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a b s t r a c t

Speech emotion recognition is an important task with a wide range of applications. However, the
progress of speech emotion recognition is limited by the lack of large, high-quality labeled speech
datasets, due to the high annotation cost and the inherent ambiguity in emotion labels. The recent
emergence of large-scale video data makes it possible to obtain massive, though unlabeled speech
data. To exploit this unlabeled data, previous works have explored semi-supervised learning methods
on various tasks. However, noisy pseudo-labels remain a challenge for these methods. In this work,
to alleviate the above issue, we propose a new architecture that combines cross-modal knowledge
transfer from visual to audio modality into our semi-supervised learning method with consistency
regularization. We posit that introducing visual emotional knowledge by the cross-modal transfer
method can increase the diversity and accuracy of pseudo-labels and improve the robustness of the
model. To combine knowledge from cross-modal transfer and semi-supervised learning, we design
two fusion algorithms, i.e. weighted fusion and consistent & random. Our experiments on CH-SIMS
and IEMOCAP datasets show that our method can effectively use additional unlabeled audio-visual
data to outperform state-of-the-art results.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The ability to recognize emotions is essential for carrying out
mpathic and natural human–computer interactions [1,2]. Along
ith rapid development of conversational agents such as Siri,
lexa and Cortana, speech emotion recognition (SER) [3] has
ttracted significant research interest in recent years.
Speech emotions are related to many factors of a speaker,

ncluding gender, age, culture, dialect, and others [3]. Speech
motions can be quantified with several discrete categories, such
s happiness, sadness, anger, and neural, etc. Researchers have
xplored many methods to classify speech emotions, such as
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hidden Markov models, support vector machines, deep belief
networks, convolutional neural networks (CNN), and long short-
term memory networks (LSTM) [3]. A number of datasets have
been proposed for the SER task. However, many of these existing
datasets [4–7] are either small-scale or low-quality, limiting the
performance of SER. Although critical to the improvement of the
SER task, gathering large, high-quality annotated data is difficult,
costly and time-consuming. Moreover, as emotion recognition is
subjective, it is often difficult for annotators to reach an agree-
ment, and thus difficult to produce large, high-quality labeled
data required by supervised learning methods.

With the rise of video-sharing platforms and social networks,
large-scale video data has been made available. It is thus possible
to obtain massive amounts of samples of unlabeled emotional
speech. Semi-supervised learning (SSL) methods [9–12] have suc-
cessfully exploited unlabeled data to obtain strong performance
in some tasks such as image classification. The simplest form
of SSL is self-training, which exploits a SER model pre-trained

with a small amount of labeled data to generate pseudo-labels for
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Fig. 1. Examples of audio-visual pairs with consistent and inconsistent emotion states in the CH-SMIS dataset [8], which has a 51.81% inconsistency rate between
audio and facial emotion states according to our statistical analysis. A consistent pair can generate a useful pseudo-labeled audio sample via cross-modal knowledge
transfer from visual modality to audio modality, while an inconsistent pair may introduce a noisy pseudo-label.
unlabeled data. The unlabeled data with generated pseudo-labels
is then used to participate in training a new model. However,
this kind of SSL has inherent deficiencies. Error pseudo-labels can
mislead the SER model to propagate these errors.

The cross-modal knowledge transfer (CMKT) method exploits
he synchronicity of emotions across modalities in multi-modal
ata. Some works [13] have demonstrated the relevance between
peech prosody and facial cues. They provide a basis for using
acial expressions to explain speech emotions in videos. Fortu-
ately, there are lots of publicly available labeled image-based
acial expression recognition datasets, which makes it possible
o utilize facial expression knowledge to explain emotions of the
udio modality of videos and generate large amounts of labeled
udio samples. These data can be used to improve the perfor-
ance of SER. Some methods [14–16] have been proposed based
n this idea. Specifically, Albanie et al. [14] apply a pre-trained
acial expression recognition model to generate emotion labels
or synchronous audio in unlabeled videos. However, directly
sing labels predicted by the facial expression recognition model
as some limitations. Firstly, the facial expression recognition
odel may make mistakes. Secondly, as shown in Fig. 1, there
re inconsistencies in the affective expressions between the audio
odality and the visual modality. These problems may intro-
uce noisy labels in the cross-modal knowledge transfer method,
hich could impact the performance of SER models.
We propose to combine CMKT and SSL methods to more

ffectively exploit massive unlabeled audio-visual data so as to
nhance the performance of SER. We employ a number of tech-
iques to overcome the weaknesses of these methods. First, we
rain a strong facial expression recognition model with large-
cale face expression datasets. The CMKT module can identify
motion by the pre-trained facial expression recognition model
nd transfer the emotion information of the visual modality to the
udio modality. The emotion information could be represented as
one-hot vector or a probability distribution. The CMKT method
ttaches facial emotional knowledge to unlabeled audio data as
heir pseudo-labels from the visual modality. Then, we generalize
ixMatch [11], which is a recent SSL method for the image clas-
ification task, to the audio setting to give unlabeled audio data
nother pseudo-labels from the audio modality.
The CMKT and generalized FixMatch methods provide two

ets of pseudo-labels, which contain knowledge from two modal-
ties and could complement each other. The fusion of emotion
nowledge from the two modalities could alleviate the label

oise problem, which exists in both CMKT and SSL methods.

2

Meanwhile, introducing facial emotional knowledge can increase
the diversity of pseudo-labels and improve the robustness of
the model. We thus design two fusion algorithms to combine
them. In the first algorithm, we first select the unlabeled audio
data with a consistent pseudo-label across the two modalities.
Then, we randomly take from the remaining unlabeled audio
data and assign them pseudo-labels from the visual modality.
In the second algorithm, we perform a weighted summation of
the probability distributions of emotional predictions from the
two modalities. Subsequently, we pick the class with the largest
predicted probability as the pseudo-label of unlabeled data. After
obtaining pseudo-labels for unlabeled audio data, we join them
with labeled audio data to train an SER model.

Our main contributions in this paper can be summarized as
follows:

1. To effectively use unlabeled audio-visual data obtained in
the wild, we propose an architecture that combines CMKT
and SSL methods for the SER task.

2. To extract emotion knowledge of the visual modality, we
train a strong facial expression recognition model on large-
scale face expression datasets. We utilize this model to
obtain an emotion explanation of unlabeled audio from
visual view and generate pseudo-labels for unlabeled audio
data.

3. To extract emotion knowledge from the audio modality,
we design an SSL method for the SER task by generalizing
FixMatch algorithms to generate pseudo-labels from the
same audio modality for unlabeled audio data.

4. We design two fusion algorithms to exploit facial and audio
emotion knowledge to improve the accuracy and diversity
of pseudo-labels generated for unlabeled audio data.

5. Our experiments on CH-SIMS [8] and IEMOCAP [4]
datasets show that our method can effectively use the addi-
tional unlabeled audio-visual data to improve performance
and achieve state-of-the-art results.

2. Related work

In this section, we briefly introduce related works, including
SER based on deep learning (abbreviated as DL), the relevance

between facial and speech emotion, and typical SSL methods.
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Fig. 2. The high-level architecture of combining CMKT and SSL for SER.
.1. Deep learning for speech emotion recognition

DL techniques for SER have made great progress [17–25] in re-
ent years. Generally, DL for SER either operates on pre-extracted
coustic features, or operates on raw audio without any process-
ng [26]. Early works [14,27–31] extract hand-crafted features for
eep networks. The rise of pre-training methods makes it possible
o learn widely applicable audio representations. Wav2vec [32]
ses the Librispeech [33] dataset to train the model mapping raw
udio to a dense representation with good generalization. We
herefore opt for the Wav2Vec pre-trained features for English
udio in our method.
Several works have constructed deep neural network architec-

ure for SER. Satt et al. [34] combine CNN with LSTM to classify
motions. The Transformer [35] model is one of the state-of-art
eq2Seq architectures based on the attention mechanism without
he use of recurrence or convolution. Some recent works [32]
egin to widely use the encoder of Transformer to extract audio
eatures. In our work, we also use the encoder of Transformer to
earn the audio representation.

.2. Relevance between facial and speech emotion

The relevance between speech prosody and facial cues has
een extensively studied [13], due to their joint relevance to hu-
an perception, communication, and behavior. The broad accord
f these studies is that during conversations, speech prosody is
enerally associated with other social cues like facial expressions
r gestures [36].
Some recent works have considered the links between fa-

ial and speech emotions in various tasks. Albanie et al. [14]
xplore transferring emotion labels from the visual modality to
he audio modality in SER. Differently, Liang et al. [15] regard
he latent links, that the inner emotional status is consistent
cross modalities of video, as an auxiliary task to obtain guid-
nce from unlabeled data to enhance fully-supervised learning. In
ontrast to the aforementioned works, Yu et al. [8] focus on the
ifference among emotions of several modalities. They propose
he Chinese single- and multi-modal sentiment analysis dataset
CH-SIMS) with three modalities. CH-SIMS collects unimodal an-
otations in addition to multimodal annotations for each clip.
hey demonstrate that independent unimodal annotation con-
ributes to learning more distinctive unimodal representations
nd more accurately reasoning emotion states of utterances.
3

2.3. Semi-supervised learning

Researchers have proposed lots of SSL methods, which are
powerful approaches that could effectively train deep networks
using a small amount of labeled data and a large amount of
unlabeled data.

As a hot field, SSL has a huge diversity of methods. We focus
only on approaches closely related to our work. As early as sev-
eral decades [37], the idea behind pseudo-labeling has appeared.
Typically, this kind of SSL method can use a model pre-trained by
a small amount of labeled datasets to predict pseudo-labels for
unlabeled data, which is general and applied in diverse domains
including NLP, object detection, image classification, to name
a few. Pseudo-labeling [9] converts model predictions to hard
labels and only retains the unlabeled samples with sufficiently
confident pseudo-labels.

The ‘‘π-model" [38] first proposes consistency regularization,
which relies on the assumption that a model should output
similar predictions when fed perturbed versions of the same
sample. Various methods are proposed to produce random per-
turbations including data augmentation, stochastic regularization
(e.g. Dropout [39]), and adversarial perturbations to extend the
consistency regularization method. Recent work [40] shows that
using strong data augmentation can produce better results. Based
on the consistency regularization, Temporal Ensembling [10] and
Mean Teacher [12] are proposed to improve the accuracy of pre-
dictions by averaging predictions from the model of each epoch
and averaging consecutive student models respectively.

FixMatch [11] combines the two existing methods above: con-
sistency regularization and pseudo-labeling. FixMatch first gener-
ates pseudo-labels using predictions on weakly-augmented unla-
beled images and retains pseudo-labels with a high confidence.
Then, FixMatch trains the model to predict pseudo-labels when
fed a strongly-augmented version of the same image. FixMatch
achieves state-of-the-art performance in image classification.

However, there are few effective SSL methods for SER. Be-
sides, typical SSL methods suffer from the problem of noisy
labels. Specifically, error predictions generated by the interme-
diate model could mislead the model to strengthen these errors
during training.

3. Method

Our goal is to utilize largely available unlabeled videos that
contain paired audio-visual data to improve the performance of
SER.
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We start by introducing the notations used in our paper.
Assume we have a labeled audio database (X L, Y ) = {(xai , yi)}

nL
i=1,

here xai ∈ Rt×d denotes the audio feature, t denotes the number
of frames, d is the feature dimension, and yi ∈ {0, 1, . . . , c −
1} denotes the corresponding manual label. c is the number of
the emotion category. In addition, we have an unlabeled video
database XU

= {(x̃ai , x̃
v
i )}

nU
i=1, where x̃ai ∈ Rt×d denotes the audio

feature, x̃v
i ∈ Rf×w×h denotes the corresponding visual image

sequence. f , w, and h is the number, width, and height of the
video frame respectively. L/U indicates labeled/unlabeled data.
nL and nU are the sizes of the labeled and unlabeled databases
respectively (nL

≪ nU ).
To effectively exploit massive unlabeled data, we propose to

combine CMKT and SSL methods. The architecture of our model
is shown in Fig. 2. Our model mainly includes five parts: CMKT for
pseudo-label generation, SSL for pseudo-label generation, CMKT
and SSL knowledge fusion, supervised training with manually
labeled data, and supervised training with pseudo-labeled data.

First, in the CMKT module, we pass the visual part x̃v
i of the

unlabeled audio-visual pairs into a facial expression recognition
model pre-trained with face expression datasets to extract facial
expression information p̃v

i (or ỹv
i ), which is described in Sec-

tion 3.2. Then, we exploit an intermediate SER model trained by
supervised learning to generate emotion information p̃ai (or ỹai )
for the audio part x̃ai of the unlabeled audio-visual pairs, which is
detailed in Section 3.3. Next, the CMKT and SSL knowledge fusion
module exploits emotion information p̃v

i (or ỹv
i ) and p̃ai (or ỹai ) to

ecide the final label ỹi for x̃ai , which is described in Section 3.4.
inally, we use manually labeled data and unlabeled data with
seudo-labels to train the SER model in a supervised learning
ay. Thus, the final loss comes from manually labeled data and
nlabeled data as follows:

L(B) = L(BL)+ λL(BU ), (1)

here L is the cross entropy loss function, B denotes a mini-batch
f training samples and λ is the balancing weight. The above
rocess composes an iteration. We run the iteration in a loop until
onvergence.
In the rest of this section, we present the network structure

or SER in Section 3.1. Then, Section 3.2 explains how to extract
acial expression knowledge to get pseudo-labels for audio data
rom the visual modality. We design an SSL method (i.e. a variant
f FixMatch) to exploit knowledge from the audio modality to
enerate pseudo-labels in Section 3.3. Finally, Section 3.4 shows
ow to combine CMKT and SSL methods for SER.

.1. Speech emotion recognition network

SER is regarded as a classification task. The structure in the
lue dashed box of Fig. 2 shows the SER network. First, for the
udio representation, we consider the Transformer [35] model,
hich is one of the state-of-art Seq2Seq architectures based on
he attention mechanism. We use the encoder of Transformer to
xtract the audio representation. Then, the hidden representation
∈ Rt×d from the Transformer encoder is aggregated via average
ooling, and we use a multi-layer perceptron (MLP) on these
ooling outputs to generate a score vector f ∈ Rc . Finally, a
oftmax function is used to output class distribution p ∈ Rc . These
rocessing steps can be formulated as follows:

h = Encoder(xa),
z = AveragePooling(h),
f = MLP(z),
p = Softmax(f ),

(2)

where xa ∈ Rt×d is the audio feature, z ∈ Rd is the aggregated
feature. For convenience, we define this model as M (xa).
θ i

4

3.2. Cross-modal knowledge transfer for pseudo-label generation

The facial expression knowledge extraction pipeline is shown
in the green dashed box of Fig. 2. There are more large-scale
image-based than video-based labeled datasets for facial expres-
sion recognition. Thus, we follow Albanie et al. [14] to per-
form expression recognition on facial images. Our facial expres-
sion recognition model is based on MobileNetV2 [41], which is
trained on the RAF-DB dataset [42] for seven expressions: neutral,
happiness, surprise, sadness, anger, disgust, and fear. Then, the
pre-trained model is used to predict the expression probability
distribution of each face frame.

To transfer the emotional knowledge of the visual domain
to the audio domain, we need to convert the expression prob-
ability distribution from frame level to face-track level. As a
single speech segment spans many face frames, an utterance
corresponds to multiple facial expression results. In this work,
we also follow [14] to adopt a simple average pooling method on
these results. The pooling outputs are then passed to a normalized
function to generate the prediction distribution p̃v

i ∈ Rc . We
compute index ỹv

i ∈ {0, 1, . . . , c−1} with the highest confidence
in p̃v

i . p̃
v
i and ỹv

i could be used as a soft and hard pseudo-label for
the audio domain of audio-visual pairs respectively.

3.3. Semi-supervised learning for pseudo-label generation

To exploit unlabeled data, many semi-supervised approaches
[9–12] (e.g. pseudo-labeling) have been proposed. However, few
semi-supervised methods have been applied to the SER task.

Inspired by the FixMatch [11] algorithm, which is a recent
SSL method and proposed for image classification, we design an
SSL method for the SER task. FixMatch employs the notion of
consistency regularization, which relies on the assumption that
a model should output similar predictions when fed perturbed
versions of the same sample.

We implement consistency training by adopting two different
kinds of data augmentation to the input x̃ai . First, to ensure rea-
sonable accuracy of pseudo-labels, a weak augmentation method
(abbreviated asWA, for example, dropout) is used to get a weakly-
augmented version WA(x̃ai ) of the input. During pseudo-label
generation, we first compute the class distribution p̃ai given the
weakly-augmented version. We then obtain index yai with the
highest confidence in p̃ai . The formula of this process is as follows:

p̃ai = Mθ (WA(x̃ai )),
ỹai = argmax(p̃ai ),

(3)

where p̃ai ∈ Rc and ỹai ∈ {0, 1, . . . , c − 1}, and Mθ is an
intermediate model. p̃ai and ỹai can be used as a soft and hard
pseudo-label of an unlabeled audio sample respectively. They
contain emotion knowledge from the audio modality.

Then, we use SpecAugment [43] as a strong augmentation
function (abbreviated as SA), which applies time frame masking
and frequency band masking to audio features and can produce
heavily distorted versions. We use SA to get a strongly-augmented
version SA(x̃ai ). We then use the above pseudo-label ỹai as a su-
pervisory signal and enforce the cross-entropy loss against the
model’s output for SA(x̃ai ):

p̃i = Mθ (SA(x̃ai )),

L(BU ) = −
1
|BU |

∑
i∈BU

1{max(p̃ai ) > τ } log(p̃i[ỹai ]),
(4)

where p̃i[ỹai ] is the prediction probability of the corresponding
seudo-label ỹai in the probability distribution p̃i. To ensure the
ccuracy of pseudo-labels, the threshold τ is used to select unla-
eled samples with bigger prediction probabilities to participate
n training.
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.4. Combining cross-modal knowledge transfer and semi-supervised
earning for pseudo-label generation and SER

In the above SSL method, a model just uses its own predictions
o teach itself in the training phase. Thus, prediction errors can
einforce themselves. This will cause the model to perform poorly
n certain categories. Introducing facial expression knowledge can
lleviate this problem, because of the difference of emotion pre-
iction distributions between SSL and facial expression transfer
ethods. It is unreasonable to directly assign pseudo-labels from

acial expression recognition to unlabeled audio data, due to the
xistence of the inconsistency between facial expressions and
udio emotions. Thus, we combine two emotion pseudo-labels
rom visual and audio modalities to generate final pseudo-labels
s shown in Fig. 2. We design two fusion functions (abbreviated
s FF) for visual and audio emotion knowledge fusion.
In the first algorithm FF1, inputs use the hard pseudo-label ỹv

i
rom the facial expression recognition and the hard pseudo-label
˜ai generated in SSL. To ensure the accuracy of the final pseudo-
abels, we first retain consistent pseudo-labels by using a mask,
hich is computed by:

maski = 1{ỹai == ỹv
i } (5)

Despite consistency can ensure the accuracy of pseudo-labels, the
model requires different emotion knowledge extracted by CMKT
to overcome the limitation of SSL. In addition, it is impossible to
know whether inconsistent pseudo-labels are noise. To introduce
different emotion knowledge of the visual domain, we use a
uniform distribution U(0, 1) to assign a random weight to each
unlabeled audio sample. Then, samples with weight less than ϵ

will be retained. The mask could be redefined as:

maski = 1{ỹai == ỹv
i or wi < ϵ}, where wi ∈ U(0, 1) (6)

We can control the proportion of random samples by ϵ. The mask
is used to compute unlabeled loss as follows:

p̃i = Mθ (SA(x̃ai )),

L(BU ) = −
1
|BU |

∑
i∈BU

maski × log(p̃i[ỹv
i ]),

(7)

where p̃i is a probability distribution output of the model for
SA(x̃ai ). Advantages of this algorithm are that pseudo-labels gen-
erated via merging multi-view knowledge are more accurate,
and randomly selecting samples with pseudo-labels of the visual
domain can increase the diversity of emotional knowledge. The
FF1 algorithm is called as the Consistent & Random method.

In our second algorithm FF2, inputs contain the soft pseudo-
label p̃ai from SSL and the soft pseudo-label p̃v

i generated by the
CMKT method. FF2 directly uses a weighted fusion way to com-
bine them, and then obtains the final pseudo-label by computing
index ỹi with the highest confidence as follows:

p̃avi = αp̃ai + (1− α)p̃v
i ,

ỹi = argmax(p̃avi ),
(8)

where α is a scalar parameter to balance the importance of facial
and audio emotion distributions. Then, the unlabeled loss in FF2
is computed as:

p̃i = Mθ (SA(x̃ai )),

L(BU ) = −
1
|BU |

∑
i∈BU

1{max(p̃avi ) > τ } log(p̃i[ỹi]), (9)

where τ is a scalar parameter and used to control the accuracy of
pseudo-labels. The FF2 algorithm is called as the Weighted Fusion
method.
5

Table 1
Dataset information: We summarize details of the four datasets we use.
Language Type Name Size Labels

Chinese Labeled CH-SIMS [8] 2,281 3 classes
Unlabeled iQIYI-VID [44] 14,502 –

English Labeled IEMOCAP [4] 5,531 4 classes
Unlabeled EmoVoxCeleb [14] Over 1 million –

Next, we can joint unlabeled and labeled audio data to train
an SER model. The loss can be computed as follows:

L(BL) = −
1
|BL|

∑
i∈BL

log(Mθ (SA(xai ))[yi]),

L(B) = L(BL)+ λL(BU ),

(10)

here xai and yi are features and labels of labeled audio sam-
les respectively. λ is a fixed hyperparameter to balance the
nlabeled and labeled loss. L(BU ) could come from the Consis-
ent & Random or the Weighted Fusion. The pseudocode of the
omplete algorithm for the training of a SER model is shown in
lgorithm 1.

Algorithm 1: Combining CMKT and SSL for SER.

Input: x̃ai : unlabeled audio sample, ỹv
i : hard pseudo-label from

visual modality for x̃ai , p̃v
i : soft pseudo-label from visual

modality for x̃ai , xai : labeled audio sample, yi: label for xai ,
Mθ (x): encoder with trainable parameters θ , WA(x): weak
augmentation function, SA(x): strong augmentation function,
λ: unlabeled loss weight, ϵ: weight threshold, τ : probability
threshold, FF: fusion function, epochs: training epoch number

Output: θ

1: for t in [1, epochs] do
2: for each minibatch (BU ,BL) do
3: L(BL)←− 1

|BL|

∑
i∈BL log(Mθ (SA(xai ))[yi])

4: p̃ai ← Mθ (WA(x̃ai )) ▷ soft pseudo-label from the audio
modality

5: ỹai ← argmax(p̃ai ) ▷ hard pseudo-label from the
audio modality

6: p̃i ← Mθ (SA(x̃ai ))
7: L(BU )← FF1(ỹv

i , ỹ
a
i , p̃i, ϵ) or FF2(p̃v

i , p̃
a
i , p̃i, τ )

8: L(B)← L(BL)+ λL(BU )
9: update θ

10: end for
11: end for

4. Experiments

We evaluate our model via a series of experiments on two
tasks including Chinese speech sentiment analysis and English
SER.

4.1. Data description

Here we discuss details of the four datasets we use to evaluate
and benchmark our method. For further readability, we have
summarized these details in Table 1.

CH-SIMS. CH-SIMS [8] is a Chinese single- and multi-modal
sentiment analysis dataset consisting of 2,281 refined video seg-
ments in the wild with both multimodal and independent uni-
modal annotations. Each segment contains 15 words and has a
length of 3.67s on average. We only used the audio part of each
segment for speech sentiment recognition. Each clip is labeled

by the average of five sentiment scores by human annotators. In
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his paper, we focus on sentiment polarities rather than scores,
o we divide a score into three states, including positive (score

(0.1, 1]), neutral (score ∈ [−0.1, 0.1]), and negative (score
[−1,−0.1)).
iQIYI-VID. iQIYI-VID [44] contains 643,816 video clips of

0,034 identities. To match the CH-SIMS dataset, we need to filter
aw videos of iQIYI-VID to meet the following constraints [8]:

1. The language of videos should be mandarin.
2. The length of each segment is no less than one second

and no more than ten seconds. In the meanwhile, every
segment should correspond to a complete sentence.

3. Each video segment only contains the speaker’s face.

However, the video pre-processing methods used in [8] are
anual and prohibitively time-consuming. To collect large-scale
ata that meet the constrains, we first cut up and select videos
ccording to captions, and then apply existing pre-trained models
ncluding face detection and speaker detection to select the clips
hat meet the constraints. Finally, we obtain 14,502 video flips
25 fps). We use these videos as an unlabeled dataset to extend
he CH-SIMS dataset.

IEMOCAP. IEMOCAP [4] is a multi-modal emotion recognition
ataset consisting of 12 h of videos. Its multimodal streams
re sampled by a fixed sampling rate on audio (12.5 Hz) and
ision (15 Hz) [45]. The videos are divided into five sessions.
ach session includes two actors, a male and a female. Following
revious works [45], 4 emotions (happy, angry, sad, neutral) are
elected for emotion recognition. Thus, we use 5531 utterances
ncluding 1103 angry, 1636 happy, 1708 neutral, and 1084 sad
rom 5 sessions and 10 speakers. In this paper, we follow the
peaker-independent setting to avoid actor overlap in the train-
ng, validation, and testing set. Thus, we choose 8 speakers in four
essions into the training set and the remaining 2 speakers are
ivided into the validation set and the testing set respectively.
EmoVoxCeleb. EmoVoxCeleb [14] is a large-scale audio-visual

ataset of human emotions, obtained from the VoxCeleb dataset.
he VoxCeleb dataset is language-diverse, gender-balanced, and
ge-comprehensive. It consists of 1251 interview videos of
elebrities from YouTube, with over 1 million utterances. We use
moVoxCeleb as an unlabeled dataset to extend the IEMOCAP
ataset.

.2. Hyper-parameters

We extract audio features at the utterance level. The datasets
e use contain audio in two languages (i.e. English and Chinese).
o, we use different methods to extract acoustic features:

1. For English audio, we adopt the Wav2Vec feature proposed
in [32], which is pre-trained by Librispeech [33].

2. For Chinese audio, we utilize the LibROSA [46] speech
toolkit with the same setting of [14] to extract the
utterance-level short-time Fourier transform (STFT) fea-
ture.

he dimension of audio features at 16000 Hz is d = 512. In
our work, the time sequence length of audio features is fixed
at t = 555 and t = 445 for STFT and Wav2Vec respectively.
All audio features are head-padded or trimmed to corresponding
fixed lengths. The video frame rate is 25 frames per second.
Following [14], the frames at an interval of 0.24 s are used to
generate facial expression predictions. The number of categories
is c = 3 and c = 4 for the CH-SIMS and IEMOCAP datasets re-
spectively. The threshold is τ = 0.9. In the Transformer encoder,
e set the number of self-attention heads at 8, the number of

ransformer blocks at 8, and the size of hidden embedding at 512.
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Table 2
Mapping from emotions to sentiments.
Emotion Sentiment

Neutral Neutral
Surprise, happiness Positive
Fear, sadness, anger, disgust Negative

The balancing weight between labeled loss and unlabeled loss is
λ = 0.1. The parameter α and ϵ are discussed later in Section 4.3.

Every linear mapping is regularized by Dropout [39]. The
Adamax optimizer [47], a variant of Adam based on infinite norm,
is used. The learning rate is gradually increased from 0.0025 to
0.01 in the first four epochs. Then, we decay the learning rate by
1/1.17 for every 4 epochs up to 50 epochs and clip the 2-norm
of vectorized gradients to 1.00 according to our experience. The
batch size is always 32 for labeled and unlabeled datasets. All
experiments are implemented based on PyTorch framework [48].

4.3. Comparison experiments and results for speech sentiment anal-
ysis

We first conduct a 3-class sentiment analysis in the CH-SIMS
dataset with data from iQIYI-VID as an unlabeled dataset. The 3-
class sentiments include negative, neutral, and positive. However,
the facial expressions are discrete and have seven categories. We
refer to the relationship [49] between seven basic categorical
emotions and arousal-valence dimensional space to map emo-
tions to sentiments as shown in Table 2. Although this mapping is
not always correct for all samples, errors can be regarded as noisy
labels as the same as errors of the facial expression recognition.

We compare our proposed method with supervised learn-
ing, SSL, and direct CMKT approaches. Their descriptions are as
follows:

(1) : Supervised learning only uses a labeled dataset to train a
model.

(2) : To compare with SSL, we implement three typical SSL
methods including FixMatch [11], π-modal [10], and Temporal
ensembling [10] for speech sentiment analysis. These methods
have been introduced in Section 2.3.

(3) : Albanie et al. [14] propose to use unlabeled audio sam-
ples with pseudo-labels of the visual domain to train a model,
and then test the performance on the target dataset without
fine-tuning. Due to different numbers of categories between the
source dataset (i.e. unlabeled audio dataset with pseudo-labels)
and the target dataset, they fit a single affine transformation
(linear layer plus bias) to transform the dimension of the score
vector. In our experiment setting, the source and target datasets
have the same number of categories. We thus implement this
direct CMKT method (abbreviated as DCMKT) without fitting a
single affine transformation. In addition, for further comparison,
we also fine-tune the trained model with the training set of the
target dataset.

For a fair comparison with the above baselines, we evaluate
the performance with three common evaluation metrics:

• Weighted Accuracy (WA) - the accuracy of all samples in
the test set.
• Unweighted Accuracy (UA) - the average of the accuracy of

each class in the test set.
• weighted F1 score (F1) - the average of the F1 score of

each class with weighting depending on the number of true
instances for each label in the test set.

We perform all the experiments three times with three different
random seeds and report their mean values. The results are
shown in Table 3.
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able 3
esults for 3-class speech sentiment analysis on the CH-SIMS dataset with data
f iQIYI-VID as unlabeled data.
Model F1 (%) WA (%) UA (%)

Supervised learning 42.94 45.51 44.91

Semi-supervised learning
FixMatch [11] 37.90 42.01 35.67
π-modal [10] 45.88 50.18 38.81
Temporal ensembling [10] 41.96 43.91 41.92

Direct cross-modal knowledge transfer
DCMKT [14] 36.58 36.76 44.94
DCMKT with fine-tuning 48.56 48.72 45.52

SSL & CMKT
Consistent & random ϵ = 0.5 (ours) 51.39 51.72 49.53
Weighted fusion α = 0.2 (ours) 49.34 50.69 44.50

From Table 3, we can see that UA of SSL is significantly low,
hich indicates that prediction results of these SSL methods are
asy to focus on a certain category. This also can be observed
rom the confusion matrix in Fig. 3(a), (b), and (c). This is because
rror labels predicted by the intermediate model can mislead
he model to learn the wrong information and then continue to
einforce errors, which also causes poor UA and F1 results.

As shown in the third part of Table 3, the experiment results
f DCMKT are worse. The possible reason might be that the
istribution of the unlabeled audio dataset is different from the
arget dataset, i.e. domain differences. In addition, the confusion
atrix in Fig. 3(d) reflects that DCMKT slightly tends to pre-
ict sentiment as neutral. This is because data collected in the
ild include more neutral sentiment samples. Thus, the model

rained with these data cannot be directly used in the target i

7

domain. We try to perform fine-tuning on DCMKT. As expected,
the performance has significant improvement.

The results of our methods are present in the last part of Ta-
ble 3. Our method not only outperforms the compared SSL meth-
ods but also exceeds DCMKT and DCMKT with fine-tuning. The
confusion matrices in Fig. 3(e) and (f) show our methods could
predict well for each category. The results could be explained by
the fact that fusing audio and facial emotion knowledge could
help ensure the accuracy of final pseudo-labels. These indicate
that combining SSL and CMKT methods can effectively exploit
unlabeled data to improve performance. We also compare our
Weighted Fusion α = 0.2 and Consistent & Random ϵ = 0.5
algorithms. The results show Consistent & Random ϵ = 0.5
lgorithm performs better in the CH-SMIS dataset with data of
QIYI-VID as unlabeled data.

We do ablation studies on the CH-SIMS dataset. The results
re shown in Table 4. We can see that adding unlabeled data in
n SSL way makes the results significantly worse. The result of
dding unlabeled data with CMKT pseudo-labels can outperform
upervised learning. This indicates facial emotion knowledge is
elpful to enhance the performance of SER. To gain more insights
bout the impact of balancing weight α and random ratio ϵ,
e perform experiments using different parameter values. The
esults are shown in Fig. 4.

Fig. 4(a) shows the influence of ϵ in the FF1 algorithm, i.e. Con-
istent & Random. When ϵ = 0, it is equivalent to only adding
amples that have the same pseudo-label between the audio and
isual modalities. This can improve the accuracy of labels but
imit the introduction of facial expression knowledge different
rom audio emotion knowledge. Thus, we can see UA of ϵ = 0

s very low. Subsequently, with the increase of the ratio ϵ, the
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Fig. 4. (a) Influence of random sampling ratio ϵ. (b) Influence of weight α of audio emotion information.
R

Table 4
Ablation results for 3-class speech sentiment analysis on the CH-SIMS dataset
with data of iQIYI-VID as unlabeled data.
Model F1 (%) WA (%) UA (%)

Supervised learning 42.94 45.51 44.91

Add data in an SSL way 37.90 42.01 35.67
Add data with CMKT pseudo-labels 49.48 50.69 45.28

Add data in a combining SSL and CMKT way
Consistent & random

ϵ = 0 39.83 46.46 37.11
ϵ = 0.5 51.39 51.72 49.53
ϵ = 0.9 48.89 51.50 42.92

Weighted fusion
α = 0.2 49.34 50.69 44.50
α = 0.4 49.00 49.53 45.15
α = 0.8 42.04 49.31 36.06

performance first gradually improves and then drops. Our Con-
sistent & Random method (ϵ = 0.5) outperforms the supervised
learning approach by 8.45%, 6.2%, and 4.62% in F1, WA, and UA
respectively. When ϵ = 1, it is equivalent to adding data in a
CMKT way, i.e. all of the unlabeled samples are pseudo-labeled by
the CMKT method and participate in training phase. The reason
for these results is that randomly adding a small number of
samples can introduce facial expression knowledge. However,
adding too much might introduce noise.

Fig. 4(b) shows the impact of α in the FF2 algorithm, i.e.
Weighted Fusion. α denotes the weight of emotion information
from the audio modality. When α = 1, the method is equivalent
to the generalized FixMatch algorithm. As α changes from 0 to 1,
the performance first slightly increases and then decreases. This
is because the accuracy of labels first increases slightly. Then, as α
increases, the final pseudo-labels of unlabeled samples are more
affected by the emotion knowledge of the audio modality.

4.4. Comparison experiments and results for speech emotion recog-
nition

In this subsection, we present the experiment results on the
IEMOCAP dataset with the EmoVoxCeleb dataset as the unlabeled
data for SER. To match the IEMOCAP dataset, we only select four
categories of data from the EmoVoxCeleb dataset. The IEMOCAP
dataset is collected from actors. Differently, the EmoVoxCeleb
dataset is obtained in the wild, so it contains many neutral emo-
tion audio-visual pairs and has a category imbalance problem,
which results in a large distributional difference between these
two datasets. Therefore, it is a challenge to use the EmoVoxCeleb
dataset to extend the IEMOCAP dataset. We first report super-
vised learning, three SSL methods, and DCMKT on the IEMOCAP
dataset as baselines in Table 5.
8

Table 5
Results for SER on the IEMOCAP dataset with the EmoVoxCeleb dataset as
unlabeled data.
Model F1 (%) WA (%) UA (%)

Supervised learning 57.40 58.42 59.43

Semi-supervised learning
FixMatch [11] 56.99 57.09 57.71
π-modal [10] 59.50 60.21 61.57
Temporal ensembling [10] 57.33 57.67 58.46

Direct cross-modal knowledge transfer
DCMKT [14] 24.15 28.72 27.99
DCMKT with fine-tuning 54.62 54.55 54.97

SSL & CMKT
Consistent and random ϵ = 0.5 (ours) 60.07 60.30 61.20
Weighted fusion α = 0.2 (ours) 61.06 61.16 62.50

Table 6
Results for comparison with the sate-of-the-art methods on the
IEMOCAP dataset.
Model F1 (%) WA (%) UA (%)

ARE [50] – 54.60 58.00
LSTM+Att [17] – 55.50 57.40
Acoustic DAE [15] – 57.20 58.50

Ours 61.06 61.16 62.50

The results of three SSL methods are shown in the second part
of Table 5. We can see that these SSL methods do not perform as
badly as they do in speech sentiment analysis (Section 4.3). This
is because IEMOCAP has over twice labeled data than CH-SIMS.
More labeled data can improve the accuracy of pseudo-labels
predicted by the intermediate model in SSL. The third part of
Table 5 shows DCMKT results, which are nearly equivalent to
random guessing. This is mainly because of the distributional
difference between the IEMOCAP and EmoVoxCeleb datasets and
the category imbalance problem of the EmoVoxCeleb dataset.
These problems also lead to the worse performance of DCMKT
with fine-tuning than supervised learning.

The experiment results of our method are shown in the fourth
part of Table 5. We can see that our method outperforms all of
the baseline methods. This demonstrates again that combining
facial and audio knowledge to pseudo-label unlabeled samples
can enhance the performance of the SER task. We also compare
our FF2 (i.e. Weighted Fusion α = 0.2) and FF1 (i.e. Consistent &
andom ϵ = 0.5) algorithms. The results show Weighted Fusion

α = 0.2 performs better in this experiment setting.
As shown in Table 6, we also compare our method with

several current state-of-the-art methods that perform speech
emotion recognition on the IEMOCAP dataset. Yoon et al. [50]
present a deep dual recurrent encoder to combine text and audio
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nformation. We report the results of the uni-modal recurrent
ncoder on audio (ARE). Xu et al. [17] propose to use the attention
echanism to learn the frame-level alignment between audio
nd text. They conduct uni-modal experiments on acoustic data
LSTM+Att). Liang et al. [15] apply deep auto-encoders (DAE)
o learn high-quality latent representations by encoding and re-
onstructing the input data. The latent representation then is
sed for emotion recognition. As shown in Table 6, the results
how our method significantly outperforms Acoustic DAE [15],
RE [50], and LSTM+Att [17], which proves the effectiveness of
ur method and demonstrates that our model achieves state-of-
he-art performance on IEMOCAP for the SER task.

. Conclusion

In this work, we attempt to use massive unlabeled audio-
isual data to enhance the performance of SER. We propose to
ombine CMKT and SSL methods to exploit visual and audio
motion knowledge to generate more accurate pseudo-labels for
nlabeled audio data. To do this, we design two fusion algorithms,
ncluding Weighted Fusion and Consistent & Random, to fuse
isual and audio emotion knowledge. Our experiments on two
enchmark datasets, CH-SIMS and IEMOCAP datasets, show that
ur method can use additional unlabeled audio-visual data to im-
rove performance and achieve state-of-the-art performance. Our
ethod is transferable and suitable for tasks involving multiple
odalities, for example, image–text and audio–text.
There are some limitations to our method. The consistent

echanism between the facial expression and the speech emo-
ion in a video still needs to be explored further. The domain
ifference between the additional unlabeled dataset and the tar-
et dataset blocks the improvement of the performance. In the
uture, we will further investigate the consistency mechanism
etween the facial expression and the speech emotion. To explore
he potential value of audio-visual data, we will develop effective
pproaches to transfer facial expression knowledge to the audio
odality more accurately. In addition, we will explore domain
daptation methods to effectively use external unlabeled data to
elp the target task.
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