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Abstract. The G12 project recently started by National ICT Australia
(NICTA) is an ambitious project to develop a software platform for solv-
ing large scale industrial combinatorial optimisation problems. The core
design involves three languages: Zinc, Cadmium and Mercury (Group 12
of the periodic table). Zinc is a declarative modelling language for ex-
pressing problems, independent of any solving methodology. Cadmium
is a mapping language for mapping Zinc models to underlying solvers
and/or search strategies, including hybrid approaches. Finally, existing
Mercury will be extended as a language for building extensible and hy-
bridizable solvers. The same Zinc model, used with different Cadmium
mappings, will allow us to experiment with different complete, local, or
hybrid search approaches for the same problem. This talk will explain
the G12 global design, the final G12 objectives, and our progress so far.

1 Introduction

The G12 project aims to build a powerful and easy-to-use open source constraint
programming platform for solving large scale industrial combinatorial optimiza-
tion (LSCO) problems. The research project is split into four related threads:
building richer modelling languages, building richer solving capabilities, a richer
control language mapping the problem model to the underlying solving capabil-
ities, and a richer problem-solving environment.

The underlying implementation platform will be the Mercury system. On top
of Mercury the project will build a generic modelling language, called Zinc, and
a mapping language, called Cadmium, which takes a Zinc model and generates a
Mercury program. We also plan that Zinc and Cadmium will combine to output
programs for different constraint solving systems such as ILOG Solver [6], Xpress



                    ZINC
Declarative Modelling Language
  - Data Structures: arrays, sets, 
sequences. extensible
  - Looping: forall, sum
  - Predicates and Functions
  - Reification

        CADMIUM
Search Language
  - labelling strategies
  - reflection
  - hybrid approaches

Visualization
  - Search tree
  - Active constraints
  - Constraint graph

Current Mercury

          MERCURY
Solver extensions
- solver specification 
language
- specific solvers

ILOG 
Solver

Express
MP

Profiling 
and Trace 
Information

       CADMIUM
Mapping Language
- to solvers
- solver coordination

Richer Modelling

Richer Solving

Richer Environment

Richer Mapping

Comet

G12

MP [7] and Comet [2]. A diagram showing the four threads and how they interact
with existing solvers and the current language Mercury is shown below.

2 Richer Modelling

The process of solving LSCO problems can be separated into creating the concep-
tual model, and an algorithm development process for mapping the conceptual
model to a design model. This depends upon a language for writing conceptual
models, and usually another language for writing design models.

In order to maintain clarity, flexibility, simplicity and correctness, we separate
the conceptual modelling language Zinc from the mapping language Cadmium,
which is both the design modelling language and the search language.

The best starting point for a universal conceptual modelling language is
a purely declarative modelling language. Such a language allows the modeller
to give a high-level specification of the constraint problem in terms natural
to the problem itself. In order to do so it must include data structures that
naturally arise in modelling such as arrays and sets, as well as be extensible in
order to incorporate new problem specific structures such as jobs and tasks. We
need natural constructs for specifying large constraints and large conjunctions
of constraints. In order to encapsulate common problem structure we need to be
able to specify predicates and functions in the modelling language for reuse.

The modeller needs to be able to specify requirements for robust, as well as
optimal, solutions. Robust solutions are less sensitive to change in parameters,
and reflect the reality that real solutions often need to be repaired when they
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are put into practice. It must be possible for the modelling language to specify
the required type of robustness.

There are many challenges in the design of the Zinc language. For example,
how can we make the language suitable for both an operations researcher expe-
rienced in using restricted mathematical modelling languages such as AMPL [1],
as well as computer scientists used to the flexibility and power of programming
languages. OPL [5] is the closest current language to how we envisage Zinc.

3 Richer Mapping

In order to make use of a conceptual model we must have some way of compiling
it, that is mapping it to a design model. One advantage of separating of the
conceptual modelling language from the design model is the ability to then
rapidly experiment with different design models for the same conceptual model.

We wish to provide transparent and flexible ways of specifying how a con-
ceptual model is mapped to a design model. Experience in developing solutions
to industrial constraint problems has shown that we will often need to use two
or more solving technologies to tackle a hard constraint problem. Various con-
straints will be treated by one solver, while other constraints will be treated by
another. Some constraints may be treated by two or more solvers. When we are
using multiple solvers we not only need to specify which constraints are sent to
each solver, and how they are mapped to that solver, but how the solvers will
interact. This must be supported by Cadmium.

G12 will not only need to provide a modelling interface to distinct solving
methods from mixed integer programming (MIP), constraint programming (CP)
and local search, but will also need to provide a modelling and mapping interface
to methods for integrating these techniques. The design models for such an
integrated scheme may involve combinations of algorithms from all three areas.
The Cadmium language in which the design models are expressed must therefore
subsume the expressive power of all the above languages. Much more is required
however, since the interaction between local search and branch-and-infer search
open a huge space of possible hybridisations.

4 Richer Solving

Constraint programming systems typically employ tree search to complement
constraint propagation. Moreover the search is depth first and alternative search
choices are only explored after backtracking to the relevant choice point. By
contrast MIP search typically explores the search tree in a best-first fashion,
which requires a multitude of open nodes to be recorded, ready for expansion at
a later time. Recently systems like Mozart [4] have incorporated the open nodes
approach in CP. With G12 we shall pursue the convergence of CP and MIP
search by reducing the cost of jumping between open nodes, and maintaining
flexibility between the many different tree search strategies.

However local search techniques are playing an increasingly important role in
CP. The Comet CP system [2] supports a wide range of local search techniques,
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with constraint handlers adapted to the local search paradigm. The final addition
to the arsenal of search methods offered by G12 will be population-based search
methods, such as genetic algorithms. These methods explore a whole population
of solutions concurrently, and then combine the results from the population to
focus the search on promising areas of the search space.

To date no system has enabled the user to specify the problem in terms of
an algorithm-independent conceptual model, and have the computer map this
into, say, an ant colony optimisation algorithm. The challenge for Cadmium is
to make this mapping straightforward and concise, yet precise and flexible.

Another important research direction for richer solving will be developing
algorithms for returning more robust solutions, more diverse solutions, or finding
similar solutions to previous solutions.

5 Richer Environment

The key to solving complex industrial application problems is rapid applications
development, with close end-user involvement. To support rapid application de-
velopment, a rich solution development environment is essential.

The first stage in developing an application is constructing a correct Zinc and
Cadmium model. This is much easier for the application programmer if solutions
are graphically realized in a way that they can readily understand. The second
and more time consuming phase is performance debugging in which we study the
behaviour of the algorithms at runtime and understand exactly what is going on.
Interaction with a running algorithm is necessary to detect its weaknesses, and
to understand and build on its strengths. To support close end-user involvement,
the problem solving behaviour must be made meaningful and transparent to the
end-user. This requires that the algorithm behaviour be mapped back onto the
problem model, so that the user can understand the behaviour in terms of the
original application.

6 Conclusion

The G12 project aims, using the separation of the conceptual model from the
design model, to provide a software framework where many, perhaps all, op-
timizations approaches can be experimented with efficiently. By allowing this
exploration we hope to get closer to the ultimate goal of simply specifying the
problem and letting the G12 system determine the best way to solve it.
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