 1. For α1 we have already mentioned
the use of type and mode information. One possibility for α2 is to use only
those constraints appearing explicitly in the clause bodies of the predicate whose
covering test is to be performed (the current goal g in the derivation).

Example 2 Consider the following (contrived) predicates:
p(X,Y,Z):- X =< Y, q(X,Z).
q(X,Y):- X =< Y.
The global answer constraint for p(X,Y,Z) is X =< Y ∧ X =< Z, but it can be
approximated simply by X =< Y, the only constraint in the definition of p/3. �

One rationale for the above choice might be that collecting all constraints
in derivations may not be possible during a compile-time analysis (since such
constraints are only known during execution), or may lead to non-termination of
the analysis. However, the first problem can be alleviated by proper abstractions
of the tests (such as a depth-k abstraction, in a way similar to [6]), and the second
problem only occurs for recursive predicates. Thus, the most simple solution to
the termination problem is to avoid collecting constraints in recursive calls.4

4 Note that this does not imply that recursive calls are simply ignored. They need to
be considered to check that they are indeed non-failing, even though their global
answer constraint is not computed.

Multivariant Non-failure Analysis via Standard Abstract Interpretation 109

Example 3 The global answer constraint for the predicate sorted/1 defined
below includes a constraint for each two elements in the input list, the length of
which is not in general known at compile-time.

sorted([]).
sorted([_]).
sorted([X,Y|L]):- X =< Y, sorted([Y|L]). �

Our solution to this problem5 is to collect only constraints that refer literally
to the predicate arguments in the program clause head, which also excludes in
general (but not always) the constraints arising from recursive calls.

Example 4 Consider again the predicate sorted/1 defined in the previous ex-
ample. We collect constraints only for the clause head argument [X,Y|L], which
amounts to only one constraint: X =< Y (since the recursive call does not pro-
vide constraints for the head arguments that appear literally in the program).

Consider, on the other hand, predicate p/3 of Example 2. In this case the com-
plete global answer constraint for p(X,Y,Z) will be collected: X =< Y ∧ X =< Z,
since the two single constraints can be “projected” onto the clause head. �

Note that such a solution yields an under-approximation of the global an-
swer constraints. Given the use of type and mode information, which are in gen-
eral over-approximations, we have that, for any element (s, c, o, f) ∈ F , given
current constraint store θ and global answer constraint ω, s = θα1 is an over-
approximation of θ, and c = ωα2 is an under-approximation of ω. In this situ-
ation, it is not difficult to prove that θα1 ↓ū|=α ωα2 ↓ū correctly approximates
covering: θ↓ū|= ω↓ū.

4.2 Abstract Operations

Abstract values (s, c, o, f) ∈ F are built during analysis in the following way:
f is carried along during the abstract computation by the abstract operations
below, o is computed from the covering test, c is collected as explained above,
and for s, type and mode analysis is performed. Thus, our analysis is in fact
three-fold: it carries on mode, type, and non-failure analyses simultaneously. We
focus now on the abstract operations for non-failure, given that those for types
and modes are standard:

– call to entry(p(ū), C, λ) solves head unification p(ū) = head(C), and checks
that it is consistent with the c component of λ. If it is not, it returns ⊥,
otherwise, the resulting abstraction.
If p(ū) ∈ C, i.e., if it happens to be a constraint itself, then no clause C
exists, and p(ū) itself is added to the c component. In this case the following
exit to success function is not called.

5 However, we plan to investigate other solutions. In particular, the use of a depth-k
abstraction seems to be a very promising one.

110 Francisco Bueno, Pedro López-Garćıa, and Manuel Hermenegildo

– exit to success(λ, p(ū), C, β) adds the equations resulting from unification
p(ū) = head(C) to the c component of β and projects it onto vars(ū).
It is the projection performed here that gets rid of useless constraints, like in
the case of Example 4. Constraints that cannot be projected onto the (goal)
variables ū are simply dropped in the analysis.

– λ � λ′ adds abstraction λ to the set λ′ if λ is non-failing.
– extend(λ, λ′) performs the covering test for λ′ (a set of abstractions); if it is

successful, the c component of λ′ is merged with that of λ.
This operation uses the covering algorithm described in [9], which takes the
global answer constraint c and a type assignment for the input variables
appearing in c. Given a finite set of variables V , a type assignment over
V is a mapping from V to a set of types. This is computed from the type
information in the first component of λ. Input variables are determined from
the mode information in that same component. The global answer constraint
is obtained as the disjunction of the c components of each abstraction in λ′.

4.3 Adapting the Analysis Framework

The framework described in the previous section is not adequate for non-failure
analysis. The main reason for this is that the aggregation function for the suc-
cessive exit abstractions of the different clauses is not the LUB anymore. In non-
failure analysis, the constraints for each clause need to be gathered together,
and a covering test on the set of constraints needs to be performed. Another
difference is that the covering test should only consider constraints from clauses
that are not guaranteed to fail altogether;6 therefore the aggregator must be
able to discriminate abstract substitutions on this criterion.

We have adapted the definition of the call to success function to reflect the
aggregation operator. The adapted definition is shown in Figure 4. Note that, as
a result of this, λ′ in the algorithm is not anymore an abstract substitution, but
a set of them. This is input to extend, which is in charge of the covering test.

call to success(p(ū), λcall) ≡
λ := project out(ū, λcall); λ′ := ∅;
For each clause C which matches p(ū) do

βexit := entry to exit(C, call to entry(p(ū), C, λ));
λ′ := λ′ � exit to success(λ, p(ū), C, βexit);

od;
return extend(λcall, λ

′);

Fig. 4. The Top–Down Framework for Non-Failure Analysis

When fixpoint computation is required, adapting the framework is a bit more
involved. Basically, since the aggregation operator is not LUB, fixpoint detection
6 Note how this information could be used to improve the results of other analyses.

Multivariant Non-failure Analysis via Standard Abstract Interpretation 111

cannot be performed right after the success substitution has been computed.
Normally, it is the LUB that is used for updating the successive approximations
to the fixpoint value, and fixpoint detection works by simply comparing the
initial and the final values for the success substitution. In non-failure analysis,
the covering test must be performed first, and only after this one has been
performed, the test for the fixpoint can be done. The resulting algorithm is
shown in Figure 5. It is basically a simpler fixpoint iterator over the function
call to success abandoning the sophisticated fixpoint computation of Figure 3.

call to success recursive(p(ū), λcall) ≡
λ := project out(ū, λcall);
return fixpoint(p(ū), λ,⊥);

fixpoint(p(ū), λ, λ′) ≡
λ′′ := call to success(p(ū), λ);
If λ′′ = λ′ then return λ′′

else return fixpoint(p(ū), λ, λ′′);

Fig. 5. The Fixpoint Computation for Non-Failure Analysis

A Running Example We now illustrate our analysis by means of a detailed
example on how it will proceed. Consider the program (fragment) below:

qsort(As,Bs):- qsort(As,Bs,[]).

qsort([X|L],R,R2) :-

partition(L,X,L1,L2), qsort(L2,R1,R2), qsort(L1,R,[X|R1]).

qsort([],R,R).

partition([],_,[],[]).

partition([E|R],C,[E|Left1],Right):- E < C, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):- E >= C, partition(R,C,Left,Right1).

Let the abstract call pattern for atom qsort(As,Bs,[]) be
({list(As, num), var(Bs)}, true, 1, 0).

Upon entering the first clause defining qsort/3, the result of call to entry
(restricted to the head variables) is

({num(X), list(L, num), var(R), [](R2)}, true, 1, 0) 7

plus, additionally, {var(R1), var(L1), var(L2)} for the free variables in the
clause. Once projected, this gives the call pattern for the first literal in that
clause:

({list(L, num), num(X), var(L1), var(L2)}, true, 1, 0).

7 To be concise, we denote with [](A) that the type of A is that of the empty lists.

112 Francisco Bueno, Pedro López-Garćıa, and Manuel Hermenegildo

We omit the analysis of the partition predicate. After the fixpoint compu-
tation for this predicate, however, we will have a set of three abstract elements
corresponding to the abstraction of the three clauses. For brevity, we express such
set as a single abstraction where it is the c component that is a set, instead.8

Note that this is possible because all other components (types, modes, covering,
non-failure) of the abstractions in the set are the same. Thus, we have:

({ list(L, num), num(X), list(L1, num), list(L2, num) },
{ L = [] ∧ L1 = [] ∧ L2 = [], L = [E|] ∧ E < X ∧ L1 = [E|],

L = [E|] ∧ E >= X ∧ L2 = [E|] }, 1, 0).
This is now extended (by abstract function extend) to the corresponding

program point of the clause of qsort. First, the covering test is performed, and it
succeeds, since list(L, num), num(X) covers indeed the global answer constraint
projected onto the input variables:

(L = [E|] ∧ (E < X ∨ E >= X)) ∨ L = [].
Therefore, computation is still covered and non-failing. This, together with

the projection of the c component onto the variables of the first clause of qsort,
yields success abstraction for partition:

({ num(X), list(L, num), var(R), var(R1), [](R2),
list(L1, num), list(L2, num) }, true, 1, 0)

where the c component is still true since the projection onto the clause variables
factors out the previously computed global answer constraint. Now, analysis will
proceed into call qsort(L2,R1,R2) with

({list(L2, num), var(R1), [](R2)}, true, 1, 0).
Since this is basically the same call pattern that we started with, no new

fixpoint computation is started in this case.9 On the other hand, a new fixpoint
computation is started for the second recursive call qsort(L1,R,[X|R1]) with

({list(L1, num), var(R), num(X), list(R1, num)}, true, 1, 0).
This is a new call pattern for the qsort predicate, which initiates a new

fixpoint computation. The fixpoint value obtained in this computation is the
same abstraction, except for the type of R which on output is a list. Finally,
exit to success now lifts this result to the original goal qsort(As,Bs,[]) giving:

({list(As, num), list(Bs, num)}, As = [|], 1, 0).
The analysis of the non-recursive clause immediately gives:

({[](As), [](Bs)}, As = [] ∧ Bs = [], 1, 0),
and extend computes the covering test for the set of the above two abstractions
with the initial input abstraction, in which the input types are list(As, num).
Certainly, this type covers the (projected) global answer constraint As = [|] ∨
As = []. Thus, the goal is still covered and non-failing.

Finally, since the abstraction now computed is only the result of a first iter-
ation of the fixpoint computation, a new iteration is started. The result in this
case is the same, and fixpoint computation finishes with that very same result.

8 This very same “trick” is used in the implementation.
9 Here, we save the reader from some more fixpoint iterations that will be taking place.

However, the results are as indicated.

Multivariant Non-failure Analysis via Standard Abstract Interpretation 113

5 Implementation Results

We have constructed a prototype implementation in (Ciao) Prolog by adapting
the framework of the PLAI implementation and defining the abstract operations
for non-failure analysis that we have described in this paper. Most of these ab-
stract operations have been implemented by reusing code of the implementation
in [9], such as for example, the covering algorithm. We have incorporated the
prototype in the Ciao/CiaoPP multiparadigm programming system [12,13,4] and
tested it on the benchmarks used in the non-failure analysis of Debray et al. [9],
plus some benchmarks exhibiting paradigmatic behaviours, plus a last group
with those used in the cardinality analysis of Braem et al. [1]. These two anal-
yses are the closest related previous work that we are aware of. Some relevant
results of these tests for non-failure analysis are presented in Table 1. Program
lists the program names, N the number of predicates in the program, F and
C are the number of non-failing predicates detected by the non-failure analysis
in [9], and the cardinality analysis in [1], respectively.

Note that our multi–variant analysis can infer several variants (call patterns)
for the same predicate, where some of them may be non-failing (resp. covered)
and the other ones can be failing (resp. not covered). For instance, in the case of
the program Mv in Table 1 (also described in Example 1), which has 4 predicates
(mv/3, qsort/2, partition/4 and append/3), the analysis infers one variant for
mv/3, which is non-failing and covered, 2 variants for qsort/2 (one of them which
is non-failing and covered, and the other one which is failing and not covered),
one variant for partition/4, which is non-failing and covered, and 3 variants
for append/3 (2 of them which are non-failing and covered, and the other one
which is failing and not covered). For this reason, and in order to make the
results comparable, column AF shows two figures (both corresponding to the
analysis presented in this paper): the number of predicates such that all of their
variants (call patterns) are detected as non-failing, and (between parenthesis)
the number of predicates such that some of their variants are detected as
non-failing (this second figure is omitted if it is equal to the first one).

Similarly, ACov shows two figures (both corresponding to the analysis pre-
sented in this paper): the number of predicates detected to cover all of their
(calling) types (variants), and (between parenthesis), the number of predicates
detected to cover some of their (calling) types. Cov is the number of predicates
detected to cover their (calling) types by the analysis in [9].

TAF and TF are the total time (in milliseconds) required by the analysis
presented in this paper and the analysis in [9] respectively (both of which include
the time required to derive the modes and types). The timings were taken on
a medium-loaded Pentium IV Xeon 2.0Ghz with two processors, 1Gb of RAM
memory, running Red Hat Linux 8.0, and averaging several runs and eliminating
the best and worst values. Ciao version 1.9.111 and CiaoPP-1.0 were used.

Analysis time averages (per predicate) are also provided in the last row of
the table. From these numbers, it is clear that the new implementation based on
the abstract interpretation engine is more efficient than the previous one. It is

114 Francisco Bueno, Pedro López-Garćıa, and Manuel Hermenegildo

Program N AF F C ACov Cov TAF TF
TAF
TF

Hanoi 2 2 2 N/A 2 2 33 242 0.14

Fib 1 1 1 N/A 1 1 17 22 0.77

Tak 1 1 1 N/A 1 1 9 11 0.82

Subs 1 1 1 N/A 1 1 5 33 0.15

Reverse 2 2 2 N/A 2 2 17 29 0.59

Mv 4 2 (4) 1 N/A 2 (4) 2 54 102 0.53

Zebra 6 2 1 N/A 5 (6) 4 1008 1100 0.92

Family 3 3 1 N/A 3 2 10 18 0.56

Blocks 7 1 (2) 0 N/A 4 (5) 4 30 59 0.51

Reach 2 2 0 N/A 2 1 19 30 0.63

Bid 20 5 (8) 5 N/A 14 (17) 14 3089 3369 0.92

Occur 4 1 (3) 1 N/A 1 (3) 1 69 78 0.88

Plan 16 5 (8) 3 0 11 (13) 10 2626 4128 0.64

Qsort 3 3 3 0 3 3 29 65 0.45

Qsort2 5 3 3 0 3 3 33 76 0.43

Queens 5 2 (3) 2 0 3 (4) 3 60 74 0.81

Pg 10 2 (3) 2 0 6 (9) 6 412 477 0.86

Mean 38 (/p) 58 (/p) 0.67 (/p)

Table 1. Accuracy and efficiency of the non-failure analysis (times in mS).

also more precise, as shown for example in the benchmarks Mv, Zebra, Family,
Blocks, Reach, and Plan.

6 Conclusions

We have described a non-failure analysis based on abstract interpretation, which
extends the previous proposal of Debray et al. Our analysis improves in preci-
sion, and enjoys a clear theoretical setting, and a simpler implementation. Also,
the implementation is more efficient. The abstract domain underlying the analy-
sis can be easily modified to cater for a determinacy analysis. Such an analysis,
provided with a depth-k abstraction, would be the abstract interpretation coun-
terpart of determinacy analyses such as that of [6]. We are currently working on
the verification of this proposition.

The implemented analysis we have described in this paper is currently inte-
grated in CiaoPP, and is being used for lower-bounds cost analysis, granularity
control, and program debugging. Arguably, although our presentation covers
strictly constraint logic programming, the technique could be easily applied to
functional logic languages with similar results, as is indeed the case in the Ciao
system, where the analysis presented works without modification for Ciao’s func-
tional subset or for combinations of functions and predicates.

Multivariant Non-failure Analysis via Standard Abstract Interpretation 115

Acknowledgments

This work has been supported in part by the European Union IST program un-
der contract IST-2001-34717 “Amos” and IST-2001-38059 “ASAP,” by MCYT
projects TIC 2002-0055 “CUBICO” and HI2000-0043 “ADELA,” and by the
Prince of Asturias Chair in Information Science and Technology at the Uni-
versity of New Mexico. The Ciao system is a collaborative effort of members of
several institutions, including UPM, UNM, U.Melbourne, Monash U., U.Arizona,
Linköping U., NMSU, K.U.Leuven, Bristol U., Ben-Gurion U., and INRIA. The
system documentation and related publications contain more specific credits.

References

1. C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis
of prolog. In Proc. International Symposium on Logic Programming, pages 457–
471, Ithaca, NY, November 1994. MIT Press.

2. M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs.
Tech. Rep. CW62, Dept. of C.S., Katholieke Universiteit Leuven, October 1987.

3. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91–124, 1991.

4. F. Bueno, P. López-Garćıa, G. Puebla, and M. Hermenegildo. The Ciao Prolog
Preprocessor. Technical Report CLIP1/04, Technical University of Madrid (UPM),
Facultad de Informática, 28660 Boadilla del Monte, Madrid, Spain, January 2004.

5. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
ACM Symposium on Principles of Programming Languages, pages 238–252, 1977.

6. Steven Dawson, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. C. Sekar. Ex-
tracting determinacy in logic programs. In David S. Warren, editor, Proceedings
of the Tenth International Conference on Logic Programming, pages 424–438, Bu-
dapest, Hungary, 1993. The MIT Press.

7. S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Programs.
Journal of Logic Programming, 5(3):207–229, September 1988.

8. S.K. Debray and N.-W. Lin. Static Estimation of Query Sizes in Horn Programs. In
Third International Conference on Database Theory, Lecture Notes in Computer
Science 470, pages 515–528, Paris, France, December 1990. Springer-Verlag.

9. S.K. Debray, P. López-Garćıa, and M. Hermenegildo. Non-Failure Analysis for
Logic Programs. In 1997 International Conference on Logic Programming, pages
48–62, Cambridge, MA, June 1997. MIT Press, Cambridge, MA.

10. S.K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In 1997 International Logic Programming
Symposium, pages 291–305. MIT Press, Cambridge, MA, October 1997.

11. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu-
tion of Prolog Programs: a Survey. ACM Transactions on Programming Languages
and Systems, 23(4):472–602, July 2001.

12. M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garćıa. Program Analy-
sis, Debugging and Optimization Using the Ciao System Preprocessor. In 1999
International Conference on Logic Programming, pages 52–66, Cambridge, MA,
November 1999. MIT Press.

116 Francisco Bueno, Pedro López-Garćıa, and Manuel Hermenegildo

13. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In 10th
International Static Analysis Symposium (SAS’03), number 2694 in LNCS, pages
127–152. Springer-Verlag, June 2003.

14. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and
Systems, 22(2):187–223, March 2000.

15. N. Jones and H. Sondergaard. A semantics-based framework for the abstract inter-
pretation of prolog. In Abstract Interpretation of Declarative Languages, chapter 6,
pages 124–142. Ellis-Horwood, 1987.

16. H. Mannila and E. Ukkonen. Flow Analysis of Prolog Programs. In Fourth
IEEE Symposium on Logic Programming, pages 205–214, San Francisco, California,
September 1987. IEEE Computer Society.

17. C.S. Mellish. Abstract Interpretation of Prolog Programs. In Third International
Conference on Logic Programming, number 225 in LNCS, pages 463–475. Springer-
Verlag, July 1986.

18. K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Algo-
rithm for Top-down Abstract Interpretation of Logic Programs. Technical Report
ACT-DC-153-90, Microelectronics and Computer Technology Corporation (MCC),
Austin, TX 78759, April 1990.

19. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315–347, July 1992.

20. T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs.
Theoretical Computer Science, 34:227–240, 1984.

21. A. Waern. An Implementation Technique for the Abstract Interpretation of Prolog.
In Fifth International Conference and Symposium on Logic Programming, pages
700–710, Seattle,Washington, August 1988.

22. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on
Logic Programming, pages 684–699. MIT Press, August 1988.

	Introduction
	Preliminaries
	The Abstract Interpretation Framework
	Abstract Framework, Domain, and Operations for Non-failure Analysis
	Implementation Results
	Conclusions

