
Independence in CLP Languages

MAŔIA GARĆIA DE LA BANDA

Monash University

MANUEL HERMENEGILDO

Technical University of Madrid (UPM)

and

KIM MARRIOTT

Monash University

Studying independence of goals has proven very useful in the context of logic programming.
In particular, it has provided a formal basis for powerful automatic parallelization tools, since
independence ensures that two goals may be evaluated in parallel while preserving correctness
and efficiency. We extend the concept of independence to constraint logic programs (CLP) and
prove that it also ensures the correctness and efficiency of the parallel evaluation of independent
goals. Independence for CLP languages is more complex than for logic programming as search
space preservation is necessary but no longer sufficient for ensuring correctness and efficiency. Two
additional issues arise. The first is that the cost of constraint solving may depend upon the order
constraints are encountered. The second is the need to handle dynamic scheduling. We clarify
these issues by proposing various types of search independence and constraint solver independence,
and show how they can be combined to allow different optimizations, from parallelism to intelligent
backtracking. Sufficient conditions for independence which can be evaluated “a priori” at run-time
are also proposed. Our study also yields new insights into independence in logic programming
languages. In particular, we show that search space preservation is not only a sufficient but also
a necessary condition for ensuring correctness and efficiency of parallel execution.

Categories and Subject Descriptors: D.1.2 [Programming Techniques]: Automatic Program-
ming—automatic analysis of algorithms; program transformation; D.1.3 [Programming Tech-
niques]: Parallel Programming; D.1.6 [Programming Techniques]: Logic Programming; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Pro-
grams—Logics of programs

General Terms: Languages, Performance

Additional Key Words and Phrases: Constraint logic programming, independence, parallelism

This work was funded in part by ESPRIT projects 7195 “ACCLAIM” and 5246 “PRINCE”, and
by CICYT projects TIC93-0975-CE, TIC91-0106-CE, and TIC99-1151 “EDIPIA”. M. Garćıa de la
Banda was supported by a grant from the Australian Research Council and by a Logan Fellowship
from Monash University. Preliminary versions of different parts of this paper were presented at the
1993 International Logic Programming Symposium, pages 130–146, MIT Press, and at the 1996
International Conference on Algebraic and Logic Programming, pages 47–61, Springer-Verlag.
Authors’ addresses: M. Hermenegildo, Universidad Politécnica de Madrid, Facultad de Informáti-
ca, Madrid, Spain; email: herme@fi.upm.es; M. Garćıa de la Banda and K. Marriott, Monash Uni-
versity, Computer Science, Melbourne, Australia; email: {mbanda,marriott}@cs.monash.edu.au.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2000 ACM 0164-0925/00/0300-0296 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000, Pages 296–339.

Independence in CLP Languages · 297

1. INTRODUCTION

The notion of independence of program statements or procedure calls is relatively
well understood in the context of imperative languages, where several definitions of
independence, ranging from those based on the Bernstein conditions to more recent
notions of “semantic independence,” have been defined and applied primarily in pro-
gram parallelization [Bacon et al. 1994; Best and Lengauer 1990]. Independence
has also been studied and proved to be a very useful concept in traditional logic pro-
gramming. Again, the primary motivation is program parallelization [Hermenegildo
and Rossi 1995; Haridi and Janson 1990]. However, it also provides a theoretical
basis for other powerful program optimizations, including intelligent backtracking
[Pereira and Porto 1982], and goal reordering [Warren and Pereira 1982].

The general, intuitive notion of independence in logic programming is that a goal
q is independent of a goal p if p does not “affect” q. A goal p is understood to affect
another goal q if p changes the execution of q in an “observable” way. Observables
include changing the solutions that q produces (“correctness”) and changing the
time that it takes to compute such solutions (“efficiency”). This contrasts with
more traditional notions of independence which, because of the characteristics of
imperative or functional languages, only need to deal with the preservation of cor-
rectness [Hermenegildo 1997].

Previous work in the context of traditional logic programming languages [Conery
1983; DeGroot 1984; Hermenegildo and Rossi 1995; Chassin and Codognet 1994]
has concentrated on defining sufficient conditions which ensure that goals can be
safely executed in parallel. This has been achieved by ensuring that either the goals
do not share variables (strict independence) or if they share variables, that they do
not “compete” for their bindings (nonstrict independence).

In this paper we consider independence in the general context of the constraint
logic programming (CLP) paradigm [Jaffar and Lassez 1987], which has emerged as
the natural combination of the constraint solving and logic programming paradigms.
As for logic programming, our main motivation is to find conditions which allow
goals to be executed in parallel. However, we shall also investigate other types of
independence, each of which is “interesting” for a certain class of program trans-
formations.

Generalizing the independence results obtained for logic programming to CLP
is difficult for two reasons. The first reason is that the cost of constraint solving
may depend upon the order in which constraints are encountered. This means we
need to introduce a notion of “constraint solver independence” which captures how
sensitive the solver is to reordering of constraints. This issue did not arise for logic
programs because the standard unification algorithm, as usually implemented, is,
in most practical cases, independent in this sense. However, in the more general
context of CLP, constraint solver independence need not hold. The second reason
is that many CLP languages provide dynamic scheduling of literals in goals. This
is useful because it facilitates definition or extension of constraint solvers but is
considerably more difficult to understand than the standard left-to-right evaluation
of goals in logic programs. Actually, dynamic scheduling is also present in some
logic programming languages, but since it is not widely used it has been ignored in
work on parallelization. However, it must be addressed in the CLP context because
of its importance when writing constraint solvers.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

298 · M. Garćıa de la Banda et al.

Generalizing independence to arbitrary CLP languages and constraint solvers is
not only interesting in itself, but also yields new insights into independence even for
logic programs. First, it allows us to simplify many of the earlier results by couching
them in terms of constraints rather than substitutions. Second, extension of the
results to the case of dynamic scheduling has required us to precisely formalize
search space preservation and its relationship to independence.

We believe that generalization of independence to CLP will be useful, since the
associated optimizations performed in the context of logic programming appear
equally applicable to the context of constraints. Indeed, the cost of performing
constraint satisfaction makes the potential performance improvements even larger.
Preliminary experiments with and-parallelization of CLP [Garćıa de la Banda et al.
1996] provide some evidence in this direction.

The rest of the paper proceeds as follows. Section 2 reviews various models for
the parallel execution of logic programs and the associated notions of independence.
Section 3 formally defines a parallel execution model for CLP programs. Section 4
clarifies the relationship between search space preservation and the safety of parallel
execution. Section 5 presents several concepts of independence for CLP, each one
useful for a class of applications and relates these to search space preservation.
Section 6 gives sufficient conditions that are easier to detect at run-time than the
definitions of independence. Section 7 discusses the notion of independence for CLP
at the solver level and discusses additional characteristics required of the solvers,
offering some examples. Section 8 extends these results to CLP languages that
provide dynamic scheduling. Finally, Section 9 presents our conclusions.

2. INDEPENDENCE FOR PARALLELIZATION IN LOGIC PROGRAMS REVISITED

2.1 Operational Semantics of Logic Programs

In this section we introduce some basic concepts and notation regarding logic pro-
grams. We will follow mainly [Apt 1990; Lloyd 1987]. Note that we will only
deal with definite logic programs (also referred to as positive logic programs). Also
note that while the math italics font will be used for definitions and theorems to
represent general objects, the teletype font will be used for representing particular
instances of the objects, such as those coming from an example program.

An atom has the form p(x̄) where x̄ is a sequence of distinct variables and p is a
predicate symbol. An equation has the form t = u where t and u are terms. A literal
is an atom or an equation. A clause or rule has the form h← b1, · · · , bn with n ≥ 0,
where h is an atom called the head and b1, · · · , bn is a sequence of literals called the
body. A program is a set of rules. A goal is a sequence of literals. The empty literal
sequence is denoted by nil, and often omitted. We let vars(t) denote the set of
variables occurring in a syntactic expression t. A syntactic expression t is ground
if vars(t) = ∅. The local variables of the clause h ← b1, · · · , bn are those variables
appearing in the body but not in the head, i.e., (vars(b1)∪· · ·∪vars(bn))\vars(h).

A renaming is a bijective mapping from variables to variables. We naturally
extend renamings to mappings between syntactic objects. Syntactic objects s and
s′ are said to be variants if there is a renaming such that ρ(s) ≡ s′ where ≡ denotes
syntactic equivalence.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 299

The operational semantics of logic programs is couched in terms of substitutions.
A substitution is a (finite) mapping from variables to terms, and it is represented
as {x1/t1, · · · , xn/tn}. The domain of a substitution θ = {x1/t1, · · · , xn/tn} is
denoted by dom(θ) and defined as {x1, · · · , xn}. Its range, is denoted by range(θ)
and defined as vars(t1)∪ · · · ∪ vars(tn). A pair x/t is called a binding. We assume
that for each binding x/t in a substitution, x 6≡ t. The empty substitution is denoted
ε. The application of a substitution θ to a syntactic object s is denoted by sθ and
it is defined to be the syntactic object obtained by replacing each variable x in s
by θ(x). Composition of substitutions θ and σ is defined as function composition
and denoted θσ, so that for any syntactic object s we have sθσ = (sθ)σ, i.e., θ
is applied first. A substitution θ′ is more general than θ, written θ ≤ θ′, iff there
exists another substitution σ such that θ = θ′σ. A substitution θ is idempotent if
θθ = θ. We shall only be interested in idempotent substitutions.

A variable x is ground with respect to a substitution θ if θ(x) is ground. A set
of variables {x1, · · · , xn} are aliased or share with respect to a substitution θ if
vars(θ(x1)) ∩ · · · ∩ vars(θ(xn)) 6= ∅.

Substitutions are used to represent the solutions to term equations. A substitu-
tion θ is a unifier of an equation e ≡ t = u iff tθ ≡ uθ. If such a unifier exists, e is said
to be unifiable. A substitution θ is a most general unifier of e iff θ is more general
than any other unifier of e. If e has a most general unifier, it has an idempotent most
general unifier. A set of equations {x1 = t1, · · · , xn = tn} is in solved form if each
xi is a distinct variable and {x1, · · · , xn} is disjoint from vars(t1) ∪ · · · ∪ vars(tn).
The solved form of an equation e is given by a set Solv ≡ {x1 = t1, · · · , xn = tn},
such that Solv is in solved form, vars(e) ⊆ {x1, · · · , xn} and e is equivalent to
the conjunction of the equations in Solv. Note that all most general unifiers of an
equation are equivalent and essentially represent the solved form of the equation.
The function mgu returns an idempotent most general unifier of a term equation
if it exists. Otherwise it fails.

Logic programs are evaluated through a combination of two mechanisms: re-
placement and unification. This strategy is named SLD-resolution. The opera-
tional semantics of a program P can be presented as a transition on states 〈G, θ〉,
where G is a goal, and θ is a substitution. The semantics is parameterized by a
computation rule and a search rule. A computation rule selects a transition rule
and an appropriate element of G in each state. A search rule selects a given clause
of the program. For simplicity, we use the standard left-to-right computation rule
and depth first search strategy (as used in Prolog).

Let a be an atom and e an equation. The transition rules are as follows. Note
that the conditions for applying each of the transition rules are pairwise exclusive.

• 〈a : G, θ〉 → 〈B : G, θ〉 if B ∈ defnP (a);

• 〈a : G, θ〉 → fail if defnP (a) = ∅;
• 〈e : G, θ〉 → 〈G, θθ′〉 if mgu(eθ) = θ′;

• 〈e : G, θ〉 → fail if mgu(eθ) fails.

We let defnP (a) denote the definition of atom a in program P . This is the set of
appropriately renamed rule bodies in P whose corresponding rule head is a variant

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

300 · M. Garćıa de la Banda et al.

of a. More exactly,

defnP (a) = {ρa,h(B)|h← B ∈ P}
where each renaming ρa,h is chosen so that ρ(h) ≡ a and where the local variables
in B are renamed to new variables never seen before in any other transition step.

A derivation of a state s for a program P is a finite or infinite sequence of
transitions s0 → s1 → · · ·, in which s0 ≡ s. A state from which no transition can
be performed is a final state. A derivation is successful when it is finite and the
final state has the form 〈nil, θ〉. A derivation is failed when it is finite and the final
state is fail. The substitution θ is said to be a partial answer to state s if there
is a derivation from s to a state 〈G, θ〉 and it is said to be an answer if 〈G, θ〉 is a
final state (i.e., G ≡ nil).

The maximal derivations of a state can be organized into a derivation tree in
which the root of the tree is the start state and the children of a node are the states
the node can reduce to. The derivation tree for state s and program P , denoted by
treeP (s), represents the search space for finding all answers to s and is unique up to
renaming. Each branch of the derivation tree of state s is a derivation of s. Branches
corresponding to successful derivations are called success branches, branches cor-
responding to infinite derivations are called infinite branches, and branches corre-
sponding to failed derivations are called failure branches.

2.2 Independence for Parallelization in Logic Programs

This section provides a brief history of the various notions of independence devel-
oped in the context of traditional logic programming. Consequently none of the
definitions of independence in this section are new; rather this review of earlier
work provides the necessary background for our research and allows us to clarify
our contribution.

The several independence notions defined in the context of traditional logic pro-
gramming were generally developed for the particular application of program par-
allelization within the independent and-parallelism model [Conery 1983; DeGroot
1984; Hermenegildo and Rossi 1995]. This model aims at running in parallel as
many “independent” goals as possible while maintaining correctness and efficiency
with respect to the sequential execution where independence between goals im-
plies that they have no communication between them and that they may be run in
different environments.

Correctness is guaranteed if the answers obtained during the parallel execution
are equivalent to those obtained during the sequential execution.

Efficiency is guaranteed if the no “slow-down” property holds, i.e., if the parallel
execution time is guaranteed to be shorter than or equal to the sequential execution
time. This was approximated by requiring that the amount of work performed
for computing the answers during the parallel execution be no more than that
performed in the sequential execution.

In this context, independence refers to the conditions that the run-time behavior
of the goals to be run in parallel must satisfy in order to guarantee the correctness
and efficiency of the parallelization with respect to the sequential execution.

Assume that we are given the state 〈g1 : g2 : G, θ〉 and wish to execute g1 and g2

in parallel (the extension to sequences of consecutive goals is straightforward). One
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 301

possible execution model is to

• execute 〈g1, θ〉 and 〈g2, θ〉 in parallel (in different environments) obtaining the
answer substitutions θ1 and θ2, respectively, and

• execute 〈G, θ1θ2〉.
This model was intended to be generic, abstracting away from implementation
details such as whether memory is shared or not. Where relevant, footnotes will be
used to discuss the effect of implementation decisions.

Note that even though defnP is called in different environments during the paral-
lel execution of the goals, it is still assumed that the new variables introduced belong
to disjoint sets. Also, note that the parallel framework can be applied recursively
within the parallel execution of the goals in order to allow nested parallelism.1

Two main problems were detected with this execution model.2 The first one,
related to the variable binding conflict of Conery [1983], appears whenever during
the parallel execution of 〈g1, θ〉 and 〈g2, θ〉 the same variable is attempted to be
bound to inconsistent values. Then, due to the standard definition of composition
of substitutions (based on function composition) given in Lloyd [1987], Apt and
van Emden [1982], and Apt [1990] the answers obtained by the parallel execution
can be different from those obtained by the sequential execution, thus affecting the
correctness of the model, as shown in Hermenegildo and Rossi [1995].

Example 2.1. Consider the state 〈p(x) : q(x), ε〉 and the following program:

p(x) ← x = a.
q(x) ← x = b.

In this case, the sequential execution framework first executes 〈p(x), ε〉, re-
turning {x/a} and then executes 〈q(x), {x/a}〉 which is reduced to the state fail.
On the other hand, the parallel execution framework executes in parallel 〈p(x), ε〉
and 〈q(x), ε〉, returning {x/a} and {x/b}, respectively. Then, the composition
{x/a}{x/b} results in the substitution {x/a}. Thus we obtain a different answer.
4

The second problem is due to the possibility of performing more work in the par-
allel execution than that performed during the sequential execution, thus affecting
the efficiency of the model, as pointed out in Hermenegildo and Rossi [1995].

1As defined, the execution model only finds the first answer to the goals. Several approaches to
backtracking are possible. One is to avoid backtracking by computing in parallel all solutions to
〈g′1, ε〉 and 〈g′2, ε〉, storing them, and then (upon request) providing them in the appropriate order.
However, in most implemented and-parallel systems, initially only the first solution to 〈g′1, ε〉 and
〈g′2, ε〉 is computed in parallel. If failure occurs later during the execution of 〈G, θθ3〉 and it reaches
goal g2, backtracking over g2 is performed as in the sequential model. Only when backtracking
reaches g1, can this work be again performed in parallel with that of solving g2. For generality,
we will assume the second approach.
2A third problem was also detected in Hermenegildo and Rossi [1995] whenever the goal to the
left (g1 in the above model) has no answers, since then the amount of work performed by the
parallel execution may be greater than that performed by the sequential execution; thus, the no

slow-down property may not hold. However, this problem was solved outside the scope of the
theoretical model by assuming that the processor executing such goal is able to kill the processors
executing the goals to the right (g2 above), and that this processor has a higher priority than
those executing goals to the right.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

302 · M. Garćıa de la Banda et al.

Example 2.2. Consider the state 〈p(x) : q(x), ε〉 and the following program:

p(x) ← x = a.
q(x) ← x = b, proc, x = c.

where proc is very costly to execute. Both the sequential and parallel execution
will fail, but their efficiency is quite different. While the sequential execution fails
before executing proc, the parallel execution will first execute proc and then fail.
4

The first solution proposed to solve these two problems was to only allow goals
to be run in parallel if they do not share variables with respect to the current
substitution [Conery 1983]. This was formally defined in Hermenegildo and Rossi
[1995] as follows (and called “strict independence”):

Definition 2.3 [Hermenegildo and Rossi 1995]. Two goals g1 and g2 are said
to be strictly independent with respect to a given substitution θ iff

vars(g1θ) ∩ vars(g2θ) = ∅.
A collection of goals is said to be strictly independent for a given θ iff they are
pairwise strictly independent for θ. Also, a collection of goals is said to be strictly
independent for a set of substitutions Θ iff they are strictly independent for each
θ ∈ Θ. Finally, a collection of goals is said to be simply strictly independent iff
they are strictly independent for the set of all possible substitutions. 4

The same definition can be applied to terms without any change. The authors of
Hermenegildo and Rossi [1995] proved that if goals g1 and g2 are strictly indepen-
dent with respect to a given substitution θ, then the parallel execution of 〈g1, θ〉
and 〈g2, θ〉 obtains the same answers as those obtained by the sequential execution
of 〈g1 : g2, θ〉, and, in the absence of failure, parallel execution does not introduce
any new work.

This sufficient condition is quite restrictive, significantly limiting the number of
goals that may be executed in parallel. However, as pointed out in Hermenegildo
and Rossi [1995], it has a very useful characteristic: strict independence is an a
priori condition (i.e., it can be tested at run-time before executing the goals).

Due to the restrictive nature of strict independence, there have been several
attempts to identify more general sufficient conditions. The intuition behind such
generalizations is that goals sharing variables could still be run in parallel when the
bindings established for those shared variables satisfy certain characteristics. This
was informally discussed in DeGroot [1984], Warren et al. [1988], and Winsborough
and Waern [1988], refined and formally defined in Hermenegildo and Rossi [1995]
as follows:

Definition 2.4 [Hermenegildo and Rossi 1995]. A binding x/t is called a v-
binding if t is a variable, otherwise it is called an nv-binding. 4

Definition 2.5 [Hermenegildo and Rossi 1995]. Consider a collection of goals
g1, . . . , gn and a substitution θ. Consider also the set of shared variables

SH = {v | ∃i, j, 1 ≤ i, j ≤ n, i 6= j, v ∈ (var(giθ) ∩ var(gjθ))}
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 303

and the set of goals containing each shared variable

G(v) = {giθ | v ∈ var(giθ), v ∈ SH}.

Let θi be any answer substitution to giθ. The given collection of goals is nonstrictly
independent for θ if the following conditions are satisfied:

• ∀v ∈ SH , at most the rightmost g ∈ G(v), say gjθ, nv-binds v in any θj ;

• for each giθ (except the rightmost) containing more than one variable of SH , say
v1, . . . , vk, then v1θi, . . . , vkθi are strictly independent. 4

Intuitively, the first condition above requires that at most one goal further instan-
tiate a shared variable. The second condition eliminates the possibility of creating
aliases (of different shared variables) during the execution of one of the parallel
goals which might affect goals to the right.

At this point it was noticed that, due to the definition of the composition of
substitutions, incorrect answers could be obtained even when there was no variable
binding conflict for the shared variables.

Example 2.6. Consider the state 〈p(x, y) : q(y), ε〉 and the program:

p(x, y) ← x = z, y = z.
q(x) ← x = a.

It is easy to check that p(x,y) and q(y) are nonstrictly independent for ε.
However, if we run 〈p(x, y), ε〉 we might obtain θp = {x/z, y/z}. If we now ex-
ecute 〈q(y), θp〉 we obtain the substitution θ = {x/a, y/a, z/a}. If, instead we
execute 〈q(y), ε〉 we obtain θq = {y/a}, thus ending with their composition θpθq =
{x/z, y/z} as the final substitution. This answer is obviously different from the θ
obtained by the sequential execution, and so is an incorrect result. 4

As noticed in Hermenegildo and Rossi [1995], this could be solved by defining a
“parallel composition” which avoids these problems. Since there is a natural bi-
jection between substitutions and sets of equations in solved form, such parallel
composition was defined in terms of “solving” the equations associated with the
substitutions being composed. However, at that time adopting a new definition of
composition would have required a revision of well-known results in logic program-
ming, which rely on the standard definition. As a result, the authors adopted a
different solution which involved a renaming transformation. Informally, the renam-
ing transformation of two goals g1 and g2 for a substitution θ, involves applying the
substitution to both goals, eliminating any shared variables in the resulting goals
by renaming all their occurrences (so that no two occurrences in different goals
have the same name), and adding some equations to reestablish the lost links (for
a formal definition see Hermenegildo and Rossi [1995]).

Example 2.7. Consider the collection of goals (r(x, z, x), s(x,w, z), p(x, y), q(y))
in some state (we consider θ already applied to the goals). According to the re-
naming transformation definition, we rewrite this to

r(x, z, x), s(x′, w, z′), p(x′′, y), q(y′), x = x′, x = x′′, y = y′, z = z′. 4
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

304 · M. Garćıa de la Banda et al.

Note that the first goal always remains unchanged. Equations of the form x = x′

above were called “back-bindings” (denoted by BB) and are related to the back-
unification goals defined in Kalé [1987], and the closed environment concept of
Conery [1987]. In this context, the parallel framework described above was redefined
as follows:

Assume that given the state 〈g1 : g2 : G, θ〉 we want to execute g1 and g2 in
parallel. Then, the execution scheme was defined as follows:

• apply the renaming transformation to g1θ, g2θ obtaining g′i, g
′
j, BB,

• execute 〈g′1, ε〉 and 〈g′2, ε〉 in parallel (in different environments) obtaining the
answer substitutions θ1 and θ2 respectively,

• execute 〈BB, θ1θ2〉 obtaining the answer substitution θ3,

• execute 〈G, θθ3〉.

As before, it is assumed that the new variables introduced during the renaming
steps in the parallel execution belong to disjoint sets.

Once the parallel framework was redefined, the notions of correctness and ef-
ficiency were also reconsidered. Correctness was not a significant problem since,
in general, the answers provided by the parallel executions were the same (up to
renaming) as the answers obtained in the sequential execution. Only a new infinite
derivation in the execution of 〈g′2, ε〉 would yield a change. However, since this was
a particular case in which efficiency was also affected, the correctness problem was
ignored in the knowledge that if efficiency was achieved this case could not happen,
and therefore correctness would also be ensured.

Possible inefficiency was assumed to come from two sources. Firstly, due to a
larger branch in the derivation tree associated with the parallel execution of 〈g′2, ε〉,
since such a tree would obviously imply more work. This was the point in which the
notion of search space preservation was introduced. Unfortunately, this notion was
never formally defined, the intuitive idea given for the preservation of the search
space being the following: the search space of two states are the same if their
associated derivation trees have the same “shape” [Hermenegildo and Rossi 1995].
This concept was later (in some sense erroneously) identified with the preservation
of the number of nonfailure nodes in the respective derivation trees. The second
source of inefficiency was a failure when executing the back-bindings, since this
would again increase the work (backtracking, finding another answer, etc). Initially,
concentrating on the success of the back-bindings introduced some confusion, since
it was easy to believe that if such bindings always succeed then the efficiency (and
thus the correctness) of the parallel model was ensured. However, as pointed out in
Hermenegildo and Rossi [1995], this does not ensure the preservation of the amount
of work in failed derivations.

It is clear from the above discussion that the work developed in Hermenegildo and
Rossi [1995] provided the basic results for logic programming. However, the defi-
nitions and proofs used are quite complex due to the introduction of the renaming
transformation. In the next section we will generalize independence, search space
preservation, and the parallel execution model to the constraint logic programming
context. Somewhat surprisingly, we shall see that our generalization provides a
more intuitive formalization of independence in the logic programming setting. In
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 305

particular we will avoid using the renaming transformation, and we will be able to
prove that the independence notions are not only sufficient but also necessary for
ensuring correctness and efficiency.

3. A PARALLEL EXECUTION MODEL FOR CONSTRAINT LOGIC PROGRAMS

In this section we generalize the standard logic programming parallel execution
model to the more general context of constraint logic programming (CLP), clarify
what it means for parallel execution of goals to be correct and efficient with re-
spect to the standard sequential evaluation of CLP, and formalize the concept of
search space preservation as a necessary and sufficient condition for correctness and
efficiency.

3.1 CLP Operational Semantics

First we revise the CLP scheme and the standard CLP operational semantics. In
doing this, we will follow mainly Jaffar and Lassez [1987] and Jaffar and Maher
[1994]. The interested reader should consult Jaffar and Maher [1994] for a more
formal and more detailed account, as well as for the assumptions that are usually
made about the constraint domain.

A primitive constraint has the form p(t̄) where t̄ is a sequence of arguments
and p is a constraint predicate symbol. A constraint is a conjunction of primitive
constraints. The empty constraint is denoted ε. A literal is an atom or a primi-
tive constraint. The definitions of atom, rule, goal, and program are the natural
generalization of those given earlier for logic programs.

CLP languages are parameterized by the allowed constants, functions, and con-
straint predicate symbols. These, together with their interpretation, constitute the
underlying constraint domain. For example, standard Prolog can be viewed as a
CLP language in which term equations, interpreted over the finite trees, form the
constraint domain. As another example, the CLP language CLP(<) [Jaffar and
Michaylov 1987] extends Prolog by also providing the standard arithmetic con-
straints interpreted over the real numbers.

Let ∃−x̄φ denote the existential closure of the formula φ except for the variables
x̄ and ∃̃φ denote the full existential closure of φ.

The operational semantics is parametric in the constraint solving function,
consistent, which tests the consistency of a constraint. That is, it returns true if the
constraint is satisfiable, and false otherwise. For simplicity, we have assumed that
the consistency test implemented by the constraint solver is complete. This allows
us to treat constraints as logical formulae, and thus relate them by implication, log-
ical equivalence, etc. However, our results continue to hold for incomplete solvers.
In this case we just consider constraints as sets of (possibly delayed) primitive
constraints and substitute conjunction by union, logical equivalence by syntactic
equivalence, and implication by the subset relationship.

The operational semantics for CLP is very similar to that given earlier for logic
programs. The main difference is that the substitution is replaced by a constraint
store which collects the primitive constraints encountered so far, and the call to
mgu is replaced by a call to the constraint solving function.

The operational semantics is therefore a transition system on states of the form
〈G, c〉 where G is a sequence of literals, and c is the constraint store. As before we

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

306 · M. Garćıa de la Banda et al.

also allow the state fail. Let a denote an atom and c′ a constraint. The transition
rules are

• 〈a : G, c〉 →r 〈B :: G, c〉 if B ∈ defnP (a);
• 〈a : G, c〉 →rf fail if defnP (a) = ∅;
• 〈c′ : G, c〉 →c 〈G, c ∧ c′〉 if consistent(c ∧ c′) holds;
• 〈c′ : G, c〉 →cf fail if consistent(c ∧ c′) does not hold.

The definition of derivations, final states, successful and failed derivations, deriva-
tion trees, and success, infinite, and failure branches is a straightforward modifica-
tion of those for logic programs. The constraint c is said to be a partial answer to
state s if there is a derivation from s to a state 〈G, c〉, and it is said to be an answer
if 〈G, c〉 is a final state (i.e., G ≡ nil). We denote the set of answers to state s for
program P by ansP (s) and the partial answers by pansP (s).

3.2 A Model for the Parallel Execution of CLP

We will primarily be concerned with investigating independence from the viewpoint
of parallelization. A necessary first step, therefore, is to generalize the parallel
execution model given earlier for logic programs to CLP. Assume that we are given
the state 〈g1 : g2 : G, c〉 and wish to execute g1 and g2 in parallel (the extension to
more than two goals is straightforward). Our execution scheme is the following:3

• execute 〈g1, c〉 and 〈g2, c〉 in parallel (in different environments) obtaining the
answer constraints c1 and cr respectively,
• obtain cs as the conjunction of c1 ∧ cr,
• execute 〈G, cs〉.
Note that our parallel execution model is also intended to be generic, abstracting
away from implementation details. We will again use footnotes to discuss the effect
of implementation decisions. Also as before, we assume that the new variables
introduced by defnP during the parallel execution of the goals belong to disjoint
sets.

The main difference between the parallel framework for LP and ours is that we
replace substitution composition by conjunction. Indeed constraint conjunction
corresponds exactly with the “parallel composition” needed in Hermenegildo and
Rossi [1995]. What in the logic programming context would imply a reconsideration
of the standard theory and results comes essentially for free with CLP. Therefore,
we can avoid the need for the renaming transformation.

We must now formally define what it means for the parallel model to be correct
and efficient with respect to the sequential one. It is easy to see that the only differ-
ence between these two models is that in the sequential model g2 is executed with
the constraint store c1 corresponding to some answer to 〈g1, c〉, while in the parallel
model g2 is executed with the constraint store c. Thus, we can base correctness and
efficiency on the relationship between the execution of states 〈g2, c〉 and 〈g2, c1〉, for
each c1 computed.

3The subscript “s” will be associated to the arguments of the states obtained during the sequential
execution. The subscript “r” will be associated to the arguments of the states obtained during
the parallel execution of g2 (the goal to the right).

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 307

The obvious definition of correctness, corresponding to that used for logic pro-
gramming, is that execution of 〈g2, c〉 and 〈g2, c1〉 give rise to equivalent sets of
answers.

Definition 3.1. Let s be the state 〈g1 : g2 : G, c〉 and P be a program. The
parallel execution of g1 and g2 is correct iff for every c1 ∈ ansP (〈g1, c〉) there
exists a renaming ρ such that ρ(s) ≡ s, and a bijection which assigns to each
cs ∈ ansP (〈g2, c1〉) an answer cr ∈ ρ(ansP (〈g2, c〉)) with cs ↔ (c1 ∧ cr). 4

However, this notion of correctness has two weaknesses. First, it does not ensure
that answers are returned in the same order. This is desirable when parallelizing
a program, since it guarantees that the order intended by the programmer is pre-
served. Second, it does not capture that successful derivations to the right of an
infinite branch will never be explored. Thus we will also consider a more “opera-
tional” view of correctness.

Let optreeP (s) be the tree obtained from the derivation tree of s by removing all
nodes to the right of the first infinite branch in the tree, and let opansP (s) be the
sequence of answers obtained in the in-order traversal of optreeP (s).

Definition 3.2. Let s be the state 〈g1 : g2 : G, c〉 and P be a program. The
parallel execution of g1 and g2 is operationally correct iff for every c1 ∈ ansP (〈g1, c〉),
the sequences opansP (〈g2, c1〉) and opansP (〈g2, c〉) have the same length and there
exists a renaming ρ such that ρ(s) ≡ s, and for all i, if cs is the ith answer in
opansP (〈g2, c1〉) and cr is the ith answer in ρ(opansP (〈g2, c〉)), then cs ↔ (c1 ∧ cr).
4

Efficiency only requires that, in absence of failure (i.e., when g1 has at least one
answer), the amount of work performed by the second goal g2 in the parallel model
is less than or equal to that performed in the sequential model. We will not take
into account the amount of work performed in conjoining the answers obtained
from the parallel execution, since the cost of this is considered to be one of the
overheads associated with the parallel execution (as creation of processes or tasks,
scheduling, etc.).4

Also, we will assume for the moment that the cost of the application of each
transition rule is constant and independent of the type of transition applied. Let
TR be the set of different transition rules that can be applied. Let s be a state
and N(i, s) be the number of times in which a particular transition rule i ∈ TR
has been applied in treeP (s). Let Ki be the cost of applying a particular transition
rule i ∈ TR, and assume that such cost is always greater than zero.

Definition 3.3. The cost of evaluating state s, written cost(s), is∑
i∈TR

Ki ∗N(i, s). 4

4And, in fact, in shared-memory machines this step is performed on-the-fly, at minimal cost, since
the goals are generally run in a shared environment.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

308 · M. Garćıa de la Banda et al.

Definition 3.4. Let 〈g1 : g2 : G, c〉 be a state and P be a program. The parallel
execution of g1 and g2 is efficient iff for every c1 ∈ ansP (〈g1, c〉),5

cost(〈g2, c〉) ≤ cost(〈g2, c1〉). 4

4. SEARCH SPACE PRESERVATION

We will now identify independence conditions for goals which will ensure that par-
allel execution of the goals is correct and efficient. As a first step in this quest
to identify independence conditions, we shall formalize search space preservation
and clarify its relationship with correctness and efficiency of the parallel execu-
tion. Search space preservation allows us to understand correctness and efficiency
in terms of derivation trees.

We assume that nodes in a derivation tree are labeled with their path, i.e., they
are labeled with a unique identifier obtained by concatenating the relative position
of the node among its siblings to the path of the parent node. We also assume that
some predefined order is assigned to the bodies in defnP (a), and that this order is
inherited by the associated child nodes.

Definition 4.1. Two nodes n and n′ in the derivation trees of states s and s′,
respectively, with the same path correspond iff either they are the roots of the tree
(i.e., n ≡ s and n′ ≡ s′) or they have been obtained by applying the same transition
rules. 4

Definition 4.2. States s and s′ have the same search space for program P iff there
exists a (total) bijection which assigns to each node in treeP (s) its corresponding
node in treeP (s′). They have the same operational search space for program P
iff there exists a (total) bijection which assigns to each node in optreeP (s) its
corresponding node in optreeP (s′). 4

We first show that search space preservation is sufficient for ensuring correctness
and efficiency. That is to say, that given a state 〈g1 : g2 : G, c〉 and a program P , the
parallel execution of g1 and g2 is correct and efficient if, for every c1 ∈ ansP (〈g1, c〉),
the search spaces of 〈g2, c〉 and 〈g2, c1〉 are the same as for P . Ensuring efficiency
is straightforward due to the definition of search space, which provides a bijection
among the same transitions. The proof of correctness is a little more complex and
relies on the following two lemmas which relate the derivation trees for states with
the same goal but with different constraints.

Intuitively, the following lemma guarantees that for states with the same goal,
and in the absence of failure, the goals associated to nodes with the same path in
different derivation trees (possibly starting from different initial constraints) must
be identical up to renaming.

5If we consider a model in which, during the parallel execution, all solutions to the parallel goals
are computed, the condition above can be relaxed: we can just require the cost of executing
〈g2, c〉 multiplied by the number of answers in ansP (〈g1, c〉), to be less than or equal to the sum
of the cost of executing 〈g2, c1〉, for each answer c1 ∈ ansP (〈g1, c〉). Furthermore, if after the

parallel execution the parallel goals share their environments, the above definition could have
been specialized so that only the amount of work up to the first solution for 〈g2, c〉 and 〈g2, c1〉
(for each c1) is taken into account, since the rest are explored in the same environment as the
sequential one.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 309

Lemma 4.3. Let 〈G, c1〉 and 〈G, c2〉 be two states and P a program. There exists
a renaming γ such that

• for every two nonfailure nodes 〈G′1, c′1〉 and 〈G′2, c′2〉 with the same path in
treeP (〈G, c1〉) and treeP (〈G, c2〉), respectively, G′1 ≡ γ(G′2);

• γ(G) = G, γ(c1) = c1 and γ(c2) = c2;

• γ is its own inverse. 4

Proof. The proof is by induction over the nonfailure nodes n0, ..., nk in the tree
treeP (〈G1, c1〉) such that for each of these nodes, ni say, there is a nonfailure node
n′i in treeP (〈G, c1〉) with the same path as ni. Without loss of generality, we can
assume that all nodes come after their parent in the sequence. We shall inductively
define renamings γ0, ..., γk such that γi satisfies the two conditions in the lemma
statement for nodes n0, ..., ni respectively.

The base case for the induction argument is for n0. As a result, n0 and n′0 must
be the roots of their trees, i.e., n0 ≡ 〈G, c1〉 and n′0 ≡ 〈G, c2〉. Choosing γ0 to be
the identity renaming clearly satisfies the induction hypothesis.

Now, consider the nodes nk ≡ 〈Gk, ck〉 and n′k ≡ 〈G′k, c′k〉. Since the parent of
nk and that of n′k must be nonfailure nodes (from the definition of the operational
semantics only nonfailure nodes can have children) and must have the same path,
they occur in the induction sequence of nodes. Let their parents be np ≡ 〈Gp, cp〉
and n′p ≡ 〈G′p, c′p〉, respectively. Now, since p < k, we have from the induction
hypothesis that

Gp ≡ γk−1(G′p). (1)

By assumption, nk and n′k are nonfailure nodes, and by definition of the operational
semantics, nonfailure nodes can only be obtained by a →c transition or by a →r

transition.
If nk was obtained by a →c transition, then the leftmost literal in Gp is a con-

straint. From (1), the leftmost literal in G′p must also be a constraint, and therefore
G′k was obtained from G′p also using a →c transition. From the definition of the
→r transition and (1), it follows that Gk ≡ γk−1(G′k). Thus, we can choose γk to
be γk−1.

On the other hand, if nk was obtained by a →r transition, then the leftmost
literal in Gp is an atom, say h. Analogously to above, from (1), the leftmost literal
in G′p must also be a variant of h, say h′, and so G′k was obtained from G′p also
using a →c transition. Since rules are applied in order and the nodes nk and n′K
have the same path, Gk and G′k must have been obtained using renamings ρ and
ρ′, respectively, of the same program rule hP ← BP . Define the renaming ρlocal by

ρlocal(x) =


ρ′(ρ−1(x)) if x ∈ vars(ρ(BP)) \ vars(h)
ρ(ρ′−1(x)) if x ∈ vars(ρ′(BP)) \ vars(h′)
x otherwise.

ρlocal maps each local variable in ρ(BP) to the corresponding local variable in
ρ′(BP) and vice versa. Note that since defnP always renames local variables to
distinct new variables, the local variables in ρ′(BP) and ρ(BP) are distinct and do
not occur in nodes n1, ..., nk or n′1, ..., n

′
k. By construction, γk = γk−1 ◦ ρlocal is a

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

310 · M. Garćıa de la Banda et al.

renaming. Furthermore, for i = 1, ..., k − 1, γk(n′i) = γk−1(n′i) and for nk,

γk(G′k) = γk(ρ′(BP) : G′p \ h′) = ρ(BP) : γk−1(G′p \ h′) = Gk

since for each local variable x in Bp,

γk(ρ′(x)) = ρlocal(ρ′(x)) = ρ(x)

and for each nonlocal variable x in BP ,

γk(ρ′(x)) = γk−1(ρ′(x)) = ρ(x)

as γk−1(h′) = h. By construction, ρlocal is its own inverse. Furthermore, γk =
γk−1◦ρlocal = ρlocal◦γk−1, since ρlocal and γk−1 only affect disjoint sets of variables.
It follows that γk is its own inverse Thus, γk satisfies the induction argument.

We note that the first condition of Lemma 4.3 can also be equivalently expressed
as: for every two nonfailure nodes 〈G′1, c′1〉 and 〈G′2, c′2〉 with the same path in
treeP (〈G, c1〉) and γ(treeP (〈G, c2〉)), respectively, G′1 ≡ G′2. We will make use of
this alternative formulation when convenient.

The renaming γ constructed in the proof of the preceding lemma allows us to map
nodes from treeP (〈G, c2〉) to treeP (〈G, c1〉) by taking into account the effect of local
variable renamings performed in the operational semantics with calls to defnP . We
call γ the local variable correcting renaming for treeP (〈G, c1〉) and treeP (〈G, c2〉).

When focusing on parallelism, the above lemma guarantees that, in absence of
failure, the goals associated with every two nodes with the same path in the parallel
and sequential execution, respectively, are identical up to renaming by the local
variable correcting renaming γ. As a result, it is easy to prove the following lemma
which shows that for nonfailure nodes the constraint obtained during the sequential
execution (cs) is equivalent to the conjunction of the constraints obtained during
the parallel executions (c1 and cr).

Lemma 4.4. Let 〈g2, c1〉 and 〈g2, c〉 be two states with c1 → c and P be a pro-
gram. For every two nonfailure nodes s ≡ 〈Gs, cs〉 and r ≡ 〈Gr, cr〉 with the same
path in treeP (〈g2, c1〉) and γ(treeP (〈g2, c〉)), respectively, cs ↔ (c1 ∧ cr), where γ
is the the local variable correcting renaming for treeP (〈g2, c1〉) and treeP (〈g2, c2〉).
4

Proof. By definition of the operational semantics, all parent nodes of a given
node are known to be nonfailure. By Lemma 4.3, the sequences of literals of all
parents of s are identical to those of all parents of r with the same path. This
means that the constraints added to c1 and to c, yielding cs and cr respectively,
have been the same. Since by assumption c1 → c, and therefore c1 ↔ c1 ∧ c, it is
clear that cs ↔ c1 ∧ cr.

The above lemma and the fact that search space preservation implies a bijection
among answers allow us to prove that search space preservation is sufficient for
ensuring the correctness of the parallel execution, and thus the following results:

Theorem 4.5. Let 〈g1 : g2 : G, c〉 be a state and P a program. The parallel
execution of g1 and g2 is correct and efficient if for every c1 ∈ ansP (〈g1, c〉), the
search spaces of 〈g2, c〉 and 〈g2, c1〉 are the same for P . 4
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 311

Proof. By definition of search space preservation, there exists a bijection which
assigns to every final state r ≡ 〈Gr, cr〉 in treeP (〈g2, c〉) a final state s ≡ 〈Gs, cs〉
with the same path in treeP (〈g2, c1〉), thus establishing a bijection among the an-
swers. By Lemma 4.3, there exists a renaming γ for initial states 〈g2, c1〉 and 〈g2, c〉
such that Gs ≡ γ(Gr). Also, since c1 ∈ ansP (〈g1, c〉) we know that c1 → c. Thus,
by Lemma 4.4, cs ↔ c1 ∧ γ(cr), and we have proved correctness.

Let us now prove efficiency. By definition of search space preservation, there
exists a bijection among every node in treeP (〈g2, c〉) and a node with the same
path in treeP (〈g2, c1〉) which is obtained with the same transition rule. Thus, for
each i ∈ TR : N(i, 〈g2, c〉) = N(i, 〈g2, c1〉). As a result, for every c1:

∑
i∈TRKi ∗

N(i, 〈g2, c〉) =
∑

i∈TRKi ∗N(i, 〈g2, c1〉), i.e., cost(〈g2, c〉) = cost(〈g2, c1〉). We have
thus proved efficiency.

Using a similar proof it is straightforward to show that:

Theorem 4.6. Let 〈g1 : g2 : G, c〉 be a state and P a program. The parallel
execution of g1 and g2 is operationally correct and efficient if for every c1 ∈
ansP (〈g1, c〉), the operational search spaces of 〈g2, c〉 and 〈g2, c1〉 are the same for
P . 4

It is easy to see that search space preservation is not necessary for ensuring cor-
rectness, since correctness is not affected by search space changes in either failure or
infinite branches. However, we can show that search space preservation is necessary
for ensuring that both correctness and efficiency hold. The following two lemmas
are instrumental in proving this, since they show that the only way in which the
search spaces of 〈g2, c1〉 and 〈g2, c〉, with c1 → c, can be different for a program P ,
is if a branch in treeP (〈g2, c〉) does not appear in treeP (〈g2, c1〉).

Lemma 4.7. Let 〈g2, c1〉 and 〈g2, c〉 be two states such that c1 → c. Let P be a
program. Then, for every two nodes s and r with the same path in treeP (〈g2, c1〉)
and treeP (〈g2, c〉), respectively, s and r have been obtained with the same transition
rule iff either s ≡ r ≡ fail or they are both nonfailure nodes. 4

Proof. Let us first assume that s and r have been obtained by the same transi-
tion rule. Then, by definition of the operational semantics, either both are identical
to fail or both are nonfailure. For proving the other direction let s′ and r′ be the
parents of s and r, respectively. By definition of the operational semantics we know
that s′ and r′ are nonfailure nodes. Thus, by Lemma 4.3, if the leftmost literal in
the sequence of literals in s′ is an atom (resp. constraint) then the leftmost literal in
the sequence of literals in r′ must be a variant of the same atom (resp. constraint).
Then, by definition of the operational semantics, if s ≡ r ≡ fail they must have
been obtained by applying →rf (leftmost literal is an atom) or →cf (leftmost lit-
eral is a constraint), and if they are both nonfailure nodes, they must have been
obtained by applying →r (leftmost literal is an atom) or →c (leftmost literal is a
constraint).

Lemma 4.8. Let 〈g2, c1〉 and 〈g2, c〉 be two states such that c1 → c and the
search spaces of 〈g2, c1〉 and 〈g2, c〉 are different for program P . Then, there exists
a bijection which assigns to each node s in treeP (〈g2, c1〉) for which there is no
corresponding node in treeP (〈g2, c〉), a node r in treeP (〈g2, c〉) with the same path,

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

312 · M. Garćıa de la Banda et al.

such that s and r have been obtained applying the →cf and →c transition rule,
respectively, and the parents of s and r correspond. 4

Proof. Let us assume that s is the first node in its branch for which there is
no corresponding node. Let s′ be the parent of s. By definition of the operational
semantics s′ is nonfailure, say s′ ≡ 〈G′s, c′s〉. By assumption, s′ has a corresponding
node r′ with the same path in treeP (〈g2, c〉). By Lemma 4.7, r′ must also be
nonfailure, say r′ ≡ 〈G′r, c′r〉. By Lemma 4.3, G′s ≡ γ(G′r) where γ is the the
local variable correcting renaming for treeP (〈g2, c1〉) and treeP (〈g2, c〉). We note
that the first literal in G′s cannot be an atom. If so, s must have been obtained
by applying either →r or →rf and so r′ must have a child r obtained using →r

or →rf , respectively. This would mean that r corresponds to s contradicting the
assumption that s has no corresponding node. As the first literal in G′s must be a
constraint, r′ has a single child r obtained by using either →c or →cf . Clearly r
has the same path as s. Now if s has been obtained by applying the →c transition
rule, then consistent(c′s ∧ c′) must hold. However, by Lemma 4.4 c′s ↔ c′1 ∧ γ(c′r).
Therefore, consistent(c′ ∧ γ(c′r)) must also hold, and thus r must also be obtained
by applying the →c rule. But this contradicts the assumption that r and s do not
correspond. The only possibility is that while consistent(c′s ∧ c′) does not hold,
consistent(c′ ∧ γ(c′r)) holds. Thus, s and r must have been obtained by applying
the →cf and →c transition rules, respectively.

It follows from the above lemmas that, for each two states 〈g2, c1〉 and 〈g2, c〉 such
that c1 → c, all nonfailure nodes in the tree of 〈g2, c1〉 correspond with the nodes
with the same path in the tree of 〈g2, c〉. Failure nodes will also correspond unless a
longer branch is obtained in 〈g2, c〉 due to the less constrained store. However, the
assumption of efficiency ensures that such long branches do not exist. Thus, search
space preservation is necessary to ensure efficiency and the following theorems hold:

Theorem 4.9. Let 〈g1 : g2 : G, c〉 be a state and P a program. The parallel
execution of g1 and g2 is correct and efficient iff for every c1 ∈ ansP (〈g1, c〉) the
search spaces of 〈g2, c〉 and 〈g2, c1〉 are the same for P . 4

Proof. Since we have already proved that search space preservation is sufficient,
let us focus on the necessary condition. Let us reason by contradiction and assume
that the parallel execution is correct and efficient but there exists at least one
c1 ∈ ansP (〈g1, c〉) for which the search spaces of 〈g2, c〉 and 〈g2, c1〉 are not the
same for P . By Lemma 4.8 we know that for every node in treeP (〈g2, c1〉) obtained
with one of the transition rules in {→r,→c,→rf}, there exists a corresponding node
in treeP (〈g2, c〉) which has been obtained with the same transition rule. Thus, for
every i ∈ {→r,→c,→rf}: N(i, 〈g2, c1〉) ≤ N(i, 〈g2, c〉). Also, for every node s in
treeP (〈g2, c1〉) obtained with the →cf transition rule, either it has a corresponding
node in treeP (〈g2, c〉) or, by Lemma 4.8 there exists a node r in treeP (〈g2, c1〉)
with the same path, which have been obtained applying the→c transition rule. By
definition of correctness there exists a bijection among answer nodes, i.e., nodes in
successful derivations. Thus r must be nonfailure, and the branches starting at r
must be either infinite or failure. Thus the amount of work performed for obtaining
r and its children is greater than that performed for obtaining s. But then the
parallel execution is not efficient, contradicting the initial assumption.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 313

Theorem 4.10. Let 〈g1 : g2 : G, c〉 be a state and P a program. The parallel
execution of g1 and g2 is operationally correct and efficient iff for every c1 ∈
ansP (〈g1, c〉) the operational search spaces of 〈g2, c〉 and 〈g2, c1〉 are the same for
P . 4

Proof. Direct from Theorem 4.9 and the fact that the bijection is among nodes
with the same path, thus providing the connection between the answers in the same
position of the sequences.

Note that theorems 4.9 and 4.10 imply that, in absence of failure, the amount
of work performed during the parallel execution is equal to (and no less) than that
performed in the sequential execution, with any possible speedup coming from the
parallel execution of this work.

These results also allow us to clarify one of the points mentioned in Section 2.
Let #nfnodesP (s) be the number of nonfailure nodes in the derivation tree of state
s for program P .

Corollary 4.11. Let 〈g2, c1〉 and 〈g2, c〉 be two states such that c1 → c. The
search spaces of 〈g2, c〉 and 〈g2, c1〉 are the same for programP iff #nfnodesP (〈g2, c〉) =
#nfnodesP (〈g2, c1〉). 4

Proof. Let us first assume that the search spaces of 〈g2, c〉 and 〈g2, c1〉 are
the same for P . From the definition of search space preservation, there exists
a bijection among nodes and, thus, #nfnodesP (〈g2, c〉) = #nfnodesP (〈g2, c1〉).
For proving the other direction let us reason by contradiction and assume that
#nfnodesP (〈g2, c〉) = #nfnodesP (〈g2, c1〉) but the search spaces of 〈g2, c〉 and
〈g2, c1〉 are different for P . By Lemma 4.8, every noncorresponding node s in 〈g2, c1〉
must be a failure node, and the node r with the same path in 〈g2, c〉 must be a
nonfailure node. But this implies that #nfnodesP (〈g2, c〉) > #nfnodesP (〈g2, c1〉),
which contradicts the initial assumption.

This justifies why preservation of search space was identified with preservation
of the number of nonfailure nodes in the logic programming context. However, as
we will see in Section 8, this identification cannot be performed when coroutining
is provided, since then a more constrained store c1 can both prune and enlarge the
search space.

We have now proven that search space preservation is not only a sufficient but
also a necessary condition for ensuring both efficiency and correctness. However,
there are still two issues related to the assumptions made when ensuring efficiency.
Firstly, we have assumed that g1 has at least one answer. If this is not true, the
amount of work during the parallel execution may be increased. Such increment
will depend on how the implemented system handles such situations. However,
given the results above, if we assume the behavior of the system in case of failure
proposed in Hermenegildo and Rossi [1995], the same results can be obtained, thus
ensuring efficiency also for those cases. Secondly, we have also assumed that the
amount of work involved in applying a particular transition rule is independent
of the state to which the rule is applied. Thus, there is one point which has not
been taken into account, namely the changes in the amount of work involved when
applying a particular transition rule to states with different constraint stores. We
will return to this issue in Section 7.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

314 · M. Garćıa de la Banda et al.

<x = 3:x = y, y = 1>

fail

<x = y, y = 1 x = 3><nil,y = 1 x > 0>

<x > 0, y = 1>

<nil, y = 1 x > 7>

<x > 7, y = 1> <x < 5:y = 2, y = 1>

<y = 2, y = 1 x < 5>

fail

<x > 1,y = 1>

<nil, y = 1 x > 1>

<q(x,y), y = 1><p(x,y), y = 1>

Fig. 1.

5. LEVELS OF INDEPENDENCE

In this section we will investigate various levels of independence for CLP languages.
As discussed in Section 2, independence was also defined at several levels of strength
for logic programs, starting from very restrictive definitions which ensure search
space preservation, and then relaxing these conditions in order to enlarge the num-
ber of goals which can be considered independent, while still preserving the search
space. We will do the opposite: start from a weak notion of independence which
is not sufficient for ensuring search space preservation, and then progressively re-
strict this definition until it does imply search space preservation. This allows us
to systematically discuss and compare these different notions and their applica-
tions: although parallel execution is arguably the most important application of
independence, it is not the only one.

5.1 Weak Independence

The first level is a relatively lax notion of independence which captures the intuitive
idea that simply guaranteeing “consistency among answers” of goals is sufficient for
the purposes of a number of applications.

Example 5.1. Consider the following fragment of a CLP(<) program:

p(x,y):- x > 0. q(x,y):- x < 5 , y = 2.
p(x,y):- x = 3, x = y. q(x,y):- x > 1.
p(x,y):- x > 7.

Figure 1 shows each possible derivation for states 〈p(x, y), c〉 and 〈q(x, y), c〉 where
c is y = 1. Since the answers of 〈p(x, y), c〉 are consistent with those of 〈q(x, y), c〉
then p(x,y) and q(x,y) can be considered in some sense independent for c. 4

Let us now formally define this level of independence which we will call weak
independence:

Definition 5.2. Goals g1 and g2 are weakly independent for constraint c and pro-
gram P iff

∀c1 ∈ ansP (〈g1, c〉) and ∀cr ∈ ansP (〈g2, c〉), consistent(c1 ∧ cr).

A collection of goals g1 : · · · : gn is weakly independent for a given c and P iff for
every goal gi, 1 ≤ i ≤ n, gi and the goal g1 : · · · : gi−1 are weakly independent for c
and P . 4
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 315

Note that, according to this definition, goals which fail (those for which the set of
answers is empty) for a given constraint are weakly independent of all other goals.
Also note that the appropriateness of the definition depends on the assumption that
defnP renames local variables in ansP (〈g1, c〉) and ansP (〈g2, c〉) apart. Without
this assumption, they would need to be existentially quantified.This is also true for
subsequent definitions of independence.

Lemma 5.3. Goals g1 and g2 are weakly independent for constraint c and pro-
gram P iff ∀c1 ∈ ansP (〈g1, c〉), there exists a bijection which assigns to each node
in a successful branch of treeP (〈g2, c〉) a corresponding node in a successful branch
of treeP (〈g2, c1〉). 4

Proof. Let γ be the local variable correcting renaming for treeP (〈g2, c〉) and
treeP (〈g2, c1〉).

Let us first assume that, for each c1 ∈ ansP (〈g1, c〉), there exists a bijection which
assigns to each node in a successful branch of treeP (〈g2, c〉) a corresponding node in
a successful branch of treeP (〈g2, c1〉). Consider some answer c1 ∈ ansP (〈g1, c〉) and
answer cr ∈ ansP (〈g2, c〉). Since cr is an answer, there is a success node r ≡ 〈nil, cr〉
in treeP (〈g2, c〉). By assumption, there is a corresponding node s in treeP (〈g2, c1〉).
From Lemma 4.3, s ≡ 〈nil, cs〉. From Lemma 4.4 we have that cs is equivalent
to (c1 ∧ γ(cr)). Since s is on a successful branch, cs is consistent. Thus γ(cs) is
consistent. From Lemma 4.3, γ(c1) = c1 and γ is its own inverse. Thus,

γ(cs) ≡ γ(c1 ∧ γ(cr)) ≡ γ(c1) ∧ γ(γ(cr))) ≡ c1 ∧ cr
and so consistent(c1 ∧ cr) holds.

Now consider the other direction. Let us assume that g1 and g2 are weakly inde-
pendent for c and P . By Lemma 4.8, for all nonfailure nodes, and in particular those
in successful branches of treeP (〈g2, c1〉), there exists a corresponding node with the
same path in a successful branch of treeP (〈g2, c〉). From the assumption of weak
independence, for each node r ≡ 〈Gr, cr〉 in a successful branch of treeP (〈g2, c〉) we
have that consistent(c1 ∧ cr) holds. And since

γ(c1 ∧ cr) ≡ γ(c1) ∧ γ(cr) ≡ c1 ∧ γ(cr)

we have that consistent(c1∧γ(cr)) must also hold. By Lemma 4.4, the consistency
tests for obtaining the nodes with the same path as r are performed over a constraint
cs satisfying cs ↔ c1 ∧ γ(cr), and thus consistent(cs) must also hold. As a result,
there exists a nonfailure node s in treeP (〈g2, c1〉) with the same path as r. And by
Lemma 4.7 we have that s and r correspond.

The usefulness of weak independence is based on the following result:

Theorem 5.4. Let g1 : · · · : gn be a collection of weakly independent goals
for constraint c and program P . Let gi, 1 ≤ i ≤ n be a goal such that there
exists c1 ∈ ansP (〈g1 : · · · : gi−1, c〉) with ansP (〈gi, c1〉) = ∅. Then, for every
c2 ∈ ansP (〈g1 : · · · : gi−1, c〉), ansP (〈gi, c2〉) = ∅. 4

Proof. By assumption, the collection of goals g1 : · · · : gi is weakly inde-
pendent for c and P . By definition of weak independence, gi and the goal g1 :
· · · : gi−1 are weakly independent for c and P . Also by assumption we have that
there exists c1 ∈ ansP (〈g1 : · · · : gi−1, c〉) with ansP (〈gi, c1〉) = ∅. This means

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

316 · M. Garćıa de la Banda et al.

that there is no successful branch in treeP (〈gi, c1〉). By Lemma 5.3 we have
that ∀c1 ∈ ansP (〈g1 : · · · : gi−1, c〉), there exists a bijection which assigns to each
node in a successful branch of treeP (〈gi, c〉) a corresponding node in a success-
ful branch of treeP (〈gi, c1〉). As a result, there can be no successful branches in
treeP (〈gi, c〉). From the definition of the operational semantics, for every c2 ∈
ansP (〈g1 : · · · : gi−1, c〉) we have that c2 → c. By completeness of consistent, there
can be no successful branches in any treeP (〈gi, c2〉) such that c2 → c. Thus,
ansP (〈gi, c2〉) = ∅.

The above property is, in principle, useful for performing optimizations which
are based on determination of producer-consumer relationships, such as intelli-
gent backtracking. Backtracking occurs during exploration of the derivation tree
whenever a failure node is reached. In the standard operational semantics, control
“backtracks” to the closest ancestor with unexplored branches, thus ensuring depth-
first exploration of the derivation tree. With intelligent backtracking [Bruynooghe
and Pereira 1984], however, control may directly backtrack further up the tree. It
requires analyzing, upon failure, the causes of the failure and determining the ap-
propriate ancestor to backtrack to that can eliminate the failure while maintaining
correctness, thus avoiding unnecessary computation.

A simple form of intelligent backtracking can be based on the notion of weak
independence. Let g1 : · · · : gn be a set of goals which are weakly independent for
the store c. Theorem 5.4 ensures that whenever there exists a goal gi, 1 ≤ i ≤ n
for which no answers for goal gi are found, execution can safely backtrack to the
choice-point placed just before g1, skipping all the choice-points in between.

It follows from the results in the previous section, that weak independence is not
sufficient for ensuring search space preservation, since only successful derivations of
the goals have been considered and the search space can also be affected through
interactions with derivations failed or infinite derivations.

Example 5.5. Consider the previous example. Assume that we start from the
state 〈p(x, y) : q(x, y), y = 1〉. It is clear that the search space associated with
〈q(x, y), y = 1 ∧ x > 7〉 is smaller than that associated with 〈q(x, y), y = 1〉, since
the derivation in which x < 5 appears would fail earlier—as soon as x < 5 is checked
for consistency with the store. 4

5.2 Strong Independence

We can define a more restrictive concept of independence, in the spirit suggested
above, by taking into account all partial answers:

Definition 5.6. Goal g2 is strongly independent of goal g1 for constraint c and
program P iff

∀c1 ∈ ansP (〈g1, c〉) and ∀cr ∈ pansP (〈g2, c〉), consistent(c1 ∧ cr)

A collection of goals g1 : · · · : gn is strongly independent for a given c and P iff for
every gi, 1 ≤ i ≤ n, then gi is strongly independent of the goal g1 : · · · : gi−1 for c
and P . 4

Note that while weak independence is symmetric, strong independence is not.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 317

Example 5.7. In the example given in Figure 1, p(x,y) is strongly independent
of q(x,y) for the constraint c ≡ y = 1, since all answers to 〈q(x, y), c〉 are consistent
with partial answers of 〈p(x, y), c〉. However, q(x,y) is not strongly independent
of p(x,y) for the same constraint c. 4

Also, note that if a goal g2 is strongly independent of another goal g1 for c, then
g1 and g2 are weakly independent for c.

We will now prove some properties of strongly independent goals. The main
result is that goal g2 is independent of g1 for a given constraint c if and only if the
search space is preserved. Intuitively the following theorem states that consistency
between the answers of 〈g1, c〉 and the partial answers of 〈g2, c〉 and 〈g2, c1〉 precludes
pruning any branches, thus ensuring search space preservation. And vice-versa,
search space preservation indicates no pruning and, thus, consistency.

Theorem 5.8. Goal g2 is strongly independent of goal g1 for constraint c and
program P iff

∀c1 ∈ ansP (〈g1, c〉), the search spaces of 〈g2, c〉 and 〈g2, c1〉 are the same. 4

Proof. Let γ be the local variable correcting renaming for treeP (〈g2, c〉) and
treeP (〈g2, c1〉).

Let us first assume that ∀c1 ∈ ansP (〈g1, c〉) the search spaces of 〈g2, c〉 and
〈g2, c1〉 are the same. By definition of search space, there exists a bijection which
assigns to each node r in treeP (〈g2, c〉) a corresponding node s in treeP (〈g2, c1〉).
By Lemma 4.7 each r and s are either both failure or both nonfailure nodes. For
nonfailure nodes, say s ≡ 〈Gs, cs〉 and r ≡ 〈Gr , cr〉, by Lemma 4.4 we have that
cs is consistent and equivalent to (c1 ∧ γ(cr)). From properties of γ it follows that
consistent(c1∧cr) must also hold. Since r refers to the nodes not only in successful
but also in failure branches, it contains all partial answers and, thus, g2 is strongly
independent of g1 for c and P .

The other direction uses a proof by contradiction. Let us assume that while g2 is
strongly independent of g1 for c and P , the search spaces of 〈g2, c〉 and 〈g2, c1〉 are
not the same. By Lemma 4.8, there must exist a node s ≡ fail in treeP (〈g2, c1〉)
obtained by applying →cf and a node r ≡ 〈Gr , cr〉 in treeP (〈g2, c〉) with the same
path obtained by applying→c such that their parents correspond. By construction,
γ(c1) ≡ c1, and thus, by strong independence, consistent(c1∧γ(cr)) must also hold.
By Lemma 4.4, the consistency test performed for obtaining s was applied to the
constraint cs ↔ c1∧γ(cr). But, consistent(cs) holds, contradicting s being fail.

This theorem ensures that strong independence is not only sufficient but also
necessary for ensuring preservation of search space. Thus, from Theorems 4.9 and
4.10, correctness and efficiency of the parallel execution of a set of strongly indepen-
dent goals for current constraint store c holds iff each goal is strongly independent
for current constraint store c of the sequence composed of goals to its left.

Apart from parallelization, this theorem also provides a basis for goal reorder-
ing, an important optimization for CLP languages. Marriott and Stuckey [1992]
suggested reordering the goal c∧g to g∧ c, where c is a primitive constraint, when-
ever c and g are strongly independent for all possible constraint stores occurring
before executing c and g. The motivation for this is that variables in c may become

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

318 · M. Garćıa de la Banda et al.

uniquely defined by g, enabling the constraint c to be replaced by either an assign-
ment statement or a simple Boolean test. If this is true, especially in the case g is
recursive, large speedups are obtained. We can lift this idea to the level of goals
and thus reorder goals as well.

It is difficult to give simple yet general conditions which ensure that the reordering
of two goals reduces the search space. However, one simple condition that ensures
that the reordering does not increase the search space is that the rightmost goal
is “single solution” and strongly independent of the leftmost goal. Note that any
deterministic goal, and in particular a primitive constraint, is single solution.

Definition 5.9. A goal g is single solution for constraint c and program P iff the
state 〈g, c〉 has at most one successful derivation in P . 4

Theorem 5.10. If goal g2 is both strongly independent of goal g1 and single
solution for constraint c and P then

cost(〈g2 : g1, c〉) ≤ cost(〈g1 : g2, c〉). 4

The proof comes directly from Lemma 4.8 and the given CLP operational se-
mantics. Note that the search space can be decreased for two reasons. First, due
to the asymmetry of strong independence g2 can decrease the search space of g1 for
c. Second, the answer for g2 (if any) will not be recomputed when each answer to
g1 is found.

5.3 Search Independence

As discussed in Section 2.2, in the independent and-parallel model, parallel goals
are executed in different environments. The isolation of the environments quite ac-
curately reflects the actual situation in distributed implementations of independent
and-parallelism [Conery 1987]. However, in models designed for shared addressing
space machines, such isolation of environments is not imposed by the machine archi-
tecture and thus, in practice, the goals executing in parallel generally share a single
binding environment (e.g., Hermenegildo and Greene [1990] and Lin [1988]). The
amount of overhead introduced by requiring isolated environments (either copying
the environment or renaming the goals, plus conjoining the solutions) in these ma-
chines, suggests that such isolation should not be implemented unnecessarily. Fur-
thermore, sharing the environments allows us to avoid performing the conjunction
of the answers obtained from the parallel execution, since this happens automat-
ically through the use of a shared constraint store. One might think that if we
ensure that g2 is strongly independent of g1 with respect to a given constraint store
c, then we can execute them in parallel in the same environment while preserving
the correctness and efficiency with respect to the sequential execution of 〈g1 : g2, c〉.
However, this is not true since, again, we have only considered the successful deriva-
tions of g1 and, in this new context, it is possible for the execution of 〈g2, c〉 to prune
the search space of 〈g1, c〉, which may lead to incorrect answers.

Example 5.11. Consider the following CLP(<) program:

p(x):- x = 2, fail. q(x):- x = 1.
p(x):- x = 1.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 319

Clearly q(x) is strongly independent of p(x) for true. Now consider the parallel
execution of 〈p(x) : q(x), true〉 in an environment with a shared constraint store. If
parallel reduction starts by rewriting p(x) with the first rule, and the constraint x
= 2 is processed, then the store becomes x = 2. Now if q(x) is reduced and x=1
is added to the store, failure will result and evaluation of q(x) will backtrack. As
there is no other rule in the definition of q(x), evaluation will wrongly fail, without
finding the answer. 4

For this reason we define a symmetric notion of strong independence which en-
sures that neither goal can interfere with the other.

Definition 5.12. Goals g1 and g2 are search independent for constraint c and
program P iff

∀c1 ∈ pansP (〈g1, c〉) and ∀cr ∈ pansP (〈g2, c〉), consistent(c1 ∧ cr).

A collection of goals g1 : · · · : gn is search independent for a given c and P iff for
every gi, 1 ≤ i ≤ n: gi and any goal formed with goals from g1 : · · · : gi−1 : gi+1 :
· · · : gn are search independent for c and P . Also, a collection of goals is search
independent for a set of constraints (interpreted as their disjunction) C and P iff
they are search independent for each c ∈ C and P . Finally, a collection of goals is
simply search independent for P iff they are search independent for the set of all
possible constraints and P . 4

Then, in the same spirit as Theorem 5.8 we can conclude:

Corollary 5.13. Goals g1 and g2 are search independent for constraint c and
program P iff

∀c1 ∈ ansP (〈g1, c〉), the search spaces of 〈g2, c〉 and 〈g2, c1〉 are the same, and

∀cr ∈ ansP (〈g2, c〉), the search spaces of 〈g1, c〉 and 〈g1, cr〉 are the same. 4

6. ENSURING INDEPENDENCE “A PRIORI”

While compile-time detection of independence can be based on the previous defini-
tions themselves, practical run-time detection cannot. This is because independence
has been defined in terms of the answers and partial answers produced by the goals,
but, in practice, we are interested in an “a priori” detection of independence condi-
tions (i.e., when detection must be performed just before executing the goals, and
without actually having to execute them). In order to do this, (run-time) condi-
tions for ensuring independence must be based only on information which is readily
available before executing the goals, namely, the current constraint store and the
variables appearing in the goals. One consequence is that an a priori test will not
be able to distinguish between the various notions of independence—weak, strong,
and search—introduced before.

Our first approach is to define conditions which must hold for each constraint
defined over the variables of each goal:

Definition 6.1. Goals g1(x̄) and g2(ȳ) are projection independent for constraint
c iff for all constraints c1 and c2, if consistent(c∧∃−x̄c1) and consistent(c∧∃−ȳc2)
hold then consistent(c ∧ ∃−x̄c1 ∧ ∃−ȳc2) also holds. A collection of goals g1 :

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

320 · M. Garćıa de la Banda et al.

· · · : gn is projection independent for a given c iff for every gi, 1 ≤ i ≤ n: gi
and the goal g1 : · · · : gi−1 : gi+1 : · · · : gn are projection independent for c and
P . Also, a collection of goals is projection independent for a set of constraints
(interpreted as their disjunction) C iff they are projection independent for each
c ∈ C. Finally, a collection of goals is simply projection independent iff they are
projection independent for the set of all possible constraints. 4

Since the execution of a goal can only add constraints on local variables and the
arguments of the goal, it is straightforward to prove the following result:

Theorem 6.2. Goals g1 and g2 are search independent for constraint c and any
program P if they are projection independent for c. 4

It follows that, since search independence implies strong independence, which in
turn implies weak independence, projection independence also implies weak and
strong independence.

Naive application of the definition of projection independence implies testing
all possible consistent constraints over the variables of each goal. A more useful
characterization of projection independence follows. It is based on identifying those
variables which are “fixed” in a constraint c where a variable x is fixed in c if c implies
that x has a single value. We let fixed(c) denote the set of fixed variables in c.

Theorem 6.3. Goals g1(x̄) and g2(ȳ) are projection independent for constraint
c if

(x̄ ∩ ȳ ⊆ fixed(c)) and (∃−x̄c ∧ ∃−ȳc→ ∃−ȳ∪x̄c).6 4

Proof. Assume that the condition holds but there exist two constraints c1 and
c2 such that both c∧∃−x̄c1 and c∧∃−ȳc2 are consistent but c∧∃−x̄c1∧∃−ȳc2 is not.
By assumption x̄ ∩ ȳ ⊆ fixed(c), and therefore ∃−x̄c1 ∧ ∃−ȳc2 must be consistent.
Also by assumption, ∃−x̄c ∧ ∃−ȳc implies ∃−ȳ∪x̄c, and therefore ∃−ȳ∪x̄c ∧ ∃−x̄c1 ∧
∃−ȳc2 is consistent, which contradicts the assumption that c ∧ ∃−x̄c1 ∧ ∃−ȳc2 is
inconsistent.

This condition is not only sufficient but also necessary for projection indepen-
dence whenever the constraint domain is sufficiently expressive, that is,

Definition 6.4. A constraint domain has nameable elements if

• for any constraint c and variable x, if x is not fixed in c, then there exist primitive
constraints of form x = l1 and x = l2 where l1 and l2 are variable-free expressions
such that c ∧ x = l1 and c ∧ x = l2 are consistent but c ∧ x = l1 ∧ x = l2 is not
consistent; and
• if c1 6→ c2, where c1 and c2 are conjunctions of possibly existentially quantified

primitive constraints, then there exists a conjunction of primitive constraints, d,
of form x1 = l1 ∧ · · · ∧ x2 = l2 where the xi are distinct variables and the li are
variable-free expressions such that c1 ∧ d is satisfiable but c2 ∧ d is not. 4

These conditions are satisfied by any constraint domain which has an expression
(i.e., a “name”) for each value in its domain which can be distinguished by the

6Note that (∃−x̄c ∧ ∃−ȳc← ∃−ȳ∪x̄c) always holds.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 321

primitive constraints. To the best of our knowledge, all constraint domains used in
practice have nameable elements. As an example of a constraint domain without
nameable elements, consider a restricted integer constraint domain where the only
primitive constraint is equality and the only nonvariable expression is 0. Then a
variable might not be fixed, but we still cannot find two values which satisfy the
first condition above.

Theorem 6.5. For constraint domains with nameable elements, goals g1(x̄) and
g2(ȳ) are projection independent for constraint c only if

(x̄ ∩ ȳ ⊆ fixed(c)) and (∃−x̄c ∧ ∃−ȳc→ ∃−ȳ∪x̄c). 4

Proof. Let us reason by contradiction and assume that although g1(x̄) and g2(ȳ)
are projection independent for c, there exists z ∈ x̄∩ ȳ such that z 6∈ fixed(c). Then,
from the nameable element assumption there must exist variable-free expressions l1
and l2 such that c∧(z = l1) and c∧(z = l2) are consistent but c∧(z = l1)∧(z = l2)
is not consistent. Therefore, c1 ≡ (z = l1) and c2 ≡ (z = l2) do not satisfy the
conditions required by projection independence, and there is a contradiction.

Now assume that (x̄ ∩ ȳ ⊆ fixed(c)) but (∃−x̄c ∧ ∃−ȳc) 6→ ∃−ȳ∪x̄c then, from the
nameability assumption there must exist two sequences of variable-free expressions
l̄x and l̄y such that (1) (∃−x̄c ∧ ∃−ȳc) ∧ x̄ = l̄x ∧ ȳ = l̄y is consistent but (2)
(∃−ȳ∪x̄c)∧ x̄ = l̄x∧ ȳ = l̄y is not consistent. It follows from (1) that both c∧ x̄ = l̄x
and c∧ ȳ = l̄y are consistent. Together with (2) this means that, c1 ≡ (x̄′ = l̄x) and
c2 ≡ (ȳ′ = l̄y) do not satisfy the conditions required by projection independence,
and there is a contradiction.

Intuitively, the above proof is based on the fact that the only way in which
variables in x̄ can affect the values of the variables ȳ (and vice-versa), is by either (a)
having nonfixed variables in common or (b) appearing together in some “relevant”
constraint. The condition above specifically eliminates these two possibilities.

Example 6.6. Consider the goals g1(x, y), g2(z, w) and the constraint x + y +
z + w = 7. It is obvious that the goals satisfy (a) but not (b) above, since the
constraint x + y + z + w = 7 is relevant for the relationship between the variables
in {x, y} and the variables in {z, w}. But if we add the constraint x+ y = 5, then
the old constraint x + y + z + w = 7 becomes irrelevant (it can be substituted by
z + w = 2) since there is no longer a relationship between the variables in {x, y}
and the variables in {z, w}. 4

Corollary 6.7. Goals g1(x̄) and g2(ȳ) are search independent for constraint c and
any program P if x̄ ∩ ȳ ⊆ fixed(c) and ∃−x̄c ∧ ∃−ȳc→ ∃−ȳ∪x̄c. 4

The proof comes directly from Theorems 6.2 and 6.3.

Example 6.8. Consider the goals g1(y) and g2(z) and constraint c ≡ y > x, z > x.
Now ∃−{y}c = ε, ∃−{z}c = ε, ∃−{y,z}c = ε. Therefore, from Corollary 6.7, we know
that g1(y) and g2(z) are search independent for c. 4

The following theorem provides the link with the sufficient conditions defined
in Hermenegildo and Rossi [1995] (briefly summarized in Section 2.2) for logic
programs.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

322 · M. Garćıa de la Banda et al.

Theorem 6.9. In the context of term equations, two goals are projection inde-
pendent for constraint c iff they are strictly independent for mgu(c). 4

Proof. There is a natural bijection between solved form equations and (idem-
potent) substitutions. If θ is {x1 7→ t1, ..., xn 7→ tn} we define cons(θ) to be the
solved form equation x1 = t1 ∧ · · · ∧ xn = tn.

It follows from the definition of strict independence that two goals g1(x̄) and
g2(ȳ) are strictly independent for c iff the sets

({x ∈ x̄| 6 ∃(x = t) ∈ c′} ∪
⋃
x∈x̄
{vars(t)|(x = t) ∈ c′})

and

({y ∈ ȳ| 6 ∃(y = t) ∈ c′} ∪
⋃
y∈ȳ
{vars(t)|(y = t) ∈ c′})

are disjoint, where c′ is cons(mgu(c)). Straightforward, but tedious, case analy-
sis shows that the sets are disjoint holds iff c′ is projection independent. Since c
is equivalent to c′, it follows that the sets are disjoint iff c is projection indepen-
dent.

Thus projection independence is the natural generalization of strict independence
to arbitrary constraint domains. As a consequence of the above theorem, for term
equations there is no need to actually project the constraint store over any set of
variables. However, when constraint domains other than Herbrand are involved, the
cost of performing a precise projection may be too high. For example, projection
over the linear arithmetic constraints has exponential complexity.

A pragmatic solution is to find if variables are “linked” through the primitive
constraints in the constraint store. In fact we can do better by noticing that we
can ignore variables that are constrained to take a unique value. Note that in the
following we will treat a constraint c as a syntactic object, rather than in terms of
its logical meaning.

More formally, the relation linkc(x, y) holds for variables x and y if there is a
primitive constraint c′ in c such that {x, y} ⊆ vars(c′) \ fixed(c). The relation
linksc(x, y) is the transitive closure of linkc(x, y). We lift links to sets of variables
by defining Linksc(x̄, ȳ) iff ∃x ∈ x̄ and ∃y ∈ ȳ such that linksc(x, y).

Theorem 6.10. Goals g1(x̄) and g2(ȳ) are projection independent for constraint
c if ¬Linksc(x̄, ȳ). 4

Note that the above theorem does not depend on the syntactic representation we
choose for c. In fact, if the solver keeps a “normal form” for the current constraints,
we are better off using the normal form rather than the original sequence of con-
straints as this allows the definition to be simplified. More precisely, constraints c
are in normal form if they have form

x1 = f1(ȳ) ∧ x2 = f2(ȳ) ∧ ... ∧ xn = fn(ȳ) ∧ c′

where the fi are function symbols of the underlying constraint domain, the xi
are distinct variables disjoint from the variables ȳ and vars(c′) ⊆ ȳ. Associated
with the normal form is an assignment ψ to the eliminated variables, namely,
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 323

{x1 7→ f1(ȳ), ..., xn 7→ fn(ȳ)}. It is straightforward to verify that Linksc(x̄, ȳ)
iff Linksc′(vars(ψ(x̄)), vars(ψ(ȳ))).

The condition imposed by Theorem 6.10, although clearly sufficient, is some-
what conservative. For instance, although the goals g1(y) and g2(z) are search
independent for c ≡ y > x∧z > x, Linksc({y}, {z}) holds due to the transitive clo-
sure performed when computing linksc(y, z). Thus, if projection may be efficiently
performed for the particular constraint domain and solver, it is better to use the
conditions in Theorem 6.3 to determine search independence at run time.

One important issue that remains to be discussed is the practical usefulness of
the different independence notions. In the context of traditional logic programs,
it has been shown [Bueno et al. 1999] that strict independence can be detected
at compile-time with reasonable accuracy and can be proved at run-time without
introducing great overheads. Non a priori notions are, however, a different issue
since they cannot be used as the basis of run-time test and, thus, must be detected
at compile-time. Unfortunately, even restricted non a priori notions, such as non-
strict independence, are difficult to detect accurately at compile-time [Cabeza and
Hermenegildo 1994]. This is not only because they require more complex analysis
domains, but also because they require a particular analysis framework in which
literals in the body of a clause are analyzed both in the context of the answers
of previous literals and in isolation. In order not to exponentially increase the
complexity, a possible approach would be to first perform a typical analysis, use
that information to discard literals over which the desired optimization cannot be
performed, and then reanalyze the rest in isolation.

In the case of other CLP languages, the problems found for non a priori indepen-
dence notions become even more acute, due to the complexity of the domains needed
to detect consistency of constraints accurately. In the case of a priori notions, pre-
liminary experiments in Garćıa de la Banda et al. [1996] show that traditional
groundness and freeness information can be used to detect a priori independence
at compile-time, but for accuracy, analysis domains specialised to the particular
constraint domain used by the program, should be used. Regarding the compar-
ison between the run-time test based on projection and link independence, the
experimental evaluation showed two interesting conclusions. First, although there
exist cases in which projection independence detects parallelism which link inde-
pendence fails to detect, this is not a common case. Second, naive implementations
of the independence tests introduce too much overhead, especially for projection
independence.

7. SOLVER INDEPENDENCE

From the results in previous sections, it may be thought that search space inde-
pendence is enough for ensuring not only the correctness but also the efficiency
of any transformation applied to the search independent goals. Unfortunately, as
mentioned in Section 5, this is not true in general.

Example 7.1. Consider the state 〈p(x) : q(x, y, z, w), true〉 and the program P :

p(x) ← x = 1.
q(x,y,z,w) ← x + 1 = y, y = 2 + z, 2 * x + y = w, y > x, w > z.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

324 · M. Garćıa de la Banda et al.

It is easy to see that p(x) and q(x,y,z,w) are search space independent for true
and P . However, executing 〈q(x, y, z, w), true〉 is more expensive than executing
〈q(x, y, z, w), x = 1〉. The reason is that while in the former case a relatively com-
plex constraint solving algorithm (such as the Simplex introduced later) has to be
applied, in the latter only simple value propagation is needed. As a result, the par-
allelization or the reordering of the goals in the above state may actually produce
a slowdown. 4

The problem is that the amount of work performed when applying a particular
transition rule is not always independent of the state to which this transition rule
is applied. There are two different cases. On one hand, given a program P and a
state s in which the leftmost literal is an atom a, the amount of work performed
when applying the →r or →rf transition rules to s is identical to that performed
when applying the same transition rule to state s′ as long as the leftmost literal in
the sequence of literals of s′ is a variant of a, since the constraint stores in s and s′

are not taken into account. On the other hand, given a program P and a state s
in which the leftmost literal is a constraint c′, the amount of work performed when
applying the →c and →cf transition rules to s can be different to that performed
when applying the same transition rule to state s′ even if the leftmost literal in the
sequence of literals of s′ is a variant of c′. The key is in the differences between the
constraint stores of s and s′.

Therefore, although as shown in the previous sections search space preservation
ensures that for each transition rule the number of applications of this transition rule
in the derivation trees of each state is preserved, it does not ensure the preservation
of the amount of work when the →c and →cf transition rules are applied and the
store in each state is different. The main problem is that the constraint solver is
viewed as a black box, i.e., the operational semantics allow us to see the transitions
applied at the higher level, but not those performed by the constraint solver at
each of those high-level transitions. If we could have access to such “low-level”
transitions, the amount of work performed by the constraint solver in adding a
particular constraint to a particular store, would become explicit, and it could be
characterized in terms of search space, analogously as for the high-level transitions.
This is in fact the approach taken in Bueno et al. [1998].

Therefore, it is clear that modifying the order in which a sequence of primitive
constraints is added to the store may have a critical influence on the time spent
by the constraint solver algorithm in obtaining the answer, even if the resulting
constraint is consistent. In fact, this issue is the core of the reordering transforma-
tion described in Marriott and Stuckey [1992]. This variance in the cost of adding
primitive constraints to the store has been ignored as a factor of negligible influ-
ence in traditional logic programming. This is due to the specific characteristics
of the standard unification algorithms [Paterson and Wegman 1978; Martelli and
Montanari 1982]—we will return to this point later. However, as shown before, it
cannot be ignored in the context of other CLP languages. For this reason, we now
introduce the notion of constraint solver independence, a new type of independence
which, although orthogonal to search space independence, is also needed in order
to ensure the efficiency of transformations such as goal reordering and independent
and-parallelization.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 325

Intuitively, two sequences of primitive constraints are independent of each other
for a given solver if adding them to the current constraint store in any “merging”
has the same overall cost. We now make this idea more precise. Let Solv be a
particular constraint solver and c and c′ sequences of primitive constraints. We let
scost(Solv, c, c′) be the cost of adding the sequence c′ to the solver Solv after c has
been added. To illustrate the vagaries of constraint solving we note that even in
“reasonable” constraint solvers such as, for example, that employed in CLP(<), we
do not have that, if c′′ is a subsequence of c′,

scost(Solv, c, c′′) ≤ scost(Solv, c, c′),
as witness Example 7.1 above.

We let merge(c, c′) be the set of all mergings of the constraint sequences c and
c′.

Definition 7.2. Constraint sequences c′ and c′′ are K-independent for store c and
solver Solv iff consistent(c′ ∧ c′′ ∧ c) implies that for every c1, c2 ∈ merge(c′, c′′),
scost(Solv, c, c1)− scost(Solv, c, c2) ≤ K. 4

The intuition behind the parameterization of the definition is that the cost be
bound by, for instance, a constant value or perhaps a linear function of the num-
ber of shared variables among the sequences, where different levels of cost can be
tolerated by different applications, also depending on the constraint system being
used.

The obvious way to define independence for a solver is by ensuring that adding
any pair of consistent sequences of constraints in any order leads to only small
differences in cost. This is captured in the following definition.

Definition 7.3. A constraint solver Solv is independent iff for all constraint se-
quences c, c′ and c′′, c′ and c′′ are K-independent for c and Solv, where K is a
“small” constant value. 4

Unfortunately, many reasonable constraint solvers do not satisfy solver indepen-
dence. In many applications a weaker notion is acceptable, namely that the solver
should be solver independent only for sequences which do not “interfere.” This
notion is inspired by the kind of constraints obtained from projection independent
goals (or their almost equivalent characterization provided by Theorems 6.3 and
6.5).

Definition 7.4. A constraint solver Solv is projection independent iff for all con-
straint sequences c, c′, and c′′, if vars(c′) ∩ vars(c′′) ⊆ fixed(c) and
∃−vars(c′)c ∧ ∃−vars(c′′)c → ∃−vars(c′)∪vars(c′′)c, then c′ and c′′ are K-independent
for c and Solv, where K is a “small” constant value. 4

An even weaker notion of independence holds if we only consider constraints
whose variables are not linked in any way through the store.

Definition 7.5. A constraint solver Solv is link independent iff for all constraint
sequences c, c′ and c′′, if ¬Linksc(vars(c′), vars(c′′)) then c′ and c′′ are solver
K-independent for c and Solv, where K is a “small” constant value. 4

In practice link independence seems more useful than projection independence:
we claim that most reasonable constraint solvers are link independent and that,

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

326 · M. Garćıa de la Banda et al.

therefore, the efficiency of many optimizations, such as and-parallelism, can be
ensured once the adequate a priori notion is proved to hold for the goals involved
in the optimization.

In order to exemplify the applicability of the previously defined notions we will
review a few examples of solvers with respect to their solver independence charac-
teristics.

In many CLP systems, for example CLP(<) and Prolog-III [Colmerauer 1990],
constraint testing over systems of linear equations and inequations is performed
using an incremental version of the simplex algorithm [Marriot and Stuckey 1998].
Essentially this involves incrementally recomputing a normal form for the constraint
store when a new constraint is added. This is done by a succession of “pivots” which
exchange the variables being eliminated. When a constraint is first encountered it
is “simplified” by eliminating the variables from it. If this reduces the constraint
to a simple assignment or Boolean test, then, for efficiency, the constraint is not
passed to the constraint solver but is handled by the constraint solver “interface.”
In order to recognize such assignments or tests the solver keeps track of all variables
which are constrained to a fixed value. For efficiency, the normal form “tableaux”
is stored using a sparse matrix representation as a list of lists of nonzero entries.
Let this constraint solver be called Simplex.

It is easy to construct examples showing that Simplex is neither independent nor
projection independent. However, we do have that Simplex is link independent.
This is because if the constraints in c′ and c′′ are not linked through c, then their
normal form in the tableaux does not share variables. Since the tableau is stored
using a sparse representation, pivoting or eliminating a variable in an equation
derived from c′ will not consider equations derived from c′′, since they do not share
nonzero entries in the tableau (and vice versa). If c′ and c′′ share variables that have
a fixed value then these variables will essentially be eliminated from the tableau
and replaced by their value thus removing the connection between them.

We believe that the reason Simplex is link independent is typical of many solvers
used in practice. It is instructive to reconsider unification algorithms as solvers for
equality constraints over the domain of Herbrand terms and study their indepen-
dence characteristics. It is clear that most reasonable unification algorithms would
satisfy the conditions of projection independence, and in particular those which
are “linear,” i.e., which have the property of performing a number of atomic steps
which is linear in the size of the terms being unified [Paterson and Wegman 1978;
Martelli and Montanari 1982]. Furthermore, if we denote by LinUnif a unification
algorithm belonging to the latter class, then we have that LinUnif is independent.

It is interesting to point out that independence does not hold even for all term
equation solvers. For example, the cost of the original unification algorithm of
Robinson [1965], which is exponential in the worst case, can vary by more than
a constant factor depending on reordering. The algorithm used in most practical
logic programming systems is actually an adaptation of Robinson’s. However, these
algorithms can actually be linear because either they (incorrectly) do not perform
the occur check, and because they do not materialize the substitutions, but rather
keep them in an implicit representation using pointers). In fact, in most practical
implementations the difference of execution time after reordering will actually be
very close to zero. This is the assumption that is used in practice in optimizations
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 327

of logic programs based on independence, and it is this assumption which makes
the classical view of expressing independence in logic programs only in terms of
search independence correct.

8. ALLOWING DYNAMIC SCHEDULING

In previous sections we have studied independence for languages in which calls are
evaluated using a fixed left-to-right scheduling strategy. Thus, our results do not
directly apply to many modern CLP languages, since these often provide a form
of coroutining called dynamic scheduling. That is, in these languages the default
scheduling is still left-to-right, but some calls may be dynamically “delayed” until
their arguments are sufficiently instantiated.

We now extend our independence results to dynamically scheduled languages.
This is important for at least four reasons. First, as we have suggested many
existing CLP languages already provide flexible scheduling. Therefore, in order to
be practical, independence-based optimizations must handle dynamically scheduled
programs. Second, dynamic scheduling has a significant cost, increasing the need
of applications which improve efficiency. Third, dynamically scheduled languages
are considered as promising target languages for the implementation of concurrent
constraint logic languages [Debray 1993; Saraswat 1987; Ueda and Chikiyama 1985].
Fourth, dynamic scheduling is also present in some logic programming languages
but has been ignored in work on parallelization of logic programs.

8.1 Operational Semantics

The operational semantics of CLP programs with dynamic scheduling is slightly
more complex than that given earlier for CLP languages with fixed left-to-right
literal scheduling. Again the semantics may be presented as a transition system on
states. However, a nonfail state 〈G, c,D〉 now also contains a sequence of delayed
atoms, D. The other components—the sequence of nonexecuted literals, G, and
the constraint store, c—remain the same. In addition to the constraint solving
function consistent(c), the operational semantics is parameterized by the predicate
delay(a, c), which holds iff a call to atom a delays with the constraint c, and the
function woken(D, c) which returns the sequence of atoms in D which are woken
for constraint c. Note that the order of the atoms returned by woken is system
dependent. Furthermore, the parametric functions delay and woken are assumed
to satisfy the following five conditions:

• If G = woken(D, c), then a ∈ G iff a ∈ D ∧ ¬delay(a, c).
• If G1 = woken(D1, c) and G2 = woken(D2, c), D1 is a subsequence of D2 and

for all a ∈ D1 \D2, delay(a, c) holds, then G1 ≡ G2.
• Let ρ be a renaming, then delay(a, c) iff delay(ρ(a), ρ(c)).
• delay(a, c) iff delay(a, ∃−vars(a)c).
• If c→ c′ and delay(a, c), then delay(a, c′).

The first condition ensures that there is a congruence between the conditions
for delaying an atom and waking it. The second condition ensures that the order
of woken goals only depends on their relative ordering in the sequence of delayed
goals. The remaining conditions ensure that delay behaves reasonably, i.e., it does

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

328 · M. Garćıa de la Banda et al.

not take variable names into account, is only concerned with the effect of c on the
variables in a, and if an atom is not delayed, adding more constraints never causes
it to delay

Let a denote an atom and c′ a constraint. The transition rules are

• 〈a : G, c,D〉 →d 〈G, c, a : D〉 if delay(a, c) holds;
• 〈a : G, c,D〉 →r 〈B :: G, c,D〉 if delay(a, c) does not hold and B ∈ defnP (a);
• 〈a : G, c,D〉 →rf fail if delay(a, c) does not hold and defnP (a) = ∅;
• 〈G, c,D〉 →w 〈G′ :: G, c,D \G′〉 where G′ = woken(D, c), and G′ is not empty

(note that \ is assumed to preserve the relative order of the unwoken goals);
• 〈c′ : G, c,D〉 →c 〈G, c ∧ c′, D〉 if consistent(c ∧ c′) holds;
• 〈c′ : G, c,D〉 →cf fail if consistent(c ∧ c′) does not hold.

The above operational semantics extends that given earlier for traditional CLP
languages by adding the →d and →w transitions. Note that the conditions for
applying each of the transition rules are still pairwise exclusive, except for →w.
We will assume that this transition rule has preference over the rest of the rules,
thus being applied to any state 〈G, c,D〉 in which woken(D, c) is nonempty. The
same result could also be achieved by combining the →c and →w transition rules,
but given our interest in the particular characteristics of →w, we have kept them
separate. As before, we will assume a depth-first search strategy. All notions related
to derivations and derivation trees are straightforward extensions of those defined
for the CLP context. One difference is that answers may now contain a sequence of
delayed goals and so consist of tuples whose first element is the answer constraint
and whose second element is the delayed goal sequence.

We now generalize our earlier results to CLP languages with dynamic scheduling.
We do this in two stages. First we assume that the initial sequence of delayed goals
is empty. In the second stage we shall drop this assumption.

8.2 Independence When the Initial Sequence D is Empty

We start by extending our and-parallel execution model to this new context. As-
sume that given the program P and the state 〈g1 : g2 : G, c, nil〉, we want to execute
g1 and g2 in parallel. Then the execution scheme is the following:

• execute 〈g1, c, nil〉 and 〈g2, c, nil〉 in parallel (in different environments) obtaining
the answers 〈c1, D1〉 and 〈cr, Dr〉 respectively,
• obtain cs = c1 ∧ cr, and
• execute 〈G, cs, Dr :: D1〉.

Modulo the extra transformation rules, the definition of search space preservation
remain the same as that given earlier. The definition of correctness is extended as
follows:

Definition 8.1. Let s be the state 〈g1 : g2 : G, c, nil〉 and P a program. The par-
allel execution of g1 and g2 is correct iff for every 〈c1, D1〉 ∈ ansP (〈g1, c, nil〉) there
exists a renaming γ such that γ(s) ≡ s and a bijection which assigns to each answer
〈cs, Ds〉 ∈ ansP (〈g2, c1, D1〉), an answer 〈ct, Dt〉 ∈ ansP (〈nil, c1 ∧ cr, Dr :: D1〉)
such that Ds ≡ γ(Dt) and cs ≡ γ(ct), where 〈cr, Dr〉 ∈ ansP (〈g2, c, nil〉). 4
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 329

Note that the above definition allows goals in Dr :: D1 to be woken up due
to the conjunction of c1 and cr performed once the parallel execution is finished.
We similarly extend the definition of operational correctness and the definition of
efficiency as follows

Definition 8.2. Let s be the state 〈g1 : g2 : G, c, nil〉 and P be a program. The
parallel execution of g1 and g2 is efficient iff for every 〈c1, D1〉 ∈ ansP (〈g1, c, nil〉):

cost(〈g2, c, nil〉)+
∑

〈cr ,Dr〉∈ansP (〈g2,c,nil〉)
cost(〈nil, c1 ∧ cr, Dr :: D1〉) ≤ cost(〈g2, c1, D1〉)

4
It is clear from the definition of correctness and efficiency, that one of the main

differences between the frameworks obtained for languages with and without dy-
namically scheduled is that in the former case the state obtained by conjoining
the answers obtained by the parallel execution (〈nil, c1 ∧ cr, Dr :: D1〉) might not
be a final state due to the awakening of some previously delayed goal. It is also
clear that this difference is going to make things complicated, since we not only
have to directly compare the sequential execution with the parallel but also have
to take into account the execution of the atoms woken due to the conjoining of
the parallel answers. It is thus tempting to believe that, by requiring the state
〈nil, c1 ∧ cr, Dr :: D1〉 to be final, we return to a situation to which the results of
the previous sections can be easily extended. Certainly this is the case for proving
that search space preservation is sufficient for ensuring efficiency:

Theorem 8.3. Let P be a program and 〈g1 : g2 : G, c, nil〉 a state. The parallel
execution of g1 and g2 is efficient if for every 〈c1, D1〉 ∈ ansP (〈g1, c, nil〉), the state
〈nil, c1 ∧ cr, Dr :: D1〉 is final and the search spaces of 〈g2, c, nil〉 and 〈g2, c1, D1〉
are the same for P . 4

The proof is straightforward, since search space preservation ensures the exis-
tence of a bijection among transitions of each particular kind. However, even in
this restricted context, proving that search space preservation is sufficient for guar-
anteeing correctness is much more involved. Previously, the reasoning was based
on the fact that, in absence of failure, for every two nodes r in treeP (〈g2, c〉) and
s in treeP (〈g2, c1〉) with the same path, their sequence of selected literals must be
identical up to renaming. Thus, the constraints added to the store are also the
same, up to renaming. Unfortunately, we can no longer guarantee that the atoms
are woken in the same order in both executions. Thus the sequence of active literals
in nodes with the same path can differ.

Example 8.4. Consider the parallel execution of the goals in state
〈p(x, y) : q(x, y), true, nil〉 for the program P :

p(x,y) ← x=y. s(x,y,z) ← f(0,0)=f(y,z).
q(x,y) ← r(y,z),s(x,y,z),t(z). t(z) ← z=0.
r(y,z) ← y=z.

with the following suspension declarations for p/2, q/2, r/2, s/3 and t/1:

?− r(y, z) when ground(y).
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

330 · M. Garćıa de la Banda et al.

〈q(x, y), x = y, nil〉
↓r

〈r(y, z) : s(x, y, z) : t(z) : x = 0, x = y, nil〉
↓d

〈s(x, y, z) : t(z) : x = 0, x = y, r(y, z)〉
↓d

〈t(z) : x = 0, x = y, r(y, z) : s(x, y, z)〉
xe ↓d

〈x = 0, x = y, r(y, z) : s(x, y, z) : t(z)〉
↓c

〈nil, x = y ∧ x = 0, r(y, z) : s(x, y, z) : t(z)〉
↓w

〈r(y, z) : s(x, y, z) :, x = y ∧ x = 0, t(z)〉
↓r

〈y = z : s(x, y, z), x = y ∧ x = 0, t(z)〉
↓c

〈s(x, y, z), x = y ∧ x = 0 ∧ y = z, t(z)〉
↓w

〈t(z) : s(x, y, z), x = y ∧ x = 0 ∧ y = z, nil〉
↓r

〈z = 0 : s(x, y, z), x = y ∧ x = 0 ∧ y = z, nil〉
↓c

〈s(x, y, z), x = y ∧ x = 0 ∧ y = z ∧ z = 0, nil〉
↓r

〈f(0, 0) = f(y, z), x = y ∧ x = 0 ∧ y = z ∧ z = 0, nil〉
↓c

〈nil, x = y ∧ x = 0 ∧ y = z ∧ z = 0 ∧ f(0, 0) = f(y, z), nil〉

Fig. 2.

?− s(x, y, z) when ground(x).
?− t(z) when ground(z).

Figure 2 shows the derivation tree from the state 〈q(x, y), x = y, nil〉 (i.e., p(x,y)
has been executed obtaining the answer 〈x = y, nil〉) and Figure 3 the derivation
tree from the state 〈q(x, y), true, nil〉 (i.e., p(x,y) has not been executed). Notice
that the search space is identical and that the state resulting from conjoining the an-
swers 〈nil, x = y, nil〉 and 〈nil, x = 0 ∧ f(0, 0) = f(y, z) ∧ y = z ∧ z = 0, nil〉 of
the parallel execution of 〈p(x, y), true, nil〉 and 〈q(x, y), true, nil〉, respectively, is
final.

The first six states in Figure 2 are almost identical to those in Figure 3, the
only difference being that the constraint x = y already appears in the constraint
store of the states in Figure 2. The first important difference appears after the
sixth transition due to the fact that, while in Figure 2 variable y is known to be
ground thus waking up goal r(y,z), in Figure 3 goal r(y,z) remains delayed,
leading to different sequences of active literals. Even though the search space
is preserved, there is no renaming which makes the sequences of active literals
identical. Furthermore, there is not even a renaming which makes the leftmost
literal of every two nonfailure nodes with the same path identical. 4
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 331

〈q(x, y), true, nil〉
↓r

〈r(y, z) : s(x, y, z) : t(z) : x = 0, true, nil〉
↓d

〈s(x, y, z) : t(z) : x = 0, true, r(y, z)〉
↓d

〈t(z) : x = 0, true, r(y, z) : s(x, y, z)〉
↓d

〈x = 0, true, r(y, z) : s(x, y, z) : t(z)〉
↓c

〈nil, x = 0, r(y, z) : s(x, y, z) : t(z)〉
↓w

〈s(x, y, z), x = 0, r(y, z) : t(z)〉
↓r

〈f(0, 0) = f(y, z), x = 0, r(y, z) : t(z)〉
↓c

〈nil, x = 0 ∧ f(0, 0) = f(y, z), r(y, z) : t(z)〉
↓w

〈r(y, z) : t(z), x = 0 ∧ f(0, 0) = f(y, z), nil〉
↓r

〈y = z : t(z), x = 0 ∧ f(0, 0) = f(y, z), nil〉
↓c

〈t(z), x = 0 ∧ f(0, 0) = f(y, z) ∧ y = z, nil〉
↓r

〈z = 0, x = 0 ∧ f(0, 0) = f(y, z) ∧ y = z, nil〉
↓c

〈nil, x = 0 ∧ f(0, 0) = f(y, z) ∧ y = z ∧ z = 0, nil〉

Fig. 3.

Even with the problems illustrated in the example above, it is possible to prove
that in this restricted context (i.e., the conjunction of the parallel answers does not
cause the awakening of an atom delayed during the parallel execution) search space
preservation is sufficient for preserving correctness. However, we will not do so,
since there is a more important problem we must consider: search space preserva-
tion no longer ensures operational correctness. Although search space preservation
guarantees the existence of a bijection between answers, it cannot guarantee that
the order in which the sequential answers are obtained will be preserved when the
goals are executed in parallel. In the absence of dynamic scheduling, operational
correctness essentially came for free due to the existence of a bijection between
answers associated to nodes with the same path, and to the properties of nodes
with the same path ensured by Lemma 4.3. With dynamic scheduling, however,
those properties do not always hold, due to the possible existence of interleavings
between goals which have multiple solutions.

Example 8.5. It is simple to extend the program in Example 8.4 so that it ex-
hibits such behavior (we simply add one extra argument to r/2 and s/3 in which we
return more than one answer and add an extra rule to each). Consider the parallel
execution of the goals in state 〈p(x, y) : q(x, y, u, v), true, nil〉 for the program P :

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

332 · M. Garćıa de la Banda et al.

p(x,y) ← x=y. s(x,y,z,v)← f(0,0,1)=f(y,z,v).
q(x,y,u,v)← r(y,z,u),s(x,y,z,v),t(z). s(x,y,z,v)← f(0,0,2)=f(y,z,v).
r(y,z,u) ← f(y,u)=f(z,3). t(z) ← z=0.
r(y,z,u) ← f(y,u)=f(z,4).

with the following suspension declarations for p/2, q/4, r/3, s/4 and t/1:

?− r(y, z, u) when ground(y).
?− s(x, y, z, v) when ground(x).
?− t(z) when ground(z).

It is easy to check that, although the search space of the two initial states is
preserved and no atom delayed during the execution of 〈p(x, y), true, nil〉 and
〈q(x, y, u, v), true, nil〉 is woken up during the conjunction of the answers, the
sequence of answers obtained for the sequential execution is different to that for
parallel execution. This is because in the sequential execution r/3 is executed
before s/4 returning the four answers (restricted to the variables u and v) in the
order u = 3 ∧ v = 1, u = 3 ∧ v = 2, u = 4 ∧ v = 1, and u = 4 ∧ v = 2 while in the
parallel execution r/3 is executed after s/4 returning the answers in the order
u = 3 ∧ v = 1, u = 4 ∧ v = 1, u = 3 ∧ v = 2, and u = 4 ∧ v = 2. 4

We can avoid such problematic interleavings by ensuring that for every answer
〈c1, D1〉 of 〈g1, c, nil〉, no atom in D1 is woken during the execution of 〈g2, c1, D1〉,
and every atom delayed (woken) at some point of the execution of 〈g2, c1, D1〉 is also
delayed (woken) at the same point of the execution of 〈g2, c, nil〉. This is achieved by
requiring the following conditions for every two nodes s and r of treeP (〈g2, c1, D1〉)
and treeP (〈g2, c, nil〉), respectively, with the same path:

Definition 8.6. Two nodes s ≡ 〈Gs, cs, Ds〉 and r ≡ 〈Gr, cr, Dr〉 are equivalent
with respect to delay iff:

• for every a ∈ Ds \Dr : delay(a, cs) holds,

• for every a ∈ Dr \Ds : delay(a, cr) holds,
• for every a ∈ Ds ∩Dr : delay(a, cr) iff delay(a, cs),

• if Gs ≡ a : G′s and Gr ≡ a : G′r: delay(a, cr) iff delay(a, cs). 4

These conditions ensure that the extra delayed goals in Dr or Ds are not woken
up, and that cs and cr have identical behavior with respect to delay both for the
delayed atoms they share in common and for their leftmost atom if they share it.

Note that this condition is not the most general possible, since it does not allow
the interleaving when, for example, one of the goals involved is single solution,
or it affects branches other than nonfailure, finite branches. However, we believe
it is a reasonable compromise for at least two reasons. First, if such a condition
is satisfied, the situation becomes equivalent to that for languages with a fixed
scheduling, allowing us to extend all results obtained in the previous section to this
new context. Second, the above condition, although complex, seems amenable to
compile-time verification using global analyzers recently developed for dynamically
scheduled languages [Puebla et al. 1997].

The following lemma generalizes Lemmas 4.3 and 4.4. Its proof is similar.
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 333

Lemma 8.7. Let P be a program and 〈g2, c1, D1〉, 〈g2, c, nil〉 be two states with
c1 → c. There exists a renaming γ such that:

—for every two nonfailure nodes s ≡ 〈Gs, cs, Ds〉 and r ≡ 〈Gr, cr, Dr〉 with the same
path in treeP (〈g2, c1, D1〉) and γ(treeP (〈g2, c, nil〉)), respectively, such that for
all ancestors s′ and r′ of s and r respectively, with the same path, s′ and r′ are
equivalent with respect to delay, Gs ≡ Gr, Ds ≡ Dr :: D1, and cs ↔ (c1 ∧ cr);

—γ(〈g2, c1, D1〉) = 〈g2, c1, D1〉 and γ(〈g2, c, nil〉) = 〈g2, c, nil〉;
—γ is its own inverse. 4

Proof. Let us reason by induction. In the base case the only nonfailure nodes
are the root nodes. It is clear that the conditions are satisfied for the identity
renaming γ since we have that D1 ≡ nil : D1 and, since c1 → c, we also have
that c1 → c ∧ c1. Consider now that there exists a γ′ for which the conditions are
satisfied for all ancestors s′ and r′ of nonfailure nodes s and r, respectively, and let
us prove there also exists a γ for which the conditions are satisfied for s and r. Let
r′ ≡ 〈G′r , c′r, D′r〉. Then, by assumption, s′ ≡ 〈G′r, c1 ∧ c′r, D′r :: D1〉.

Let us first consider the case in which some atom is woken up. By assumption
of equivalence with respect to delay we have that ∀a ∈ D1: delay(a, c1 ∧ c′r) holds.
Thus, no atom in D1 will be awoken in s′. Therefore, if some atom is woken up the
atom must belong to D′r. Now, also by assumption of equivalence with respect to
delay we have that ∀a ∈ D′r: delay(a, c1 ∧ c′r) iff delay(a, c′r). Thus, if some a ∈ D′r
wakes up in r′, it will also wake up in s′ and vice-versa. Thus we have that if
Ga ≡ woken(D′r, c′r) then Ga ≡ woken(D′r :: D1, c1∧c′r). It follows that, for γ′ ≡ γ
we have r ≡ 〈Ga : G′r, c

′
r, D

′
r \Ga〉 and s ≡ 〈Ga : G′r , c1 ∧ c′r, (D′r \Ga) :: D1〉, and

thus all conditions remain satisfied.
Let us now consider the case in which no atom is woken up. Let G′r ≡ c′ : Gr

where c′ is a constraint. Then for γ′ ≡ γ we have that r ≡ 〈Gr, c′ ∧ c′r, D′r〉 and
s ≡ 〈Gr, c1 ∧ c′ ∧ c′r, D′r :: D1〉, and thus all conditions remain satisfied. Otherwise,
G′r ≡ a : Gr where a is an atom. By assumption of equivalence with respect to
delay of r′ and s′ we have that delay(a, c′r) iff delay(a, c1∧c′r). If delay(a, c′r) holds,
then for γ′ ≡ γ we have that r ≡ 〈Gr, c′r, a : D′r〉 and s ≡ 〈Gr, c1 ∧ c′r, a : D′r :: D1〉,
and thus all conditions remain satisfied. If delay(a, c′r) does not hold γ is built as
in Lemma 4.3 and r ≡ 〈B : Gr, c′r, D

′
r〉 and s ≡ 〈B : Gr, c1 ∧ c′r, D′r :: D1〉, and thus

all conditions remain satisfied.

Given the above lemma we can now ensure the following:

Theorem 8.8. Let P be a program, 〈g1 : g2 : G, c, nil〉 a state, and γ a re-
naming satisfying Lemma 8.7 for states 〈g2, c1, D1〉 and 〈g2, c, nil〉. Parallel ex-
ecution of g1 and g2 is efficient, correct and operationally correct if for every
〈c1, D1〉 ∈ ansP (〈g1, c, nil〉), the search spaces of 〈g2, c, nil〉 and 〈g2, c1, D1〉 are
the same for P , and for every two nonfailure nodes s and r with the same path in
treeP (〈g2, c1, D1〉) and γ(treeP (〈g2, c, nil〉)), s and r are equivalent with respect to
delay. 4

Proof. By definition of search space preservation, there exists a bijection which
assigns to every final state r ≡ 〈Gr , cr, Dr〉 in treeP (〈g2, c〉) a final state s ≡
〈Gs, cs, Ds〉 with the same path in γ(treeP (〈g2, c1〉)), thus establishing a bijection

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

334 · M. Garćıa de la Banda et al.

among the answers. Also, since c1 ∈ ansP (〈g1, c〉) we can ensure that c1 → c. By
assumption s and r are equivalent with respect to delay. Thus, by Lemma 8.7,
cs ↔ c1 ∧ cr and Ds ≡ Dr :: D1, and we have proved correctness. Since the
bijection is among answers with the same path, we have also proved operational
correctness. Since s is a final state, 〈nil, c1 ∧ cr, Dr :: D1〉 is also a final state and
by Theorem 8.3 we have proved efficiency.

In this context, strong independence is aimed at detecting goals whose paral-
lelization, when executed in different environments, is guaranteed to be correct,
efficient, and to preserve the order of answers. Thus the definition we require is the
following:

Definition 8.9. Goal g2 is strongly independent of goal g1 for constraint c, the
empty sequence of delayed atoms, and program P iff ∀〈c1, D1〉 ∈ ansP (〈g1, c, nil〉)
and ∀〈cr, Dr〉 ∈ pansP (〈g2, c, nil〉) :

• consistent(c1 ∧ cr) holds,
• ∀a ∈ Dr : delay(a, cr) iff delay(a, c1 ∧ cr),
• ∀a ∈ D1 : delay(a, c1 ∧ cr) holds. 4

The definition can be extended to a set of goals analogously to Definition 5.6. We
can also extend the definition of weak independence and search independence in a
similar fashion. The last two conditions in the above definition can be equivalently
expressed as 〈nil, cr, Dr〉 and 〈nil, c1 ∧ cr, Dr :: D1〉 are equivalent with respect to
delay. Given this definition, it is easy to prove the following results.

Theorem 8.10. Goal g2 is strongly independent of goal g1 for constraint c,
empty sequence of delayed atoms, and program P if ∀〈c1, D1〉 ∈ ansP (〈g1, c, nil〉),
the search spaces of 〈g2, c, nil〉 and 〈g2, c1, D1〉 are the same for P , and there exists
a renaming γ such that for every two nonfailure nodes s and r with the same path
in treeP (〈g2, c1, D1〉) and γ(treeP (〈g2, c, nil〉)), s and r are equivalent with respect
to delay. 4

Corollary 8.11. If goal g2 is strongly independent of goal g1 for constraint c, the
empty sequence of delayed atoms, and program P then the parallel execution of g1

and g2 is correct, operationally correct, and efficient for c and P . 4

8.3 Independence in the General Case

We now consider the general case in which the initial sequence of delayed atoms D
may be nonempty. We must first define the and-parallel model and, in particular, to
the “conjoin” operation. This operation—conjoining the sequence of delayed atoms
associated to the answers obtained in the parallel execution—must be done in such
a way that the resulting sequence preserves the order among atoms established by
the sequential execution.

We define the conjoin operation as follows: Ds is obtained in the and-parallel
model as

(Dr \D) :: (D1 \ (D \Dr)).

The intuition behind the above operation is that we have to eliminate from D1 the
atoms woken by 〈g2, c,D〉 (represented by D \ Dr) and then add the atoms left
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 335

delayed by 〈g2, c,D〉 which do not belong to the initial sequence (represented by
(Dr \D)).

With this definition, the results obtained in the previous sections regarding the
characteristics of both search space preservation and strong independence can be
extended to this new context in a straightforward way.

8.4 Ensuring Independence “A Priori”

As mentioned earlier, it is important to find “a priori” conditions which ensure in-
dependence. In this section we extend the earlier notion of projection independence
to the broader context of languages with dynamic scheduling. Consider two goals
g1 and g2 which are projection independent for constraint c. If the sequence of de-
layed atoms D is empty, then we can ensure that the goals are search independent
by simply detecting that the above condition holds. The intuition behind this fact
is that if there are no delayed atoms before the execution of the goals, and they
cannot affect the domain of each other’s variables, then their partial answers will be
consistent and the instantiation state of their variables will not change no matter
whether one is executed before or after the other, thus not affecting the atoms left
delayed by the other goal. Formally, this is stated as follows:

Theorem 8.12. Goal g2 is search independent of goal g1 for program P , con-
straint store c, and empty sequence of delayed atoms D if the goals are projection
independent for P and c. 4

Of course search independence still implies weak and strong independence.
A difference with respect to the previous cases does arise, however, when the

initial sequence of delayed atomsD is not empty. In this case the sufficient condition
must take into account the constraints established on the variables which appear in
the delayed atoms. The reason is that atoms woken during the execution of either
g1(x̄) or g2(ȳ) may introduce new constraints involving variables in both x̄ and ȳ.

The solution proposed is to ensure that D can be partitioned into two sequences
in such a way that if we associate them to g1(x̄) and g2(ȳ) respectively, the two
new goals are projection independent for the given c. While the first sequence
corresponds to the delayed literals that depend on g1(x̄), the second one corresponds
to those that depend on g2(ȳ). If there exist delayed atoms which depend on neither
g1(x̄) nor g2(ȳ), they can be concatenated to either of the two sequences.

Definition 8.13. Goals g1 and g2 are projection independent for constraint c and
sequence of delayed atoms D iff D can be partitioned into two sequences D1 and
D2 such that the goals g1 : D1 and g2 : D2 are projection independent for c. 4

Theorem 8.14. Goal g2 is search independent of goals g1 for constraint c and
sequence of delayed atoms D if the goals are projection independent for c and D.
4

The proof follows directly from Theorem 8.12. Again, search independence also
implies weak and strong independence.

9. CONCLUSIONS AND FUTURE WORK

We have shown how a simple extrapolation of the logic programming-based defini-
tions of independence to CLP turns out to be both not general enough in some cases

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

336 · M. Garćıa de la Banda et al.

and erroneous in others, and identified the need in CLP for defining concepts of
independence both at the search level and at the solver level. Several such concepts
have been presented and shown to be relevant to several classes of applications. We
have also proposed sufficient conditions for the concepts of independence proposed,
which are easier to detect at run-time than the original definitions. Finally, we have
extended our results to deal with CLP languages with dynamic scheduling.

Our results also provide insight into the theory of independence for logic pro-
grams. The concepts proposed, when restricted to conventional logic programming,
are equivalent to the traditional notions. They make explicit hidden assumptions
related to properties of the standard unification algorithm and clarify the relation-
ships between independence and search space preservation.

It is our belief that using the concepts of independence presented the range of
applications of independence-related optimizations can be even larger in CLP than
in logic programming.

One clear topic for future work is to develop analyses for determining indepen-
dence at compile-time. One step in this direction is the analysis based on the LSign
domain defined in Marriott and Stuckey [1994]. In this case the most straightfor-
ward approach is to apply the definitions directly—the fact that the definitions
are in terms of the run-time answer constraints is not so much of a problem, since
the problem of predicting the state of the store after the execution of the goals is
probably no more difficult than determining its state before such execution.

Another clear topic for future work is to apply the results to practical optimiza-
tion tools for CLP languages. First, we are in the process of developing automatic
parallelization tools based on these ideas. It appears feasible to extend the for-
mal techniques that have been developed for this purpose in the context of logic
programming, by using the herein proposed notions of independence [Bueno et al.
1999]. And, although the topic certainly requires more study, preliminary experi-
ments confirm that useful speedups can be obtained automatically in practice by
parallelizing independent goals [Garćıa de la Banda et al. 1996]. Also, it appears
possible to exploit more fine-grained forms of and-parallelism, provided the def-
inition of independence is applied at the appropriate level: for example, stream
and-parallelism can be exploited in CLP programs by considering the indepen-
dence notions at the level of individual constraints rather than goals [Bueno et al.
1998].

Second, we have developed tools for reordering-based program optimization in the
context of CLP languages without dynamic scheduling [Kelly et al. 1996]. However,
reordering is even more interesting for the case of dynamic scheduling because the
process of delaying a goal involves run-time overhead. Actually, dynamic scheduling
can be seen as a run-time form of goal reordering, while the reordering optimization
moves the position of goals at compile-time. The topic of reordering in the context
of dynamic scheduling, in which independence can also be instrumental, is dealt
with in more detail in Puebla et al. [1997].

Finally, our results can be used to detect “stability” [Janson and Haridi 1991].
This notion is used in the Andorra family of languages in general, and in the AKL
language in particular, as the rule for control of one of the basic operations of the
language—global forking. This operation amounts to starting and-parallel execu-
tion of a goal which is nondeterministic. Stability for a goal is defined informally
ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 337

as being in a state in which other goals running in parallel with it will not affect
its execution. This is of course an undecidable notion, and in practice sufficient
conditions are used in actual implementations. In particular, in the first implemen-
tation of AKL, restricted to the Herbrand domain, the stability condition used is
actually the classical notion of strict independence for logic programming [Franzen
1992]. Since the AKL language is defined to be a constraint language, the notion of
stability has to be generalized to the constraint level. As we have shown, general-
ization cannot be done by directly applying naive liftings of the logic programming
concepts of independence. We believe that the results presented in this paper will
be of direct application.

ACKNOWLEDGMENTS

We thank Francisco Bueno, Lee Naish, and anonymous reviewers of previous ver-
sions of this paper for their comments.

REFERENCES

Apt, K. 1990. Introduction to Logic Programming. In Handbook of Theoretical Computer Science,
J. van Leeuwen, Ed. Vol. B: Formal Model and Semantics. Elsevier, Amsterdam and The MIT
Press, Cambridge, 495–574.

Apt, K. and van Emden, M. 1982. Contributions to the theory of logic programming. J.
ACM 29, 3 (July), 841–863.

Bacon, D., Graham, S., and Sharp, O. 1994. Compiler Transformations for High-Performance
Computing. Computing Surveys 26, 4 (December), 345–420.

Best, E. and Lengauer, C. 1990. Semantic Independence. Science of Computer Programming 13,
23–50.

Bruynooghe, M. and Pereira, L. 1984. Deduction Revision by Intelligent Backtracking. In
Implementations of Prolog, J. Campbell, Ed. Elliss Horwood, 194–205.

Bueno, F., Garćıa de la Banda, M., Hermenegildo, M., and Muthukumar, K. 1999. Auto-
matic Compile-time Parallelization of Logic Programs for Restricted, Goal-level, Independent
And-parallelism. J. Logic Program. 38, 2 (February), 165–218.

Bueno, F., Hermenegildo, M., Montanari, U., and Rossi, F. 1998. Partial Order and Con-
textual Net Semantics for Atomic and Locally Atomic CC Programs. Science of Computer
Programming 30, 51–82. Special CCP95 Workshop issue.

Cabeza, D. and Hermenegildo, M. 1994. Extracting Non-strict Independent And-parallelism
Using Sharing and Freeness Information. In 1994 International Static Analysis Symposium.
Number 864 in LNCS. Springer-Verlag, Namur, Belgium, 297–313.

Chassin, J. and Codognet, P. 1994. Parallel Logic Programming Systems. Computing Sur-
veys 26, 3 (September), 295–336.

Colmerauer, A. 1990. An Introduction to Prolog III. Commun. ACM 28, 4, 412–418.

Conery, J. S. 1983. The and/or process model for parallel interpretation of logic programs. Ph.D.
thesis, The University of California At Irvine. Tech. Rep. 204.

Conery, J. S. 1987. Binding Environments for Parallel Logic Programs in Nonshared Memory
Multiprocessors. In Symposium on Logic Programming 457–467.

Debray, S. K. 1993. QD-Janus : A Sequential Implementation of Janus in Prolog. Software—
Practice and Experience 23, 12 (December), 1337–1360.

DeGroot, D. 1984. Restricted AND-Parallelism. In International Conference on 5th Generation
Computer Systems. Tokyo, 471–478.

Franzen, T. 1992. Logical Aspects of the Andorra Kernel Language. Draft/Personal communi-
cation.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

338 · M. Garćıa de la Banda et al.

Garćıa de la Banda, M., Bueno, F., and Hermenegildo, M. 1996. Towards Independent
And-Parallelism in CLP. In Programming Languages: Implementation, Logics, and Programs.
Number 1140 in LNCS. Springer-Verlag, Aachen, Germany, 77–91.

Haridi, S. and Janson, S. 1990. Kernel Andorra Prolog and its Computation Model. In Pro-
ceedings of the 7th International Conference on Logic Programming. MIT Press, 31–46.

Hermenegildo, M. 1997. Automatic Parallelization of Irregular and Pointer-Based Computa-
tions: Perspectives from Logic and Constraint Programming. In Proceedings of EUROPAR’97.
LNCS, vol. 1300. Springer-Verlag, 31–46. (invited).

Hermenegildo, M. and Greene, K. 1990. &-Prolog and its Performance: Exploiting Independent
And-Parallelism. In 1990 International Conference on Logic Programming. MIT Press, 253–
268.

Hermenegildo, M. and Rossi, F. 1995. Strict and Non-Strict Independent And-Parallelism
in Logic Programs: Correctness, Efficiency, and Compile-Time Conditions. J. Logic Pro-
gram. 22, 1, 1–45.

Jaffar, J. and Lassez, J.-L. 1987. Constraint Logic Programming. In ACM Symp. Principles
of Programming Languages. ACM, 111–119.

Jaffar, J. and Maher, M. 1994. Constraint Logic Programming: A Survey. J. Logic Pro-

gram. 19/20, 503–581.

Jaffar, J. and Michaylov, S. 1987. Methodology and Implementation of a CLP System. In
4th International Conference on Logic Programming. University of Melbourne, MIT Press,
196–219.

Janson, S. and Haridi, S. 1991. Programming Paradigms of the Andorra Kernel Language. In
1991 International Logic Programming Symposium. MIT Press, 167–183.

Kalé, L. V. 1987. Completeness and Full Parallelism of Parallel Logic Programming Schemes.
In 4th IEEE Symposium on Logic Programming. IEEE, 125–133.

Kelly, A., Macdonald, A., Marriott, K., Stuckey, P., and Yap, R. 1996. Effectiveness of
optimizing compilation for CLP(R). In Proceedings of Joint International Conference and
Symposium on Logic Programming. MIT Press, 37–51.

Lin, Y.-J. 1988. A Parallel Implementation of Logic Programs. Ph.D. thesis, Dept. of Computer
Science, University of Texas at Austin, Austin, Texas 78712.

Lloyd, J. W. 1987. Logic Programming. Springer-Verlag.

Marriot, K. and Stuckey, P. 1998. Programming with Constraints: An Introduction. The MIT
Press.

Marriott, K. and Stuckey, P. 1992. The 3 R’s of Optimizing Constraint Logic Programs: Re-
finement, Removal, and Reordering. In 19th Annual ACM Conf. on Principles of Programming
Languages. ACM, 334–344.

Marriott, K. and Stuckey, P. 1994. Approximating Interaction Between Linear Arithmetic
Constraints. In 1994 International Symposium on Logic Programming. MIT Press, 571–585.

Martelli, A. and Montanari, U. 1982. An Efficient Unification Algorithm. ACM Transactions
on Programming Languages and Systems 4, 3, 258–282.

Paterson, M. S. and Wegman, M. 1978. Linear Unification. J. of Computer and System
Sciences 16, 2, 158–167.

Pereira, L. M. and Porto, A. 1982. Selective backtracking. In Logic Programming. Academic
Press, 107–114.

Puebla, G., Garćıa de la Banda, M., Marriott, K., and Stuckey, P. 1997. Optimization
of Logic Programs with Dynamic Scheduling. In 1997 International Conference on Logic Pro-
gramming. MIT Press, Cambridge, MA, 93–107.

Robinson, J. A. 1965. A Machine Oriented Logic Based on the Resolution Principle. J.
ACM 12, 23 (January), 23–41.

Saraswat, V. 1987. Compiling CP() on top of Prolog. Tech. Rep. CMU-CS-87-174, Computer
Science Department, Carnegie-Mellon University, Pittsburgh. October.

Ueda, K. and Chikiyama, T. (1985). A compiler for concurrent prolog. In 2nd International
Symposium on Logic Programming. IEEE Press, Boston, 119–126.

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

Independence in CLP Languages · 339

Warren, D. and Pereira, F. C. N. 1982. An Efficient, Easily Adaptable System For Interpreting
Natural Language Queries. American Journal of Computational Linguistics 8, 3-4, 110–122.

Warren, R., Hermenegildo, M., and Debray, S. K. 1988. On the Practicality of Global Flow

Analysis of Logic Programs. In 5th International Conference and Symposium on Logic Pro-
gramming. MIT Press, 684–699.

Winsborough, W. and Waern, A. 1988. Transparent And-Parallelism in the Presence of Shared
Free variables. In 5th International Conference and Symposium on Logic Programming. Seat-
tle,Washington, 749–764.

Received November 1998; revised April 1999; accepted December 1999

ACM Transactions on Programming Languages and Systems, Vol. 22, No. 2, March 2000.

	Introduction
	Independence for Parallelization in Logic Programs Revisited
	Operational Semantics of Logic Programs
	Independence for Parallelization in Logic Programs

	A Parallel Execution Model for Constraint Logic Programs
	CLP Operational Semantics
	A Model for the Parallel Execution of CLP

	Search Space Preservation
	Levels of Independence
	Weak Independence
	Strong Independence
	Search Independence

	Ensuring Independence ``A Priori''
	Solver Independence
	Allowing Dynamic Scheduling
	Operational Semantics
	Independence When the Initial Sequence D is Empty
	Independence in the General Case
	Ensuring Independence ``A Priori''

	Conclusions and Future Work
	Acknowledgments
	References

